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Abstract

Context Landscape ecology was founded on the idea

that there is a reciprocal relationship between spatial

pattern and ecological processes. I provide a retro-

spective look at how the state-of-the-art of landscape

pattern analysis has changed since 1998.

Objectives My objective is to show how pattern

analysis techniques have evolved and identify some of

the key lessons learned.

Results The state-of-the-art in 1998 was derived

from information theory, fractal geometry, percolation

theory, hierarchy theory and graph theory, relying

heavily on the island-patch conceptual model using

categorical maps, although point-data analysis meth-

ods were actively being explored. We have gradually

winnowed down the list of fundamental components

of spatial pattern, and have clarified the appropriate

and inappropriate use of landscape metrics for

research and application. We have learned to let the

objectives choose the metric, guided by the scale and

nature of the ecological process of interest. The use of

alternatives to the binary patch model (such as

gradient analysis) shows great promise to advance

landscape ecological knowledge.

Conclusions The patch paradigm is often of limited

usefulness, and other ways to represent the pattern of

landscape properties may reveal deeper insights. The

field continues to advance as illustrated by papers in

this special issue.

Keywords Spatial pattern � Metrics � Indices �
Landscape ecology � Scale � Spatial heterogeneity

Introduction

Landscape ecology was founded on the premise that

there is a reciprocal relationship between spatial

pattern and ecological processes such as the spread

of disturbance and fluxes of organisms, material and

energy (Turner 2005). Its focus on pattern, process,

change and scale sets landscape ecology apart from

other branches of ecology (Turner 1989). A binary

conceptual model of landscape elements (patch vs.

matrix) inspired by island biogeography dominated

early attempts to quantify spatial pattern. The con-

ceptualization of landscapes as shifting mosaics

(Bormann and Likens 1979) was inspired by the

change component of landscape ecology, but consis-

tent methods to quantify the temporal component

lagged behind methods to quantify the spatial

component.
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In 1998, I published a widely-cited review of the

state-of-the-art of quantifying landscape pattern at that

time (Gustafson 1998). Attempts to quantify land-

scape spatial pattern had just begun in the mid-1980s

(Gardner et al. 1987; Krummel et al. 1987; Turner

1990), initially borrowing heavily from information

theory (O’Neill et al. 1988), but quickly developing

new approaches targeted to the unique challenges of

large spatial grids and vector maps. By 1998 the

landscape metrics field had mushroomed, catalyzed at

least partially by the release of FRAGSTATS in 1995

(McGarigal andMarks 1995), software that automated

the computation of a large number of landscape

metrics. Although the innovation of methods to

quantify the spatial pattern of landscapes has shifted

somewhat from conceptual methods to technical

methods (e.g., remote sensing advances, development

of R packages) since the 1990s, there have neverthe-

less been many significant advances in both our

understanding of the fundamental characteristics of

spatial pattern and methods to quantify those

characteristics.

The purpose of this essay is to provide a perspective

on the current state-of-the-art of landscape pattern

analysis via a retrospective look at how the state-of-

the-art has changed over the last 20 years. My

objective is not to produce a comprehensive review

of the current state-of-the-art, because that has been

done elsewhere (e.g., Kupfer 2012; Lausch et al. 2015;

Frazier and Kedron 2017). Instead, my objective is to

show howwe got to where we are and identify some of

the key lessons that we landscape ecologists have

collectively learned along the way.

Retrospective

Thirty years ago, the field of landscape pattern

quantification was in its infancy. Some of the earliest

conceptual developments remain widely used and

highly useful today, while others have disappeared

almost completely despite considerable promise.

Many of today’s recent advances had not yet been

conceived (or were effectively hidden within other

disciplines) even 20 years ago. Here is a bullet list, in

the approximate order of their appearance in the

literature, of some of the approaches to quantify

spatial pattern in use in 1998 and their fate over the last

20 years.

• Information theory provided a framework for some

of the earliest attempts to quantify the spatial

pattern of landscapes represented as a spatial grid.

This approach was pioneered by a group at the Oak

Ridge National Laboratory in Tennessee, resulting

in the seminal paper published by O’Neill et al.

(1988) in the first volume of the journal Landscape

Ecology. Their work adopted Shannon’s (Shannon

and Weaver 1949) and Simpson’s (Simpson 1949)

diversity indices to characterize landscapes, using

edge counts to create the still popular contagion

index, later improved by Li and Reynolds (1993)

and Riitters et al. (1996). This approach inspired

other similarly computed metrics to capture other

aspects of pattern, such as the interspersion and

juxtaposition index of McGarigal and Marks

(1995), patch cohesion (Schumaker 1996) and

the aggregation index of He et al. (2000).

• Percolation theory was cleverly imported from the

physics literature by Gardner et al. (1987) as a way

to study landscape connectivity, and it was all the

rage in the 1990s. Although percolation theory is

rarely directly cited anymore [but see Albanese

and Haukos (2017)], its main tenet, that the

probability of randomly occupied cells being

connected completely across a spatial grid

abruptly approaches 1.0 at a predictable fraction

of occupancy, is widely known and accepted as

conventional wisdom in landscape ecology. Per-

colation theory also inspired the use of neutral

model landscapes (having a pattern generated by a

random process) for comparison with landscapes

structured by one or more known or unknown

processes, to help understand how ecological

process creates pattern (O’Neill et al. 1992; With

and King 1997). Bob Gardner developed software

(RULE and its successor, QRULE) to generate

such neutral models of landscape structure (Gard-

ner 1999; Gardner and Urban 2007), which is still

commonly used today for a wide range of

landscape studies (e.g., Kashian et al. 2017; Shirk

et al. 2018). Statistically robust techniques to

detect differences in pattern metrics between two

landscapes (since probability distributions of met-

rics cannot be estimated for individual landscapes)

have been developed using randomization and

simulation procedures (Fortin et al. 2003; Remmel

and Fortin 2013).
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• Fractal geometry was also imported to ecology

from the physical sciences (Burrough 1981; Shel-

berg et al. 1982; Loehle 1983), and it is a powerful

and flexible tool to make multi-scale measure-

ments. Krummel et al. (1987) was the first to use it

to describe landscape spatial patterns as found in

digital land cover data. Milne (1988) identified five

ways to conduct a fractal analysis of landscapes,

but only the perimeter-area method caught on,

perhaps to the detriment of the field. The perime-

ter-area measure of fractal dimension was widely

used as a metric of patch shape or pattern

complexity, but because shape complexity is

usually not ecologically important, fractal dimen-

sion is rarely reported as a landscape metric these

days. One wonders what may have been learned if

other fractal measures such as the distribution of

mass on a plane [e.g., density of resources or

individuals on a landscape, sensu Milne (1992)] or

scale-independent fractal measures of diversity

were easily computed by metric software in 1998.

• Hierarchy theory was first applied in landscape

ecology as a way to help understand the develop-

ment and organization of landscape pattern

(O’Neill et al. 1986; Urban et al. 1987). Although

it has subsequently been applied to a wide range of

landscape ecological phenomena, it remains

widely used as a framework for scaling and

understanding the relationship between spatial

pattern and ecological process. The substantial

power of hierarchy theory to help solve complex

landscape problems such as identifying how close

a landscape is to a tipping point by analysis of

higher-level constraints and lower-level limita-

tions (O’Neill 1989) is perhaps under-appreciated

by landscape ecologists today.

• Lacunarity analysis (Plotnick et al. 1993) is a

multi-scaled method of determining the texture

associated with patterns of spatial arrangements of

habitat types or species locations, and it also was

all the rage in 1998 (e.g., With and King 1999;

McIntyre and Wiens 2000). One of its strengths is

that it integrates multiple aspects of spatial pattern

such as proportion of the class of interest, conta-

gion, presence of self-similarity and hierarchical

structure. Although lacunarity analysis is rarely

conducted anymore, it was an informative com-

ponent in the exploration of multi-scaled

approaches to quantifying landscape pattern.

• The recognition that many statistical methods used

in ecology are hampered by autocorrelated data

prompted the application of alternative approaches

adopted from geosciences to performing statistical

tests on the autocorrelated data associated with

landscape structure (Legendre and Fortin 1989).

These methods can use point or mapped data to

generate correlograms and semivariograms to

quantify autocorrelation within a landscape (Bur-

rough 1995). In the 1990s a great deal of research

focused on refining these techniques and learning

how to interpret their output to improve the

understanding of the link between spatial pattern

and ecological process (e.g., Li and Reynolds

1995). Although active research in the develop-

ment of these techniques has slowed, they still

form a critical component of the toolbox of

analytical tools (e.g., Moran’s I) used by landscape

ecologists.

• In 1997, graph theory was imported from the

discipline of operations research and was being

explored as an alternative lattice structure to

represent landscapes (Keitt et al. 1997), specifi-

cally as a way to study landscape connectivity

(Urban and Keitt 2001). This approach was

gradually hailed as a promising way to tackle a

number of conservation problems at landscape

scales, and although it remains in common use

today, it has not become a standard approach,

being primarily used to study wildlife habitat

connectivity.

• Although not a metric per se, scaling issues in the

quantification of landscape pattern were, and

continue to be, a fundamental problem that has

proven very resistant to persistent attempts to

resolve. John Wiens formally put the scaling issue

on the table for landscape ecologists in his seminal

paper (Wiens 1989), which catalyzed a search for

scale domains in pattern metrics (e.g., O’Neill

et al. 1996; Wu et al. 2002; Wu 2004). Fractal

theory offered great promise to inform scaling

methods, but it proved insufficient. It was widely

hoped that a ‘‘silver-bullet’’ power-law would be

discovered (e.g., Johnson et al. 1992; Levin 1992),

but this has not been realized. Scale remains an

important research focus in landscape ecology,

with new approaches being investigated, such as

one that looks at the scaling of pattern in

geographic space, as opposed to the scaling of

123

Landscape Ecol (2019) 34:2065–2072 2067



pattern in pattern metric space (Zurlini et al. 2007).

However, although the importance of hierarchies

of scale is widely recognized, McGarigal et al.

(2016) found that a large majority of published

habitat ecology papers do not address multiple

spatial or temporal scales.

• A phenomenon derisively called ‘‘metric fishing

expeditions’’ using FRAGSTATS was a rampant

problem in 1998. Researchers with data on some

ecological process on a landscape would compute

a large number of landscape metrics for the

landscape, look for correlations between the

process and each metric and then assume that

such correlations indicated some sort of causal

relationship. However, because reviewers often

called out this behavior by insisting on a test of an a

priori hypothesis of a specific mechanism behind

such causal relationships, this practice has dimin-

ished greatly (but not completely) in recent years.

• Similarly, angst was developing about how to

interpret landscape indices and relate them to

ecological processes (Li and Wu 2004). Research-

ers were commonly criticized for quantifying the

wrong component of pattern or using confounded

metrics, or worse yet, measuring pattern at a scale

inconsistent with the process being studied. It was

hoped that a metric could be found that captured all

relevant aspects of spatial pattern in a single value

(Scheiner 1992). A fair amount of research was

conducted to better understand the behavior of

indices and to find ways to compute independent

indices of specific components of landscape pat-

tern (e.g., Gustafson and Parker 1992; Li and

Reynolds 1995; McGarigal and McComb 1995;

Riitters et al. 1995; Trzcinski et al. 1999). This

research was extremely helpful in dispelling much

of the pattern metric conceptual fog that was

prevalent in 1998, greatly improving our ability to

choose appropriate metrics and interpret their

values. However, some fog remains, and so we

are still adding to our understanding today (e.g.,

papers in this issue).

I concluded my 1998 review by highlighting the

pervasiveness of the island paradigm in studies of

spatial pattern at that time, and pointed out that with

the exception of edge and adjacency measures,

virtually all indices calculated for categorical maps

were based on a binary patch model. However, at that

time, the discomfort with the patch model as a way to

describe the spatial configuration of a landscape was

gaining momentum. This catalyzed pioneering efforts

to develop other frameworks to study and analyze

spatial heterogeneity and its ecological effects. The

use of resistance or least-cost surfaces to predict

animal movement across landscapes was being

pioneered as an alternative to the binary habitat

conceptual approach in which non-habitat was con-

sidered to be a homogeneous matrix (Knaapen et al.

1992; Gustafson and Gardner 1996; McRae et al.

2008). Today, these techniques have become very

sophisticated, often using agent-based models, and are

often applied in conservation planning (e.g., Compton

et al. 2007; McLane et al. 2011; Pauli et al. 2013).

Gradient analysis as an alternative to patch analysis

was being investigated for landscape ecology purposes

by 1998. One approach used fuzzy logic as an

alternative rule to delineate patches, where percent

membership in a class as defined by multiple contin-

uous environmental gradients produced a more con-

tinuous representation of patchiness (Arnot et al.

2004), but his approach did not take hold. Another

approach conceptualizes landscape heterogeneity as

continuously varying multi-dimensional gradients

resembling a surface rather than abrupt discontinu-

ities, avoiding the substantial loss of information and

error propagation that comes with collapsing land-

scape-level environmental variability into categorical

maps (McGarigal and Cushman 2005). Gradient

analysis can compute metrics analogous to patch

metrics from surface topography, and continuous data

are especially amenable to techniques such as fractal

and lacunarity and wavelet analysis (Cushman et al.

2010). As an example, Evans and Cushman (2009)

used an explicitly niche-based and individualistic

approach to predict species occupancy of multiple tree

species as a continuous landscape variable, as an

alternative to traditional classified community-type

vegetation maps. In order to produce general, multi-

purpose assessments of landscape pattern, Kurt Riit-

ters and colleagues developed an approach that trades

precision (focused on a particular process or species)

for generality (applicable to many processes or

species) (Riitters et al. 2002; Riitters 2005). A

fundamental aspect of pattern (amount or density) is

measured in a way that lets any user (or species)

choose their own scale (window size) and threshold

(tolerance of fragmentation) and consult a look-up
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table to see how fragmented the landscape is for that

definition of fragmentation. This approach represents

a formal trade-off among generality, realism and

precision (Levins 1966), and has proven useful for

general, continental-scale assessments of landscape

pattern (e.g., USDA Forest Service 2016).

The linkage of landscape pattern and ecological

process is being widely studied in terms of landscape

connectivity and the movement of organisms. The

initial focus on physical connectivity of habitat is

gradually being replaced by a focus on functional

connectivity that is organism-centered (Kindlmann

and Burel 2008; Vogt et al. 2009). The emerging field

of landscape genetics similarly describes landscapes

in terms of their effect on the spatial distribution and

movement of genes and populations rather than

focusing on individual organisms. For example,

(Peterman et al. in review) have applied a resistance

surface optimization approach for this purpose. Cush-

man (2016) has recently proposed a configurational

entropy metric to describe the departure from ran-

domness of a landscape mosaic, enabling a connection

to laws of thermodynamics to help understand changes

in landscape pattern. It remains to be seen how this

concept will be embraced by landscape ecologists, but

Gao and Li (in review) provide one perspective, and

Nowosad and Stepinski (in review) used an entropy

approach to measure landscape complexity. We are

also seeing an adoption of landscape ecological

principles to study the spatial distribution of human

social characteristics (Brown and Reed 2012; De

Vreese et al. 2016). Similarly, study of pattern and

process in urban landscapes has required the develop-

ment of 3-dimensional metrics to account for the

varying heights found in built environments (Kedron

et al. in review). Such metrics may prove useful to

describe other ecological phenomena for which vol-

ume has meaning, such as niche area in topographical

space or shifting habitats in mountainous areas. Given

these nascent novel approaches, I fully expect the next

20 years to produce more revolutionary advances to

improve our ability to quantitatively link spatial

pattern to ecological process.

Lessons learned

If I were to succinctly summarize the lessons learned

about quantifying landscape pattern over the last

30 years, several items would rise to the top of the list.

• After decades of debating whether a single, large

habitat patch is better than several, small patches,

it is becoming apparent that the amount of habitat

matters more than its configuration (Fahrig

2013, 2017). We have invested a lot of energy

over the last 30 years to identify the fundamental

components of pattern, and the list of components

has been slowly shrinking. In the early 1990s it

seemed the list was endless, but by 1998 we had

the list narrowed down to\ 10 (Li and Reynolds

1994; Riitters et al. 1995). We then learned that

even those components are often confounded in

some way (Trzcinski et al. 1999; Baldwin et al.

2004). More recent work suggests that the list may

be down to three (Cushman et al. 2008). Impor-

tantly, we are now concluding that abundance of

cover types and their aggregation are probably the

two most important things to know about a

landscape (Fahrig 2013; Riitters in review), if,

for no other reason, than to properly interpret other

metrics. In my own PhD research I used neutral

model landscapes to study how a number of

landscape metrics behaved as proportion of cover

type changed, and the effect was often pronounced

and rarely linear (Gustafson and Parker 1992).

• Metrics must be carefully interpreted in light of

proportional abundance and the scale at which they

were calculated (Gustafson and Parker 1992;

Riitters et al. 1995;Wu 2004; Šı́mová and Gdulová

2012). We have clearly learned that there are

appropriate and inappropriate uses of landscape

metrics (Li and Wu 2004). It is also critical that

they be conceptually linked to process or theory,

accounting for the scale of that process, and these

putative links should be tested.

• The recent and widespread adoption of the open-

source, community-based R project for statistical

computing (Chambers 2008) for ecological data

analysis is perhaps a ‘‘game-changing’’ develop-

ment that will encourage the sharing, testing and

adoption of novel ways to quantify the spatial and

temporal patterns of landscapes. Conceptual

advances and the development of analytical tools

(e.g., FRAGSTATS, GIS, R, Circuitscape) pro-

ceed in tandem. Yet, the tools often drive or

constrain subsequent conceptual advances

(through what metrics are or are not included)

such that tools should probably face as rigorous

peer review as do journal papers.
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• I have personally learned to let the objectives

choose the metric, guided by the scale and nature

of the ecological process of interest. My own

research uses spatial models to project the effect of

the processes that structure forest landscapes over

long time frames, and I tend to use a small number

of simple, somewhat intuitive metrics that are

directly relevant to the response variables that are

important for a specific study. I guard against

being seduced by what can be calculated, being

content with what should be calculated (i.e., the

most useful/instructive metric(s) for the question

at hand).

• Several items on this list suggest that in many cases

the traditional patch paradigm may not be the best

conceptual framework for landscape analysis. For

example, other ways to represent and analyze the

heterogeneity and pattern of landscape properties

may have much greater utility and reveal deeper

insights.

• Some promising approaches appeared in the last

20 years that did not gain any traction, yet may be

worth re-visiting. (1) The constraint envelope

concept within hierarchy theory (O’Neill et al.

1986) might help advance our ability to predict

landscape resilience in the face of global changes.

(2) Perhaps it is too late to resurrect interest in the

application of fractals as a scaling tool, but it

would be interesting to study whether other

computations of fractal dimension (Milne

1988, 1992) might be more ecologically useful

than the perimeter-area formulation. (3) If we

collectively persist in relying heavily on the

traditional patch paradigm, perhaps the use of

fuzzy logic as an alternative rule to delineate

patches (Arnot et al. 2004) can mitigate some of

the limitations of the patch approach.

I have attempted to provide an overview of the current

state-of-the-art of quantification of landscape spatial

pattern through a retrospective of my 1998 review.

This overview is by no means a comprehensive

review. However, the papers contained in this Special

Issue represent some of the best thinking and creative

development of new approaches for quantitatively

studying and evaluating landscape pattern, and

provide a solid, representative picture of the emerging

state-of-the-art. It is abundantly clear that the final

chapter on landscape pattern analysis has not yet been

written.
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