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Abstract

Urban tree cover provides benefits to human health and well-being, but previous studies
suggest that tree cover is often inequitably distributed. Here, we use National Agriculture
Imagery Program digital ortho photographs to survey the tree cover inequality for Census
blocks in US large urbanized areas, home to 167 million people across 5,723 municipalities
and other Census-designated places. We compared tree cover to summer land surface
temperature, as measured using Landsat imagery. In 92% of the urbanized areas surveyed,
low-income blocks have less tree cover than high-income blocks. On average, low-income
blocks have 15.2% less tree cover and are 1.5°C hotter than high-income blocks. The great-
est difference between low- and high-income blocks was found in urbanized areas in the
Northeast of the United States, where low-income blocks in some urbanized areas have
30% less tree cover and are 4.0°C hotter. Even after controlling for population density and
built-up intensity, the positive association between income and tree cover is significant, as is
the positive association between proportion non-Hispanic white and tree cover. We esti-
mate, after controlling for population density, that low-income blocks have 62 million fewer
trees than high-income blocks, equal to a compensatory value of $56 billion ($1,349/per-
son). An investment in tree planting and natural regeneration of $17.6 billion would be
needed to close the tree cover disparity, benefitting 42 million people in low-income blocks.
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Introduction

An increasing number of studies, from a variety of disciplines such as ecology, economics, and
environmental health, have found evidence that nature provides multiple benefits to human
health and well-being [1-4]. This paper focuses on one urban natural feature, urban tree can-
opy cover (‘tree cover’ hereafter), the layer of leaves, branches, and stems of woody vegetation
when viewed from above using remote sensing technology [5]. Tree cover provides a variety of
ecosystem service benefits in cities [6, 7], including reducing air pollutant concentrations [8],
mitigating stormwater runoff [7], maintaining water quality [9], encouraging physical recrea-
tion [10], and improving mental health [11]. In the United States, urban trees provide esti-
mated annual benefits of about $18.3 billion in air pollution reduction, carbon sequestration,
and lowered building energy use and power plant emissions [12]. Environmental health scien-
tists have also found epidemiological evidence of a link between trees and human health. A
recent review found that urban trees are associated with a wide range of benefits including:
reduced harms such as ultraviolet radiation, air pollution-related respiratory conditions, and
excess heat stress; greater restorative capacities such as cognition and attention restoration and
benefits to mood and mental health; and positive health effects such as better birth outcomes,
immune functioning, active living, cardiovascular function, weight status, and social cohesion
[4]. Note that urban tree cover is also associated with some ecosystem disservices as well, both
real and perceived [13].

This paper focuses on one benefit tree cover provides, reduced temperatures [8, 14-18].
Urban air temperatures are a function of the urban energy balance, which tree cover and many
other factors influence [19]. Tree cover cools the air primarily by shading surfaces such as con-
crete and asphalt, thus preventing heat storage [19] and reducing the urban heat island effect.
Tree cover can also reduce temperatures by transpiring water, increasing the fraction of heat
going to latent rather than sensible heat [20]. Tree cover can reduce land surface temperature
by 10-20°C on a summer day [20]. Effects on air temperatures are smaller, with a row of
urban street trees on average lowering summertime air temperatures by 0.5-2.0°C [21]. This
reduction in air temperature is nevertheless meaningful for human health. One study esti-
mated that current urban tree cover in the United States saves 1200 lives annually during heat-
waves and provides annual heat-reduction services worth $5.3-12.1 billion [22].

Despite the recognition of the numerous benefits provided by tree cover, research suggests
it is unequally distributed in many cities. A meta-analysis of the literature shows that low-
income neighborhoods [23] and minority communities [24] often have less tree cover. These
patterns have been found both within the United States [25] and in other nations [26]. For
instance, Schwarz and colleagues studied 7 incorporated cities and found that neighborhoods
with lower median household income have less tree canopy cover than neighborhoods with
higher income in the same city [27]. Nesbit and colleagues found that across 10 incorporated
cities, neighborhoods with lower education and income had less vegetation, a pattern that was
most strongly apparent in large cities [28]. Riley and Gardiner studied 9 incorporated cities,
examining tree cover and ecosystem service provision, which related to socioeconomic vari-
ables in different ways in each city [29]. A similar general trend for inequality in exposure to
nature has been observed with remotely sensed measures of greenness [30], which have been
used to analyze vegetation in cities globally [e.g., 31], and with exposure to heat risk due to
lack of trees and high impervious cover [32, 33].

Thus, research suggests tree cover is often but not always inequitably distributed in cities,
which may have significant implications for ecosystem service provision and human well-
being [23, 24]. The statistical interpretation of the bivariate negative association between tree
cover and a socio-economic variable like income or race/ethnicity is complex for at least two
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reasons. First, tree cover is also associated with other factors, including differences in climate,
biome, neighborhood age, urban density, the intensity of urban settlement, and other aspects
of urban form [34-40]. In some studies, covariates such as terrain, housing type and density
explained part of the variation between tree cover and socio-economic variables [25, 29, 39, 41,
42]. Furthermore, socio-economic variables are themselves also correlated with aspects of
urban form, such as the degree of sprawl and population density [43, 44]. Second, some studies
have found that the statistical significance of the relationship between tree cover and socioeco-
nomic variables is different if spatial autocorrelation is accounted for [27, 29], and one review
study observed that studies that controlled for spatial autocorrelation generally found fewer
statistically significant trends [23]. Therefore, one important question when quantifying pat-
terns in tree inequality is whether relationships with socio-economic variables like income and
race/ethnicity are statistically significant after accounting for covariates and spatial
autocorrelation.

Our principal goal for this study is to analyze tree cover and temperature inequality for a
large sample of thousands of communities throughout the United States. To date, however,
such a large survey has been hampered by the lack of fine-resolution data on urban tree cover
with national coverage. For example, the National Land Cover Data (NLCD) Tree Canopy
Cover datasets (2011 and 2016) provide a measure of change in tree cover over five years across
the US but their 30m resolution has been found to systematically underestimate urban tree
cover because small patches of tree canopy are often not detected [45], particularly in land-
scapes below 30% tree cover and above 70% cover [46]. Urban tree canopy (UTC) assessments,
which provide fine-resolution data on tree cover [47], are available in many jurisdictions,
including entire states [e.g., 5, 48]. These UTC assessments are the gold standard for accuracy,
often using local training datasets to create classified tree cover maps from Lidar and high-res-
olution (often < 1m) imagery [e.g., 49-51]. However, UTC assessments are not available for
all communities in the United States, and therefore could not be used to achieve our study’s
goal of analyzing tree cover inequality for a large sample of thousands of communities
throughout the United States.

Here, we analyze the 100 largest urbanized areas in the United States, housing 167 million
people (nearly 55% of the total US population) and containing the urbanized portions of 5,723
incorporated places (cities and towns) and census-designated places in 2010 (see Methods for
definitions of these terms). We focus on tree cover inequality relative to income, hypothesizing
that high-income neighborhoods will have greater urban tree canopy cover. While it is less of a
focus, we also examine tree cover relative to race/ethnicity inequality, hypothesizing that
neighborhoods with a higher proportion of non-Hispanic whites will have greater tree cover.
Key goals of this study include:

o Quantify for a large sample of US communities the degree to which urban tree cover varies
with household income and population density.

« Map for a large sample of US communities the inequality in tree cover and summer tempera-
ture across and within US urbanized areas.

« Test if urban tree cover will be lower in blocks of lower household income even after
accounting for how population density and other covariates that affect the correlation
between income and tree cover.

o Quantify for a large sample of US communities the difference in summer surface tempera-
tures between low and high-income blocks.
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o Estimate for a large sample of US communities the US urban tree cover disparity, the
amount of tree planting that would be required to raise low-income blocks up to the median
of similarly dense high-income blocks.

Materials and methods

Our methods proceeded in five stages: defining the study area; remote sensing and image
interpretation; assembling demographic and socioeconomic data; spatial overlay operations in
a geographical information system (GIS) to integrate these data sets; and statistical analysis to
determine significant patterns in tree cover.

Study area

Our study area was all US urbanized areas [52] larger than 500 km”, where “urbanized area”
follows the definition of the US Census for the 2010 census [52]: “an urban area will comprise
a densely settled core of census tracts and/or census blocks that meet minimum population
density requirements, along with adjacent territory containing non-residential urban land uses
as well as territory with low population density included to link outlying densely settled terri-
tory with the densely settled core.” There were 100 urbanized areas larger than 500 km?, with a
population of 167 million people. Note that one urbanized area generally contained multiple
communities: these 100 urbanized areas contained the urbanized portion of 3,520 incorpo-
rated places (e.g., municipalities) and 2,291 census-designated places (places not legally incor-
porated but with commonly used place names that have been mapped by the Census Bureau)
[53].

In this study, tree cover is compared to demographic characteristics derived from US Cen-
sus data available at the block group level (income) or block level (all other demographic and
social variables).

Remote sensing

In order to assess tree cover inequality for a large sample of thousands of communities
throughout the United States, we mapped tree cover at 2m resolution. Our study explored the
application of Google Earth Engine (GEE), a web-based application programming interface
(API) that enables rapid analysis of large spatial datasets [54] to develop a fast, systematic
method to map tree cover across large urbanized areas within the US.

The urbanized areas were grouped into ten geographically defined groups predominantly
determined by their biomes (S1 Table), as defined by Olson and colleagues [55]. The justifica-
tion behind this was that vegetation type, and hence spectral characteristics, are similar within
each biome, allowing optimization of image classification procedures regionally. There were
two exceptions to this assignment of urbanized areas to biome. First, the temperate broadleaf
and mixed forests biome of the eastern United States contains many urbanized areas, and we
decided to split it into subgroups to allow for more locally defined classification algorithms (S1
Fig). Generally, the assignment of urbanized areas in this biome to subgroups followed ecore-
gional boundaries, with adjustments to avoid having a small amount of urbanized area in any
one subgroup. Second, we chose to place western urbanized areas into one group, rather than
assuming urbanized areas in the western United States would be spectrally similar to urban-
ized areas in the eastern United States of the same biome. While that does mean western
urbanized areas span a range of biome types, it allows for the classifier to optimize for the
urban form of cities along the West Coast, which is different than East Coast cities. In practice,
since the random forest algorithm used (see below) is quite flexible, the exact geographical
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groupings used in our classification do not appear to affect our results substantially, and pre-
liminary classifications using different geographic groupings yielded qualitatively similar tree
cover maps.

The analysis was based on 2m imagery from the US Department of Agriculture’s National
Agriculture Imagery Program (NAIP) available on Google Earth Engine (GEE). The NAIP
archive between 2014 and 2016 had four spectral bands—blue (B), green (G), red (R), and
near-infrared (NIR) wavelengths—and was filtered for cloud-free images. This time period
was chosen because there was near universal coverage of NAIP images with these four bands,
whereas earlier time periods lack complete coverage. From these four bands, we derived six
additional layers useful for image classification. Three of these were commonly-used indices,
normalized band ratios that are helpful for detecting vegetation and water: Normalized Differ-
ence Vegetation Index (NDVI) [56], Green Normalized Difference Vegetation Index
(GNDVI) [57], and Normalized Difference Water Index (NDWTI) [58]. These were defined as:

NDVI = gﬁ :L 1}3 (1)
_ (NIR—-G)

GNDVI = (NRTG) (2)

Npwi = (G~ NIR) (3)
~ (G+ NIR)

To differentiate trees from other green areas such as pasture, baseball fields or golf courses,
we used an entropy function in GEE (image.glcm) that calculated the gray-level co-occurrence
matrix (GLCM) value [59], using as input the NDVT in a 4x4 kernel window. Finally, a binary
layer was created where pixels with high texture value and high NDVT threshold were given a
value of 1, and the remaining pixels were otherwise coded as 0. Thresholds for texture and
NDVI varied by geographic region. Thresholds were chosen to correctly identify forested sites
in the training data as having high NVDI and a high texture value, while avoiding coding areas
of grass as 1. The final ten band image stack (four bands from NAIP imagery, plus six derived
layers) was used in image classification.

Training data for this image classification come from a spatially explicit dataset comprising
of 9,424 control points, created by Nowak and Greenfield [34]. In the Nowak and Greenfield
analysis, each control point in 2014 had a known land cover assigned by a human image inter-
preter looking at aerial photographs. For this analysis, we simplified the Nowak and Greenfield
land cover classes to tree (N = 3746) or not tree (N = 5678). In our analysis, each control point
also has values in each of the ten-band image stack. This information was used to train a Ran-
dom Forests (RF) classification algorithm [60, 61]. The RF classifier in GEE was run separately
for each different geographic area, outputting a classified tree/non-tree image as well as infor-
mation on the confusion matrix and statistics of classification accuracy using the classifier.con-
fusionMatrix function in GEE.

Validation against an independent, high accuracy dataset. Our unit of analysis for this
study was the census block, so we were primarily interested in making sure our tree cover esti-
mates at that scale were accurate. We validated our method for estimating tree cover against
an independent test dataset, some of the Urban Tree Canopy (UTC) assessments conducted
by the US Forest Service. The goal was to validate our methodology against urban tree canopy
assessments that are known to have high accuracy, to ensure our estimates of tree cover at the
census block level are accurate. UTC assessments provide fine-resolution data on urban tree

PLOS ONE | https://doi.org/10.1371/journal.pone.0249715  April 28, 2021 5/27


https://doi.org/10.1371/journal.pone.0249715

PLOS ONE

The urban tree cover disparity in US urbanized areas

cover, and typically map forest cover at < 1m resolution, often using Lidar information and
local training datasets [47]. Our mapping effort will not be as accurate at the UTC datasets at
the pixel-level, since we do not have access to such detailed local information for all 5,723 com-
munities in our study area. By validating census-block level tree cover estimates against this
independent, high accuracy data set, we checked to make sure our estimates of forest cover at
the census block level were accurate.

We obtained 34 UTC tree cover layers [5] that were available on the UTC website (http://
gis.w3.uvm.edu/utc/Landcover/) in October 2019 that were contained within our study extent.
Assessed areas range from small municipalities (e.g. Takoma Park, MD) to large counties (e.g.,
Fairfax County, VA), and are primarily in the forested and grassland biomes of the United
States. Note that these are not all the available UTC layers, some of which are available from
different websites and span larger geographies. For our purposes, however, this sample of UTC
layers was sufficient to validate our block level tree cover estimates for forested and grassland
biomes, where the majority of US urban areas lie. We calculated the UTC tree cover in census
blocks (N = 155,916 census blocks) and compared it to our estimates. We tested how well our
tree cover area estimates correlated with the UTC area estimates using simple linear regres-
sion, at the census block level. We also calculated the median absolute error of our block level
estimates of tree cover, compared to that of the UTC estimates.

Demographic/Socioeconomic and built-up intensity data

Based on a review of the literature [23-32], we selected covariates that have been shown in
other studies to be related to urban tree canopy. Covariates also had to be available nationally
at a consistent spatial and temporal scale, as well as applicable in all cities in our study area.
This precluded including some covariates that have been shown to be regionally important but
do not have consistent spatial data over our entire study area (e.g., information on redlined
areas). The covariates we included in our study fit into two broad categories: Demographic
data and information on the fraction of area built up.

Our source for demographic data was primarily the US Decennial Census (2010), down-
loaded from National Historic Geographic Information System (NHGIS) [62]. Our general
strategy was to use the finest spatial resolution demographic data possible, and to conduct our
analysis at this level where possible. We used block level data for population from the US
decennial census, the finest resolution publicly available data. Specifically, we used variable
TotPop in the NHGIS naming system (NHGIS variables names noted hereafter parentheti-
cally). We acknowledge that this predates our tree cover map (2014-2016), and in some areas
with large demographic changes between 2010 and 2014-2016, this may introduce a bias.
However, we chose this approach because we wanted to use the most spatially detailed demo-
graphic data, which is only available for 2010. Moreover, the NAIP imagery in the period
around 2010 was of lesser quality, having fewer spectral bands, so we chose not to try to map
tree cover around 2010.

Total population was divided by the land area (Aland10, available at the census block level)
to calculate the population density within each census block. Our hypothesis was that popula-
tion density would be negatively correlated with tree cover. While we recognize that block
scale population density is not the only attribute describing urban form that is related to tree
canopy cover, several studies have shown evidence of a decay in tree cover as population den-
sity increases [35, 37, 63, 64]. Population density is also an easily accessible metric at broad spa-
tial scales that is both correlated with and related to other aspects of urban form such as
building type, compactness, and average block size [65], and some of these factors have also
been shown to be related to tree cover [35, 36, 42].
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Census data on the number of non-Hispanic white residents (NoHiWhite, available at the
census block level) was used to calculate the proportion of residents that were non-Hispanic
white, which we hypothesized would be positively correlated with tree cover. We also included
in our analysis the median age of residents (MedAge, available at the census block level), since
we expected that elderly residents are at greater risk for some diseases, such as negative health
impacts during heat waves.

Per-capita income (IncPr) was taken from the most recent American Community Survey
(ACS) of the Census Bureau (2013-2017 estimates), available at the census block group level.
We used this source of information on income, rather than the 2010 decennial census data, to
have income data that was as close as possible in time to our tree cover imagery (2016). In a
small fraction of cases where block group level estimates were indicated to have low reliability
(having a coefficient of variation larger than 34%), the more reliable tract level estimates were
used [66]. Because block group boundaries of the ACS did not always align with the block
boundaries of the decennial census, we linked to the block-level data using the centroids of the
census blocks. All blocks within the same block group or tract, respectively, shared the same
estimate of income. Our hypothesis was that per-capita income would be positively correlated
with tree cover.

Additionally, we included in our analysis data on the built-up intensity (BUI), a ratio of
indoor floor area of all buildings in a grid cell to the area of that grid cell (250m resolution).
The BUI layer is part of the Historical Settlement Data Compilation of the United States (HIS-
DAC-US) which includes public domain time series of data on the built environment in the
conterminous US derived from Zillow’s ZTRAX database [67]. This information allows us to
account for commercial and industrial areas that may have a small residential population but
large built areas, which we hypothesized would lead to lower levels of tree cover.

Geoprocessing and spatial overlay

Our tree cover maps were overlain in ArcGIS 10.4.1 with the census blocks, to calculate the
tree cover area within each census block using the zonal statistics tool, which calculates sum-
mary statistics within spatial zones (e.g., the census block). Although information from the
census is used to define urbanized areas, the boundaries of the census blocks did not precisely
align with the boundaries of the urbanized areas. Thus, we included in our analysis only those
census blocks whose entire area was inside the urbanized area, buffered out an additional
100m. This small buffer zone accounted for slight non-alignment of census block boundaries
with the urbanized area boundaries. We also excluded from further calculations census blocks
with no people in them. When making maps, we used base layers from the Natural Earth data
library (https://www.naturalearthdata.com/).

Surface temperature. We were interested in having another response variable. We chose
to examine land surface temperature (hereafter “surface temperature”), which is easily quanti-
fiable from satellite imagery. High-resolution information on surface temperature was not
available for the thousands of communities examined in this study. We chose to use Landsat-
derived surface temperature, which is at 30m resolution. The unit of statistical analysis for our
study (see below) was the census block, and there were multiple Landsat pixels within census
blocks.

Median summer surface temperature for images between June 21—September 22 from
2000 to 2019 was calculated using Landsat thermal data. We chose to use this 20-year median
summer surface temperature to average over the high temporal variability in surface tempera-
tures, because exploratory analyses with shorter time intervals yielded spatially variable results
based upon individual seasonal weather events. While a shorter time interval centered around
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2016 (our date for tree cover mapping) would potentially allow for a more temporally accurate
estimation of surface temperature for 30m pixels that experienced a land use or land cover
change from 2000-2019, we found that shorter time intervals decreased the precision in our
estimates of surface temperature and obscured spatial patterns in surface temperature.

Landsat 5 and Landsat 8 Thermal Infrared Sensor (TIRS) data within the Tier 1 Surface
Reflectance collections [68] were accessed through Google Earth Engine [54]. Landsat 5 B6
and Landsat 8 B10 provides surface temperature in degrees Kelvin. In order to avoid contami-
nation by clouds and cloud shadows, masking was performed using the pre-computed quality
assurance bands that are part of the Tier 1 products. These masks were created using the
cFmask algorithm [69]. Any pixel identified as bit 5 (cloud) or 2 (cloud shadow) within the
"pixel_ga" band was omitted from the analysis. The final median summer temperature was cal-
culated from the remaining values. Temperature data over surface water was masked out using
the European Commission, Joint Research Centre’s version 1.1 2016 yearly historical surface
water product [70]. Any area identified as permanent or seasonal water was omitted from the
analysis. For more details on our surface temperature analysis, please see our code in GitHub
(see Acknowledgements).

Statistical analysis

Our statistical analysis proceeded in four steps. First, we conducted descriptive analyses, focus-
ing on the spatial patterns of tree cover and temperature inequality, as well as the bivariate rela-
tionship of these variables with income. Second, we conducted a statistical analysis of trends
among urbanized areas, after accounting for the effect of covariates and spatial autocorrela-
tion. Third, we conducted a statistical analysis of trends within urbanized areas, after account-
ing for the effect of covariates and spatial autocorrelation. Finally, we calculated the tree
disparity with respect to income, using information on this bivariate relationship to estimate
the number of trees that would have to be planted to bring tree cover in low-income neighbor-
hoods up to the level of tree cover in equivalently dense high-income neighborhoods.

Descriptive analysis. The unit of analysis for our study was the census block. Census
blocks are the smallest geographic unit for which demographic data is available from the US
Census Bureau, and in cities often correspond to individual city blocks bounded by streets. By
using this fine spatial grain, our analysis focused in on the tree cover near people’s homes.
Tree cover near homes is important since most studies of the impact of nature on human
health find statistical associations most frequently when the greenness is within a few hundred
meters of people’s homes. For instance, James and colleagues found a 12% lower all-cause
mortality rate for women with more greenness within 250m of their home [71].

We divided census blocks into quartiles by per-capita income, defined within an urbanized
area. This allowed the thresholds for being in a particular income quartile to vary by urbanized
area, accounting for the large differences in income among urbanized areas of the United
States. We divided census blocks into four groups by population density, using consistent
ranges of population density for all urbanized areas (0-2000 people/km?, 2000-4000 people/
km?, 4000-8000 people/km?, and > 8000 people/km?). These ranges were chosen to approxi-
mately divide census blocks in our study area into evenly sized groups, but with rounded
break points that were easily understood. We then calculated the population-weighted median
tree cover (%), by income and population density category, within each urbanized area. The
population-weighted median was chosen for our analysis because our analysis focus was the
average tree cover experienced by people near their home, which is what has been found rele-
vant for human well-being and health [22]. Note that for many cities, most tree cover is in
large parks where few or no people live, and most people live in neighborhoods with relatively
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little tree cover. In this situation, the population-weighted median is less than the mean tree
cover across the entire city.

Examination of the distribution of proportion non-Hispanic white showed a distinctive
bimodal distribution (i.e., most blocks are predominately white or predominately non-white,
with relatively few blocks in between). Accordingly, we created a binary categorical variable,
which is coded as 1 if the block is majority non-Hispanic white and 0 otherwise.

Analysis among urbanized areas. For this analysis, the unit of analysis is the urbanized
area (N = 100). We conducted two regressions of patterns among urbanized areas. The first
regression predicted median tree cover at the urbanized area level. The second regression pre-
dicted the difference in median tree cover between income quartiles (top quartile minus bot-
tom quartile). Potential explanatory variables considered were all measured at the urbanized
area level, and included: median per-capita income, variation (interquartile range) of per-cap-
ita income, median population density, variation (interquartile range) of population density,
and biome (a categorical variable that describes major climate and ecological gradients [55]).

Population density was log transformed to improve normality. Tree cover was arcsine-
transformed to improve normality. Arcsine transformation is a common transformation of
ecological proportion data [72]. While it has been occasionally criticized as less interpretable
for proportion data than the logit transformation [73], we chose to use it because tree cover
often has extreme values (0’s or 1’s) that are undefined for the logit transformation but are
defined for the arcsine transformation. Forward selection using AIC was used to select the var-
iables to be included in our two regressions.

Analysis of variograms of model residuals suggested moderate spatial autocorrelation
between urbanized areas closer than 500km, and the spatial autocorrelation was found to be
statistically significant using Moran’s I for both regressions (P < 0.05). Accordingly, we tested
for the appropriate model structure using the Lagrange Multiplier Tests, using the Im.morant-
est function in the spdep library in R [74]. Results indicated a spatial lag SAR model was most
appropriate for both regressions, which we used for all among urbanized area regression
results reported in this manuscript.

Analysis within urbanized areas. For this second statistical analysis, each urbanized area
was analyzed separately. The unit of analysis is the census block (N = 1,938,386 total across all
urbanized areas). As census blocks are contiguous with one another, and tree cover was highly
spatially autocorrelated, it was necessary to account for any potential spatial autocorrelation.
Tree cover was arcsine transformed to improve normality. The explanatory variables used in
this within urbanized areas analysis were population density category, income quartile, BUI
category, income category, and majority non-Hispanic white status. These variables were cho-
sen for inclusion in the regression because they were correlated to the response variable and
were only moderately colinear with one another, reducing problems with multicollinearity
during parameter estimation and significance testing. To test for spatial autocorrelation, we
first ran a simple linear regression that predicted tree cover from our explanatory variables
(Proc Mixed in SAS 9.4), and then analyzed the spatial autocorrelation in the residuals (Proc
Variogram), by urbanized area. Spatial autocorrelation was always significant at scales less
than 1km, and for some urbanized areas was significant out to scales of 2km. To address this
spatial autocorrelation and appropriately account for it in our estimation of regression param-
eters, we conducted a block bootstrap [75] using the R package ‘sperrorest’ [76]. Block boot-
straps of 2km were drawn from each urbanized area 1000 times, and for each bootstrap a
regression was calculated. The distribution of bootstrapped parameters was approximately
normal, and we assessed a parameter statistically significant within an urbanized area if at least
95% of the time its value was different than zero.
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Tree disparity with respect to income. One of the goals of this research paper was to esti-
mate the US urban tree cover disparity, which we defined as the amount of tree planting that
would be required to raise low-income blocks up to the median level of tree cover in high-
income blocks in the same population density category. The intent in this calculation was not
to statistically model the impact of all covariates (e.g., race/ethnicity, age, BUT), which we did
in a different analysis step (see subsection “Analysis within urbanized area”). Rather, our intent
was to provide a descriptive, policy-relevant measure of the disparity between low- and high-
income blocks of similar urban form. We acknowledge that this is a hypothetical calculation of
the amount of trees that would be required to close this urban tree cover disparity, and that it
may not be feasible or desirable to entirely close this disparity, given competing land-uses and
community preferences in some locations.

In order to calculate tree disparity, for each urbanized area we took the estimates of tree
cover (%) in each population density and income category, and converted these estimates to
the difference in tree cover area by multiplying by the area of the census block. We then esti-
mated the number of adult trees required to fill this tree cover area, using a factor of 19.6 m? of
canopy cover per urban tree, which was derived from Nowak and Greenfield [12], who esti-
mated that there were 5.5 billion urban trees in 2010 over 67.6 million acres of urban area that
is on average 39.3% tree cover. To estimate the cost of planting new saplings to close the tree
cover disparity, we used a factor of $283/stem, which was derived from the review of tree plant-
ing costs in multiple US cities by Krueger et al. [8]. To estimate the lost value to people repre-
sented by the current US urban tree cover disparity, we calculated the compensatory value,
using the average value per stem reported by Nowak [77]. Compensatory value is one way to
estimate the total value of a tree and represents what compensation should be paid to the tree’s
owner if the tree is lost [77]. While we acknowledge there are other ways to value the benefits
provided by trees [78], we included the compensatory value in our analysis to show that differ-
ences in tree cover between low- and high-income blocks amounted to a substantial difference
in the financial value of this amenity available.

Results
Tree cover classification algorithm

Our classification method successfully mapped tree cover in the 100 largest urbanized areas in
the United States (Fig 1), which cover a total area of 158,000 km? or 39.6 billion pixels at 2m
spatial resolution. To document the results of the random forest algorithm, pixel-level classifi-
cation accuracy is shown in S1 Table, but note that we did not use pixel-level data in our analy-
sis of tree cover disparities, but instead used aggregated results at the census block level. Pixel-
level classification accuracy was greatest in forested biomes and lower accuracy in biomes like
deserts and grasslands. Across all urbanized areas, average user’s accuracy of the forest class
was 82.1%. The average kappa statistic was 0.45, which would be rated by Landis and Koch
[79] as moderate accuracy. The kappa statistic is widely used in remote sensing, but see citation
[80] for a discussion of its limitations.

Tree cover validation against an independent dataset

Our unit of analysis for this paper was the census block level, and it was thus our goal to consis-
tently map tree cover accurately at the census block level. Census blocks contain many 2m pix-
els, and if classification errors are relatively spatially uncorrelated then the estimate of tree
cover at the census block level can be more accurate than at the pixel-level scale. To assess the
accuracy of our forest cover estimates at the block level, we validated our estimates of tree
cover at the census block level against an independent dataset, the accurate high-resolution

PLOS ONE | https://doi.org/10.1371/journal.pone.0249715  April 28, 2021 10/27


https://doi.org/10.1371/journal.pone.0249715

PLOS ONE

The urban tree cover disparity in US urbanized areas

D Urbanized areas

I B
AL p e

s

Fig 1. Urbanized areas mapped in this study. Tree cover was mapped for 2016. An inset map of the tree cover (green) of a portion of
the Los Angeles urbanized area is shown. Within the area mapped in the inset, there were 93 municipalities and 34 census-designated
places, whose outlines are shown with black lines.

https://doi.org/10.1371/journal.pone.0249715.9001

tree cover maps produced by Urban Tree Canopy (UTC) assessments [47]. At the block level,
our estimates of tree cover were highly linearly correlated with those of the UTCs (R = 0.97, S2
Fig). On average, the median absolute block-level error of our tree cover estimate, as compared
against the gold standard estimates of the UTCs, was 6.0%. Thus, while the pixel-level accuracy
of our classification was only moderate, our estimates of tree cover at the block-level were
highly correlated with an independent validation dataset.

In much of our analysis of tree cover disparities, we analyzed aggregated information on
tree cover relative to income, looking across many urbanized areas to come up with national
estimates. To assess our accuracy at this scale, we calculated an estimate of median tree cover
by income category across the entire validation dataset, using both our tree cover datasets and
the UTC dataset. Median errors were small in income quartiles 1 (2.8%), 2 (3.4%), and income
quartile 3 (3.0%) but were slightly larger in income quartile 4 (5.7%). In all income quartiles,
the estimate of tree cover was slightly greater in the UTC dataset than in our tree cover dataset.
Overall median error for the whole validation dataset was 3.6%.

Tree cover, income and population density

Income was inversely associated with tree cover (Fig 2). On average, an increase in relative
income of 5% (for example, from the 15 to the 20™ percentile) increases tree cover by 1.2%.
The relationship between tree cover and relative income appears to be approximately linear.
Within each urbanized area, we divided the census blocks into quartiles based upon the per-
capita income distribution. Averaging across all urbanized areas, the least affluent quartile of
census blocks had a median tree cover of 19.7%, while the most affluent quartile had a median

PLOS ONE | https://doi.org/10.1371/journal.pone.0249715  April 28, 2021 11/27


https://doi.org/10.1371/journal.pone.0249715.g001
https://doi.org/10.1371/journal.pone.0249715

PLOS ONE

The urban tree cover disparity in US urbanized areas

40%

35%

w
o
X

25%

Median tree cover (%)

20%

15%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentile of income

Fig 2. Tree cover as a function of income. We classified census blocks based upon the income distribution within its
urbanized area, calculating the percentile of the income distribution that block has. For ease of display, blocks were
grouped into income categories (0-5%, 5-10%, etc.) and the population-weighted median tree cover (%) across the
entire study area calculated. This paper focuses most of its analysis on the lowest quartile (red squares) and highest
quartile (green triangles) of income.

https://doi.org/10.1371/journal.pone.0249715.g002

tree cover of 34.9% (Table 1). Clearly, low- and high-income blocks nationwide had very dif-
ferent levels of tree cover, and thus likely different levels of ecosystem service (or disservice)
provision.

The relationship between income and tree cover was partially explained by population den-
sity (Table 1). Population density is of course only one aspect of urban form that could affect
urban tree canopy distribution but is a commonly measured summary statistic that we exam-
ined relative to tree cover. In the census blocks in the least affluent quartile, the majority (56%)
of the population lived in blocks in the high (4000-8000 people/km?) or highest population
density (>8000 people/km?) categories, typified by multi-unit buildings. In contrast, in the
census blocks in the most affluent quartile, the majority (55%) of the population lived in blocks
in the lowest (< 2000 people/km?) population density category, typified by single family

Table 1. Median tree cover, by population density and income categories.

Percent Tree cover Population in category, millions Area in category, km?
Population density (people/km?) Low-income High-income Low-income High-income Low-income High-income
Very low (<2000) 40.0% 47.5% 8.1 23.0 12,528 40,220
Low (2000-4000) 26.7% 28.8% 10.4 10.3 3,656 3,853
Moderate (4000-8000) 17.6% 19.5% 9.9 3.6 1,816 691
High (>8000) 11.4% 10.5% 13.3 4.6 905 271
Across all blocks 19.7% 34.9% 41.7 41.5 18,906 45,035

Tree cover was compared between low and high-income quartiles, over 5,723 incorporated towns and other places in the US. Statistical significance of these trends is
discussed in the section of the manuscript entitled “Evaluating Statistical Significance.”

https://doi.org/10.1371/journal.pone.0249715.t001
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homes on large lots. Tree cover was inversely associated with population density (Table 1), pre-
sumably because there was simply less area to fit trees into the landscape when a large fraction
of the area is devoted to buildings and impervious surfaces. However, even when stratifying by
population density, income of a census block was still associated with tree cover. In most popu-
lation density categories, tree cover was greater in the most affluent income quartile than in
the least affluent. Interestingly, the difference in tree cover between low- and high-income cen-
sus blocks was greatest in the lowest population density category, and less in the high or high-
est population density categories. In other words, inequality in tree cover appeared greater in
the exurbs and far suburbs—areas with greater potentially vegetated area—than in denser
blocks.

Patterns across the United States

Patterns in tree cover across US urbanized areas are shown in Fig 3. Median tree cover (Fig 3A)
was greatest in urbanized areas in the South like Atlanta and lowest in urbanized areas in the
Southwest like Phoenix. Much of this regional pattern in median tree cover was explained by
biome, with urbanized areas in forested biomes having more tree cover than those in other
biomes such as desert or grassland (urbanized area level regression, S2 Table, P = 0.005). This pat-
tern has been found in other studies as well [12], and is expected as tree cover is the natural state
in forested biomes, as opposed to being intentionally planted in other biomes. Another important
variable in explaining variation in tree cover was population density, with urbanized areas with
higher median population density (e.g., urbanized areas in the Northeast such as New York City
and Philadelphia) having lower tree cover, presumably because there was simply less area to fit
trees into more densely developed areas (P = 0.0002). After accounting for these other variables,
median per-capita income in an urbanized area was not a significant predictor of median tree
cover in that urbanized area (P = 0.41). Median tree cover for all 5,723 incorporated places (cities
and towns) and census-designated places surveyed in this paper can be found in S3 Table.

We quantified for each urbanized area the difference in tree cover between low and high-
income blocks (Fig 3B). We found that a trend toward greater tree cover in high-income
blocks occurred in 92% of the urbanized areas we examined (S4 Table). The greatest difference
in tree cover between low- and high-income blocks was found in urbanized areas in the North-
east of the United States, particularly along the coast between Washington, DC and Boston,
MA (Fig 3B). The urbanized area with the greatest difference in tree cover between low- and
high-income blocks was the Stamford/Bridgeport, CT area (54%). Conversely, the West and
Southwest had generally smaller differences in tree cover between low- and high-income
blocks, likely because of the generally lower tree cover in those biomes. In a few urbanized
areas, primarily in the South (e.g., Cape Coral, FL, Jackson MS), median tree cover was greater
in low-income blocks than in high income areas (see Discussion section for description of why
this trend may have occurred).

The strongest predictor of the difference in tree cover between high- and low-income
blocks was income inequality (urbanized area level regression, S2 Table, P < 0.0001). Urban-
ized areas with greater income inequality (as measured by the interquartile range) had greater
differences in tree cover between high- and low-income blocks. Urbanized areas with a greater
range of population densities (as measured by the interquartile range) had greater differences
in tree cover between high- and low-income blocks (P = 0.0006). Finally, urbanized areas with
a greater median tree cover had smaller differences in tree cover between high- and low-
income blocks (P = 0.005). After accounting for these other variables, biome was not a statisti-
cally significant predictor of the difference in tree cover between high- and low-income blocks
(P=0.77).
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Fig 3. Tree cover for United States large urbanized areas. a.) Population-weighted median tree cover. b.) The absolute difference
between low-income blocks (lowest quartile of income) and high-income blocks (highest quartile of income) in tree cover.

https://doi.org/10.1371/journal.pone.0249715.g003
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Patterns within urbanized areas

Patterns for individual cities can be visualized online. Generally, the highest population densi-
ties can be found in the center of an urbanized area [c.f,, 81], with average income and average
tree cover that were lower than the averages for the entire urbanized area. More suburban or
exurban areas, often in separate municipalities or census-designated places, had lower popula-
tion density, higher average income, and higher average tree cover. In other words, the spatial
transition from suburban to urban core related to a gradient in both tree cover and income, a
pattern that can be expected for many US urbanized areas [82]. Many other variables corre-
lated with income and thus show similar associations with tree cover (Fig 4). More affluent
census blocks had a greater proportion of non-Hispanic whites and generally had more tree
cover. In contrast, blocks with a lower proportion of non-Hispanic whites generally had less
tree cover. Residents of more affluent blocks also tended to be older than residents of less afflu-
ent blocks, and the median age of residents was positively associated with tree cover.

Evaluating statistical significance

We assessed for each city separately whether income or race were significantly related to tree
cover, after accounting for covariates (population density, income, built-up intensity, and
race/ethnicity) and spatial autocorrelation using a block bootstrap approach. This block boot-
strap approach allows an estimate of the confidence interval of regression parameter after
accounting for the spatial autocorrelation, with a parameter considered significant if they are
statistically different than zero.
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Fig 4. Patterns across blocks of different incomes. Census blocks within each urbanized area were classified by the
quartile of income they occupy. For each quartile, we show the median tree cover, population density, age, and percent
non-Hispanic white.

https://doi.org/10.1371/journal.pone.0249715.9004
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Population density was the covariate most commonly statistically significant in our regres-
sions (S5 Table), with the highest population density category having significantly less tree
cover than the lowest population density category in 94 urbanized areas. Income was the sec-
ond most common statistically significant effect (S5 Table), with the highest income category
having significantly more tree cover than the lowest income category in 78 urbanized areas.
Similarly, majority non-Hispanic white blocks had significantly more tree cover than did
majority non-white blocks in 67 urbanized areas. Finally, we included in our statistical analysis
the built up intensity (BUI), a ratio of indoor floor area of all buildings in an area to the land
area. BUI was negatively related to tree cover and was statistically significant in 68 urbanized
area.

From our statistical analysis, we concluded that even after accounting for spatial autocorre-
lation among census blocks and covariates like population density and BUI, income and race/
ethnicity had statistically significant relationships with tree cover in 78% and 67% of the
urbanized areas, respectively.

Surface temperature differences

Not surprisingly, summer surface temperatures were highest in cities in arid biomes in the
western United States (Fig 5A). Averaged across our study area, the least affluent quartile of
census blocks had a summer surface temperature that was 1.5°C hotter than the most affluent
quartile of census blocks. The variation among urbanized areas was large, however, with the
greatest difference in summer surface temperature between low- and high-income blocks
being 5.4°C in the Providence urbanized area (Fig 5B, S4 Table). The difference in summer
surface temperature between low- and high-income blocks was highly correlated to the tree
cover difference (R = 0.82, S3 Fig). The greatest differences in summer surface temperature
between low- and high-income blocks were in the Northeast, where, in addition to Providence,
three other urbanized areas had differences of more than 4.0°C: Bridgeport/Stamford, Worces-
ter, and Philadelphia. Another 9 urbanized areas, including Boston, had differences greater
than 3.0°C but less than 4.0°C.

Tree cover disparity

Since tree cover was correlated with population density differences, we chose to examine the
difference in tree cover between low- and high-income blocks after accounting for population
density difference. Within a given population density category, we calculated the disparity in
tree cover between low- and high-income blocks (Table 2). Across all urbanized areas, 1,217
km? of new tree cover would hypothetically be needed. S6 Table shows these numbers broken
down by urbanized area and population density category. The Seattle urbanized area had the
largest disparity in tree cover in areal terms (74 km?), followed by the Chicago (54 km?) and
Detroit (54 km?) urbanized areas.

We estimated that the least affluent quartile of blocks had 62 million fewer trees in it than
the most affluent quartile (Table 2). This tree cover disparity, even after controlling for popula-
tion density, meant low-income blocks had $56 billion (range: $41-113 billion) less in com-
pensatory value. This is an average of $1,349/person less in compensatory value.

We estimated the cost of tree planting of saplings and their maintenance to close the urban
tree cover disparity (Table 2). In total, approximately $18 billion in tree planting would be
needed to close this tree cover disparity. Note that this figure was less than the compensatory
value, because trees are assets that appreciate over time; after planting a tree sapling increases
in compensatory value as it grows. Note also that our estimate assumed that all new trees are
planted, but there is potential that land-use changes (e.g., stopping mowing) could allow for
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Fig 5. Surface temperature for United States large urbanized areas. a.) Population-weighted median summer surface temperature.
b.) The absolute difference in summer surface temperature between low-income blocks (lowest quartile of income) and high-income

blocks (highest quartile of income).

https://doi.org/10.1371/journal.pone.0249715.9005
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Table 2. The tree cover disparity.

Total area (km2) of low-income census blocks
Total population of low-income census blocks
Tree cover disparity (%)

Needed tree cover to close disparity (km?)
Trees required to close disparity
Compensatory value, billions (median)
Compensatory value, billions (low)
Compensatory value, billions (high)

Cost of planting new saplings to close disparity,
billions

Population density category (people/km?)

Very Low Low (2000- Medium (4000~ High (>8000) | Total across all population density
(<2000) 4000) 8000) classes
12,528 3,656 1,816 905 18,906
8,120,985 10,431,696 9,863,540 13,326,870 41,743,091
9.8% 3.7% 2.6% 3.3% 4.9%

985 171 50 11 1,217
50,367,030 8,762,004 2,547,062 575,105 62,251,201
$45.5 $7.9 $2.3 $0.5 $56.3
$32.9 $5.7 $1.7 $0.4 $40.7
$91.3 $15.9 $4.6 $1.0 $112.8
$14.3 $2.5 $0.7 $0.2 $17.6

Shown is the tree disparity between low- and high-income categories after accounting for population density. Compensatory values shown are the disparity in tree cover

value in low- and high-income categories, in billions of USD2019. Compensatory value is the compensation to owners for loss of a tree and can be viewed as one way to

value the tree as an asset.

https://doi.org/10.1371/journal.pone.0249715.t1002

increased natural regeneration. Because natural regeneration is often free or very low cost, that
would be a more economical way to increase urban tree canopy on some sites.

The vast majority of needed adult trees to close the tree cover disparity would be in the
Very Low population density category (Table 2). This happened because low-income blocks in
the Very Low population density category covered a large area (12,528 km?) and there was a
large difference in tree cover between low-income and high-income blocks (9.8%), leading to
an estimated 50 million trees needed to close the tree cover disparity in this population density
category. However, relatively few people lived in low-income blocks in the Very Low popula-
tion density category. Potentially, for biomes that allow natural forest regeneration, land-use
management strategies that encourage natural regeneration may be more economical for this
category than tree planting.

Discussion

Our research shows that inequality in tree cover between low- and high-income blocks was
widespread in the US, occurring in 92% of the urbanized areas we studied (N = 5,723 cities
and other places). On average, there were 15.2% more tree cover in high-income blocks than
in low-income blocks (Table 1). Our results are consistent with other studies [23-32] that
show tree cover inequality relative to income for many but not all cities.

The Stamford/Bridgeport, CT area had the greatest difference in tree cover between low-
and high-income blocks (54%). This example illustrates why it may be insightful to analyze
inequality in tree cover across an urbanized area, in addition to analyzing trends within spe-
cific municipalities. Stamford and Bridgeport are considered one urbanized area by the US
Census Bureau, and workers commonly commute between them. However, the two munici-
palities have very different histories. Bridgeport developed as an industrial town, where work-
ers lived in densely populated areas near factories [83]; in the 1970s and 1980s the economy
suffered as the industrial sector declined. In contrast, Stamford developed at least in part as a
place for summer vacation homes for New York City residents [84], and currently is economi-
cally well-off. Today, Bridgeport’s tree cover is 20.2% and Stamford’s is 37.1%. While there are
differences in tree cover within each of these two municipalities, much of the difference in tree
cover between low- and high-income blocks in the entire urbanized area comes from
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differences between these two municipalities. Overall, our results suggest that prior studies
that examined tree cover within particular municipalities [e.g., 27, 28, 33] may find a smaller
difference in tree cover between low-income and high income blocks than would exist across
an entire urbanized area, because US urbanized areas are subdivided into jurisdictions that
often have different income distributions.

For the 100 urbanized areas we studied, we found that inequality in tree cover was corre-
lated with differences in the average population density found in low- and high-income blocks,
consistent with other studies in the literature that have discussed demographic patterns relative
to tree cover patterns [85, 86]. As in other studies [e.g., 23, 27, 29], accounting for covariates
and spatial autocorrelation reduced the strength of the association between income and tree
cover, but income was still significantly associated with tree cover in 78% of the urbanized
areas studied. Note that while population density was negatively correlated with tree cover,
this correlation was not perfect, and at any given population density class there were blocks
that have relatively high tree cover and others with relatively low tree cover. Accordingly, it
was possible to find dense blocks that still had relatively high tree cover.

Note that there were 22% of urbanized areas where there was not a statistically significant
relationship between income and tree cover. Eight percent of the 100 urbanized areas studied
had median tree cover that was actually greater in low-income blocks than in high income
areas. This occurred in urbanized areas with many blocks, both low-income and high-income,
in the Very Low population density category. It is possible that there was still variation in pop-
ulation density within this Very Low population density category. For instance, in the Cape
Coral urbanized area, there were many blocks in the Very Low population density category in
both Naples (a relatively affluent community near the coast) and Lehigh Acres (a less affluent
community more inland), but the latter had relatively greater tree cover and lower population
density, presumably because the lower population density allowed larger lot sizes that are
more forested. Another 14% of the 100 urbanized areas studied had tree cover that was greater
in high-income areas than in low-income areas, but the trend was fully explained after
accounting for covariates and spatial autocorrelation. These urbanized areas also tended to
have most of their blocks in the Very Low population density category. For instance, Houston,
a very low population density city, had 8.1% more tree cover in high-income than in low-
income neighborhoods (54 Table) but this trend was not statistically significant after account-
ing for covariates and spatial autocorrelation (S5 Table).

There are two main potential causes of this pervasive inequality in tree cover between low-
and high-income blocks. First, differences among blocks in tree cover in the public right of
way along roads and in other publicly owned land could be due to differential investments by
municipal or local governments. Commonly, in the urban core with high-density blocks, a
greater fraction of the land area is in public ownership, either as parks [87] or as part of the
road right of way [88], as compared to lower density blocks in the suburbs or in rural areas.
Thus, tree cover in dense blocks is particularly shaped by the actions of municipal govern-
ments. The fragmentation of US urbanized areas into many different municipalities [89], with
different levels of economic development and hence different levels of potential government
spending [90], worsens inequality in tree cover at the scale of the entire urbanized area. Low-
income households are often clustered in low-income municipalities that have fewer resources
to plant and maintain trees on public land, and so these municipalities could end up with
fewer trees than their high-income counterparts. Even within one municipality, there can be
differential public-sector investment in trees in low-income neighborhoods [91]. Sometimes
low-income households may be less likely to participate in voluntary tree planting programs
[92]. Historically, there have also been instances of explicit racism in urban planning and zon-
ing decisions, such as the practice of redlining (refusing home loans or insurance to specific,
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generally minority, neighborhoods). Studies have showed that areas that were redlined have
higher surface temperature [93-95], presumably in part because they have lower tree cover.

Second, differences among census blocks in tree cover on privately-owned land could be
because of differential land-use decisions by private landowners, as well as differential invest-
ments by landowners in tree planting and maintenance. In incorporated places at the edges of
urbanized areas, a greater fraction of the plantable (non-impervious) land area is under private
ownership than in higher density blocks in the largest municipality of an urbanized area [96].
Thus, tree cover in the suburbs is particularly shaped by the actions of private landowners
[38], and factors such as social pressure, power, and prestige all influence the maintenance of
trees in private spaces [38]. It is interesting that we found that inequality in tree cover between
low- and high-income blocks was greatest in lower density blocks that were located predomi-
nantly in the suburbs. This trend may occur simply because there was greater average tree
cover in lower density blocks, and hence more potential for inequality in forest cover. How-
ever, another possible explanation for the greater inequality in tree cover in the suburbs is the
relatively greater importance of actions on private land. It may be that low-income households
may be less able to afford the cost, in money and time, of planting trees and maintaining them.
Moreover, low-income households are more likely to be in rental units [97] and are thus less
involved in making decisions about land management, while owners are primarily interested
in reducing maintenance costs and thus may have less of an incentive to plant and maintain
trees than the unit’s residents.

Regardless of the cause of inequality in tree cover, the tree cover disparity between low- and
high-income blocks potentially has health implications. That is, whatever its historical causes,
the fact that currently some neighborhoods have lower tree cover has potential effects on the
health of those who live there. Our results showed a large tree cover disparity (Table 1) and
surface temperature differential (S4 Table) between low- and high-income blocks. The average
surface temperature differential was 1.5°C, but in more than a dozen cities the differential
exceeded 3°C. Note that differences in temperature of the magnitude found in this study can
be meaningful to human health. For instance, Anderson and Bell [98] found that in US urban-
ized areas heat wave mortality risk increased by 2.5% for each 0.6°C (1°F) increase in air tem-
perature. While our measurement of summer average surface temperature is different than air
temperature during heat waves, as measured by Anderson and Bell [98], surface temperatures
and air temperatures are correlated [99], which suggests that the difference in surface tempera-
tures shown in our study may have meaningful implications for human health [22, 98].

Finally, our research suggests that tree planting to close the tree cover disparity between
low- and high-income blocks is possible. A targeted investment in tree planting of $15.8 billion
would close the urban tree cover disparity for 34 million people in low-income blocks of mod-
erate or greater population density, although it would likely take at least 5-10 years for planted
trees to be large enough to deliver significant ecosystem service benefits. Some of the needed
tree planting would occur through public sector investment in tree planting and maintenance
on the public right of way and publicly owned land. This greater investment could be more
strategically applied if government agencies responsible for urban forestry actively partnered
with agencies responsible for public health, to allow for jointly planning where to plant to max-
imize benefits to human well-being [100]. But some of the needed tree planting would have to
occur on private land, which would require incentives or regulations that motivate the private
sector to conduct this tree planting. There are several such programs in existence, such as tree
protection ordinances, green area ratios in planning codes, and incentives for tree planting
from electric utilities. Of course, any such local programs must consider the historical causes
and consequences of tree inequality in that community, and work with local stakeholders to
design a tree planting program that meets local needs. Regardless of how these local programs
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operate, our results show that inequality in tree cover is widespread and pervasive in US
urbanized areas and deserves policy attention.

Supporting information

S1 Fig. Groups of urbanized areas used for remote sensing image classification. See Meth-
ods section for details of how groups were defined.
(TIF)

S2 Fig. Tree cover comparison to UTC. The tree cover area maps for this study (y-axis) was
highly correlated (R = 0.97) at the census block level with the 1m tree cover area maps devel-
oped as part of the Urban Tree Canopy (UTC) assessments program (x-axis). The best-fit
regression line is shown in blue (F = 2545715, df = 1, R*=0.94, P < 0.001). The slope (1.069)
of this regression was significantly different than the 1:1 line (red), with our estimates of tree
cover area at the census block level thus being slightly less that of the UTC estimates of tree
cover area.

(TTF)

S3 Fig. Tree cover difference versus temperature difference. For the urbanized areas in the
study, the relationship between tree cover difference (in %, high income minus low-income
areas) versus temperature difference (in Celsius, high income minus low-income quartile).
(TIF)

S1 Table. Accuracy assessment statistics at the pixel-level of our classification. Shown are
overall accuracy, producer’s accuracy for the tree cover class, and user’s accuracy for the tree
cover class. Also shown is the kappa statistic. Note that the goal of our study was to produce
accurate estimates of tree cover at the census block level, where our accuracy was greater (see
text for details).

(DOCX)

S2 Table. Urbanized area level regression results. We conducted two regressions of patterns
among urbanized areas (N = 100). The first regression predicted median tree cover, corre-
sponding with the data shown in Fig 3A. The second regression predicted the difference in
median tree cover for income quartiles (top quartile minus bottom quartile), corresponding
with the data shown in Fig 3B. In both cases tree cover was arcsine transformed to improve
normality.

(DOCX)

§3 Table. Population-weighted median tree cover for 5,723 incorporated places and census
designated places. Data is sorted alphabetically by the name of the urbanized area and then
the name of the place. We used the population-weighted median tree cover to estimate how
much tree cover an average person had within their census block. Note that many incorpo-
rated places had high tree cover in large parks with relatively low population in them, which
means that in these places the population-weighted median tree cover was generally less than
the simple arithmetical mean.

(DOCX)

S4 Table. Summary statistics of percent tree cover by urbanized area. Table is sorted by the
interquartile range, so urbanized areas with the greatest tree cover gap between low- and high-
income census blocks are on top. Also shown is the surface temperature difference between
low- and high-income blocks.

(DOCX)
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S5 Table. Within urbanized area regression coefficients. For each urbanized area, we sepa-
rately ran a regression predicting tree cover (arcsin transformed) as a function of population
density category, income category, built-up intensity (BUI) category, and majority white sta-
tus. Our statistical analysis included census blocks in all four income categories (quantiles,
defined within each urbanized area). In this table we show the effect on tree cover of the high-
est category in each group relative to the baseline (the lowest category). For instance, for
Akron, OH the highest population density category had 0.30 fewer units of tree cover (arcsine
transformed) than the lowest population density category. Significant effects (one-tailed,
P<0.05) are shown with an asterisk. Note that for some urbanized areas, there were no census
blocks in the highest BUI category. At the median tree cover nationally (27%) a 0.1, 0.2, and
0.3 increase in arcsine transformed tree cover equaled an increase of 9.3%,19.1%, and 29.1% in
tree cover, respectively.

(DOCX)

S6 Table. Summary statistics of percent tree cover within cities. Shown are data stratified by
low- and high-income blocks, by population density class, by urbanized area. Also shown is an
estimate of the tree cover gap (%) between low- and high-income blocks, and the needed tree
cover to close the gap.

(DOCX)
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