U.S. Census Bureau Urban Areas

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

sq. km sq. mi FIA Plots Area of Region 8,447.3 3,261.5 46

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species								Potential Change in Habitat Suitability			Capability to Cope or Persist			
Ash	1				Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	3	Abu	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	2	Abundant	0	High	7	9	Increase	6	10	Very Good	1	1	Likely	7	7
Oak	5	Common	9	Medium	23	31	No Change	16	13	Good	4	7	Infill	15	17
Pine	1	Rare	21	Low	20	10	Decrease	8	7	Fair	6	8	Migrate	3	2
Other	18	Absent	19	FIA	0		New	11	12	Poor	11	8	•	25	26
<u>-</u>	30	_	49	•	50	50	Unknown	9	8	Very Poor	6	5			
							_	50	50	FIA Only	0	0			
										Unknown	9	8			
Potentia	ıl Chang	es in Climate Var	iables							•	37	37			

Potential Changes in Climate Variables

Temperature (°F)											
	Scenario	2009	2039	2069	2099						
Annual	CCSM45	69.1	70.5	72.1	72.3						
Average	CCSM85	69.1	70.7	73.0	75.1						
	GFDL45	69.1	73.7	73.2	74.0						
	GFDL85	69.1	71.4	74.4	77.6						
	HAD45	69.1	71.1	73.5	74.5						
	HAD85	69.1	71.3	74.3	77.6						
Growing	CCSM45	80.3	81.5	82.6	83.0						
Season	CCSM85	80.3	81.6	83.8	86.1						
May—Sep	GFDL45	80.3	85.5	84.4	85.8						
	GFDL85	80.3	82.8	85.8	89.5						
	HAD45	80.3	82.7	84.8	85.6						
	HAD85	80.3	82.8	86.5	89.4						
Coldest	CCSM45	51.6	53.8	54.7	54.5						
Month	CCSM85	51.6	54.1	55.4	56.4						
Average	GFDL45	51.6	54.8	55.0	55.1						
	GFDL85	51.6	53.1	54.2	55.0						
	HAD45	51.6	51.9	53.4	54.2						
	HAD85	51.6	53.3	54.5	56.2						
Warmest	CCSM45	83.2	84.1	84.4	84.7						
Month	CCSM85	83.2	84.2	85.1	86.5						
Average	GFDL45	83.2	85.9	86.2	87.2						
	GFDL85	83.2	85.6	87.0	89.0						
	HAD45	83.2	85.9	87.1	87.3						
	HAD85	83.2	86.0	88.1	89.2						

Precipitation (in)												
	Scenario	2009	2039	2069	2099							
Annual	CCSM45	62.8	65.1	70.9	68.8							
Total	CCSM85	62.8	65.6	67.3	68.6							
	GFDL45	62.8	69.0	73.4	68.9							
	GFDL85	62.8	66.7	68.2	66.6							
	HAD45	62.8	59.0	62.1	65.8							
	HAD85	62.8	67.0	59.7	62.6							
Growing	CCSM45	30.2	31.6	32.8	32.5							
Season	CCSM85	30.2	30.6	32.0	30.7 ◆◆◆◆							
May—Sep	GFDL45	30.2	34.7	38.2	33.9							
	GFDL85	30.2	33.8	35.9	36.4							
	HAD45	30.2	29.3	29.7	31.6							
	HAD85	30.2	30.8	25.6	26.1							

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

U.S. Census Bureau Urban Areas

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
bald cypress	Taxodium distichum	NSH	Medium	46.2	473.7	21.3 No change	No change	Medium	Common	Fair	Fair	Infill +	Infill +	1 1
water tupelo	Nyssa aquatica	NSH	Medium	30.8	393.2	25.9 Sm. dec.	Sm. dec.	Low	Common	Poor	Poor	Infill +	Infill +	0 2
red maple	Acer rubrum	WDH	High	52.1	333.5	21.2 Sm. inc.	No change	High	Common	Very Good	Good	Infill ++	Infill ++	1 3
green ash	Fraxinus pennsylvanica	WSH	Low	36.7	218.9	12.1 Sm. dec.	Sm. dec.	Medium	Common	Poor	Poor	Infill +	Infill +	0 4
black willow	Salix nigra	NSH	Low	17.5	188.5	16.7 No change	No change	Low	Common	Poor	Poor	Infill +	Infill +	0 5
sugarberry	Celtis laevigata	NDH	Medium	18.9	138.1	11.6 No change	Sm. inc.	Medium	Common	Fair	Good	Infill +	Infill ++	2 6
water oak	Quercus nigra	WDH	High	22.5	93.5	9.0 No change	No change	Medium	Common	Fair	Fair	Infill +	Infill +	2 7
American elm	Ulmus americana	WDH	Medium	32.9	84.5	7.8 No change	No change	Medium	Common	Fair	Fair	Infill +	Infill +	1 8
live oak	Quercus virginiana	NDH	High	17.5	66.4	13.6 Sm. inc.	Lg. inc.	Medium	Common	Good	Very Good			2 9
sweetgum	Liquidambar styraciflua	WDH	High	23.7	48.3	7.5 Sm. inc.	Sm. inc.	Medium	Rare	Fair	Fair	Infill +	Infill +	2 10
boxelder	Acer negundo	WSH	Low	20.1	20.4	4.9 Lg. inc.	Sm. inc.	High	Rare	Good	Good	Infill ++	Infill ++	2 11
willow oak	Quercus phellos	NSL	Low	9.5	14.8	14.4 No change	Sm. inc.	Medium	Rare	Poor	Fair		Infill +	2 12
laurel oak	Quercus laurifolia	NDH	Medium	11.8			No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 13
Nuttall oak	Quercus texana	NSH	Medium	2.4	13.8	3.3 No change	No change	High	Rare	Fair	Fair			0 14
eastern cottonwood	Populus deltoides	NSH	Low	1.2			No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 15
sycamore	Platanus occidentalis	NSL	Low	5.9	10.9		No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 16
winged elm	Ulmus alata	WDL	Medium	5.9			Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 17
pecan	Carya illinoinensis	NSH	Low	5.9			Lg. inc.	Low	Rare	Very Poor	Fair		Infill +	2 18
blackgum	Nyssa sylvatica	WDL	Medium	10.7	4.5	J	Lg. inc.	High	Rare	Good	Good	Infill ++	Infill ++	2 19
loblolly pine	Pinus taeda	WDH	High	4.7			Lg. inc.	Medium	Rare	Good	Good			2 20
swamp tupelo	Nyssa biflora	NDH	Medium	5.9			No change	Low	Rare	Very Poor	Very Poor			2 21
pond cypress	Taxodium ascendens	NSH	Medium	4.7			Lg. inc.	Medium	Rare	Poor	Good	Infill +		2 22
mockernut hickory	Carya alba	WDL	Medium	1.2			Very Lg. dec.	High	Rare	Lost	Lost			0 23
honeylocust	Gleditsia triacanthos	NSH	Low	1.2			No change	High	Rare	Lost	Fair		Infill +	2 24
eastern hophornbeam; iron		WSL	Low	9.5		, 0	Sm. dec.	High	Rare	Poor	Poor			0 25
red mulberry	Morus rubra	NSL	Low	1.2			No change	Medium	Rare	Poor	Poor			0 26
slippery elm	Ulmus rubra	WSL	Low	1.2			Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 27
black cherry	Prunus serotina	WDL	Medium	1.2		J	No change	Low	Rare	Very Poor	Very Poor			2 28
water hickory	Carya aquatica	NSL	Medium	4.7	0.6	U	Lg. inc.	Medium	Rare	Poor	Good			2 29
sassafras	Sassafras albidum	WSL	Low	4.7		- C	Lg. dec.	Medium		Very Poor	Very Poor			0 30
Atlantic white-cedar	Chamaecyparis thyoides	NSH	Low	0		0 New Habitat	New Habitat	Low	Absent	New Habitat	•	Migrate +		3 31
shortleaf pine	Pinus echinata	WDH	High	0	_	0 New Habitat	New Habitat	Medium		New Habitat	New Habitat	U	Likely +	3 32
slash pine	Pinus elliottii	NDH	High	0			New Habitat	Medium	Absent	New Habitat	New Habitat		Likely +	3 33
longleaf pine	Pinus palustris	NSH	Medium	0	_		New Habitat	Medium	Absent	New Habitat	New Habitat	•	Likely +	3 34
striped maple	Acer pensylvanicum	NSL	Medium	0		0 Unknown	Unknown	Medium		Unknown	Unknown	LIKETY 1	LIKETY	0 35
serviceberry	Amelanchier spp.	NSL	Low	0	_		New Habitat	Medium		Unknown	New Habitat			3 36
pawpaw	Asimina triloba	NSL	Low	0			Unknown	Medium		Unknown	Unknown			0 37
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp		Low	0	·		New Habitat	High	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 38
flowering dogwood	Cornus florida	WDL	Medium	0			Unknown	-	Modeled	Unknown	Unknown	iviigiate i	Wilgrate 1	0 39
black ash	Fraxinus nigra	WSH	Medium	0			Unknown	Low	Absent	Unknown	Unknown			0 40
silverbell	Halesia spp.	NSL	Low	0	-		Unknown	Medium		Unknown	Unknown			0 41
sweetbay	Magnolia virginiana	NSL	Medium	0			New Habitat	Medium	Absent	New Habitat	New Habitat	Likoly ≠	Likely +	3 42
bigleaf magnolia	Magnolia macrophylla	NSL	Low	0			Unknown	Medium	Absent	Unknown	Unknown	LIKETY	LIKETY	0 43
pin cherry	Prunus pensylvanica	NSL	Low	0			Unknown	Medium		Unknown	Unknown			0 44
•				0				High				Likoly	Likoly	3 45
southern red oak	Quercus falcata	WDL	Medium Medium	0			New Habitat	U	Absent			•	Likely +	3 45
cherrybark oak; swamp red		NSL		0	-			Medium			New Habitat		Likely +	
overcup oak	Quercus lyrata	NSL	Medium	U	Ü	0 New Habitat	ivew Habitat	LOW	Absent	New Habitat	New Habitat	Likely +	Likely +	3 47

U.S. Census Bureau Urban Areas

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
cabbage palmetto	Sabal palmetto	NDH	Medium	0	C) (New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			0 48
American mountain-ash	Sorbus americana	NSL	Low	0	C) () Unknown	Unknown	Low	Absent	Unknown	Unknown			0 49
cedar elm	Ulmus crassifolia	NDH	Medium	0	C) (New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat	Migrate +	Migrate ++	3 50

