U.S. Census Bureau Urban Areas

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

 sq. km
 sq. mi
 FIA Plots

 Area of Region
 8,600.0
 3,320.5
 205

Species Information

GFDL85

HAD45

HAD85

CCSM85

GFDL85

HAD45

HAD85

CCSM45

CCSM85

GFDL85

HAD45

HAD85

CCSM85

GFDL85

HAD45

HAD85

44.0

82.9

82.9

82.9

82.9

82.9

82.9

46.0

84.4

84.5

87.2

86.6

87.1

87.7

47.5

84.8

85.5

87.0

88.1

88.7

91.0

Growing CCSM45

May—Sep GFDL45

Average GFDL45

Warmest CCSM45

Average GFDL45

Season

Coldest

Month

Month

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species							Potent	ial Change	in Habitat S	uitability	Capability	Migration Potential				
Ash	2					Model			Scenario	Scenario			Scenario	Scenario		SHIFT	SHIFT
Hickory	8		Abu	ndance		Reliability	Adaptabili	ty	RCP45	RCP85			RCP45	RCP85		RCP45	RCP85
Maple	2	Abı	undant	3	High	14	21	Increase	29	32	١	/ery Good	9	11	Likely	2	1
Oak	14	Co	ommon	22	Medium	33	46	No Change	15	16		Good	18	17	Infill	15	17
Pine	3		Rare	37	Low	31	11	Decrease	18	14		Fair	10	15	Migrate	3	3
Other	33		Absent	13	FIA	0		New	10	8		Poor	13	6		20	21
	62		_	75		78	78	Unknowr	6	8		Very Poor	12	12			
									78	78		FIA Only	0	0			
												Unknown	6	8			
Potential Changes in Climate Variables											68	69					
Temperatu	re (°F)						Precipitat	ion (in)									
	Scenario	2009	2039	2069	2099			Scenario 2009	2039	2069	2099						
Annual	CCSM45	64.5	66.2	68.0	68.3 🛶 🔶		Annual	CCSM45 56.4	57.8	63.8	61.5 +++++						
Average	CCSM85	64.5	66.5	68.9	71.4		Total	CCSM85 56.4	59.0	62.4	64.3 ++++						
	GFDL45	64.5	68.1	68.8	69.8			GFDL45 56.4	60.6	69.3	64.1 +++++						

64.5	66.5	68.9	71.4	Total	CCSM85	56.4
64.5	68.1	68.8	69.8		GFDL45	56.4
64.5	67.2	70.2	73.6		GFDL85	56.4
64.5	66.9	69.9	70.9		HAD45	56.4
64.5	67.3	71.4	75.1		HAD85	56.4
78.3	79.9	81.3	81.8	Growing	CCSM45	20.3
78.3	80.2	82.5	85.6	Season	CCSM85	20.3
78.3	82.6	83.0	85.0	May—Sep	GFDL45	20.3
78.3	81.6	84.8	89.0		GFDL85	20.3
78.3	81.5	84.4	84.9		HAD45	20.3
78.3	81.8	87.5	90.7		HAD85	20.3
44.0	46.4	47.4	47.5			
44.0	46.6	47.9	49.2 🔸 🔶	NOTE: For	the six clim	ate varia
44.0	47.6	47.6	47.6 🖌 🔶	ending in 2	009 is base	ed on mo
44.0	45.3	46.3	46.8 🛶 🔶	obtained f	rom the NA	SA NEX-
44.0	44.9	46.6	47.4	show estin	nates of eac	ch climat

49.3

85.0

87.1

90.9

88.6

91.9

.3 20.3 21.4 20.6 ++++ .3 19.2 19.3 19.3 ++++ 23.7 +---.3 22.3 27.1 25.4 .3 23.2 24.7 .3 19.5 19.8 19.2 + + + + 19.8 15.8 🛶 .3 15.5 ariables, four 30-year periods are used to indicate six potential future trajectories. The period modeled observations from the PRISM Climate Group and the three future periods were

62.7

56.6

51.3

60.1

55.1

58.0

obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

64.6

60.6

56.2 ++++++

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

ua 58330

U.S. Census Bureau Urban Areas

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

			00	ene			nubitut, cu	ipublity,	unu wiigi	ation			iverson, Pe	ters, Prasad, I
Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
loblolly pine	Pinus taeda	WDH	High	73.3	2495.7	40.5 No change	No change	Medium	Abundant	Good	Good			1 1
sweetgum	Liquidambar styraciflua	WDH	High	70.9	547.6	9.0 Sm. inc.	Sm. inc.	Medium	Abundant	Very Good	Very Good			1 2
willow oak	Quercus phellos	NSL	Low	50	511.0	16.0 Sm. dec.	Sm. dec.	Medium	Abundant	Fair	Fair			0 3
water oak	Quercus nigra	WDH	High	76.7	424.9	7.1 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 4
overcup oak	Quercus lyrata	NSL	Medium	44.2	262.4	10.5 No change	No change	Low	Common	Poor	Poor			0 5
shortleaf pine	Pinus echinata	WDH	High	31.4	243.2	7.8 No change	Sm. inc.	Medium	Common	Fair	Good			1 6
southern red oak	Quercus falcata	WDL	Medium	47.7	237.1	5.5 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 7
white oak	Quercus alba	WDH	Medium	46.5	232.7	5.4 Sm. dec.	No change	High	Common	Fair	Good			1 8
cherrybark oak; swamp re	d o Quercus pagoda	NSL	Medium	41.9	198.7	5.2 No change	No change	Medium	Common	Fair	Fair			1 9
bald cypress	Taxodium distichum	NSH	Medium	12.8	181.3	14.2 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 10
winged elm	Ulmus alata	WDL	Medium	69.8	165.3	3.6 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 11
green ash	Fraxinus pennsylvanica	WSH	Low	48.8	128.3	4.9 Sm. inc.	Lg. inc.	Medium	Common	Good	Very Good			1 12
blackgum	Nyssa sylvatica	WDL	Medium	38.4	127.4	3.3 Sm. inc.	Lg. inc.	High	Common	Very Good	Very Good			1 13
red maple	Acer rubrum	WDH	High	50	124.5	2.9 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 14
water hickory	Carya aquatica	NSL	Medium	23.3	124.1	8.6 No change	No change	Medium	Common	Fair	Fair			1 15
American elm	Ulmus americana	WDH	Medium	40.7	114.9	4.6 Sm. inc.	Lg. inc.	Medium	Common	Good	Very Good			1 16
Nuttall oak	Quercus texana	NSH	Medium	18.6	110.4	10.2 No change	No change	High	Common	Good	Good			0 17
sugarberry	Celtis laevigata	NDH	Medium	39.5	102.0	6.1 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 18
American beech	Fagus grandifolia	WDH	High	16.3	93.5	5.8 Sm. inc.	No change	Medium	Common	Good	Fair	Infill ++	Infill +	1 19
eastern hophornbeam; iro		WSL	Low	31.4	80.1	2.9 No change	No change	High	Common	Good	Good			1 20
cedar elm	Ulmus crassifolia	NDH	Medium	26.7	67.3	5.1 Lg. inc.	Lg. inc.	Low	Common	Good	Good	Infill ++	Infill ++	1 21
mockernut hickory	Carya alba	WDL	Medium	36	66.3	2.4 Sm. inc.	Lg. inc.	High	Common	Very Good	Very Good			1 22
American hornbeam; mus	,	WSL	Low	26.7	60.7	2.6 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 23
black cherry	Prunus serotina	WDL	Medium	34.9	60.4	2.2 No change	Sm. inc.	Low	Common	Poor	, Fair			1 24
post oak	Quercus stellata	WDH	High	33.7	55.5	2.7 Lg. inc.	Lg. inc.	High	Common	Very Good	Very Good			1 25
honeylocust	Gleditsia triacanthos	NSH	Low	16.3	43.8	7.0 Sm. inc.	Lg. inc.	High	Rare	Good	Good	Infill ++	Infill ++	1 26
flowering dogwood	Cornus florida	WDL	Medium	33.7	41.9	1.4 Sm. inc.	Sm. inc.	Medium	Rare	Fair	Fair			1 27
common persimmon	Diospyros virginiana	NSL	Low	27.9	39.3	3.7 Sm. inc.	Lg. inc.	High	Rare	Good	Good			1 28
water tupelo	Nyssa aquatica	NSH	Medium	5.8	37.2	6.4 No change	No change	Low	Rare	Very Poor	Very Poor			2 29
black willow	Salix nigra	NSH	Low	17.4	25.7	5.1 Lg. inc.	Lg. inc.	Low	Rare	Fair	Fair	Infill +	Infill +	1 30
Shumard oak	Quercus shumardii	NSL	Low	5.8	23.9	4.1 Sm. dec.	No change	High	Rare	Poor	Fair		Infill +	2 31
swamp chestnut oak	Quercus michauxii	NSL	Low	8.1	22.9	2.8 No change	No change	Medium	Rare	Poor	Poor			1 32
pignut hickory	Carya glabra	WDL	Medium	10.5	21.6	2.1 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 33
American holly	llex opaca	NSL	Medium	14	21.4	1.5 Lg. inc.	Lg. inc.	Medium		Good	Good			1 34
water elm	Planera aquatica	NSL	Low	1.2	16.7	14.4 No change	No change	Medium		Poor	Poor	Infill +	Infill +	2 35
slash pine	Pinus elliottii	NDH	High	3.5	16.5	4.7 Lg. inc.	Lg. inc.	Medium		Good	Good	Infill ++	Infill ++	2 36
sassafras	Sassafras albidum	WSL	Low	12.8	16.5	1.3 Lg. inc.	Lg. inc.	Medium		Good	Good	Infill ++	Infill ++	1 37
swamp white oak	Quercus bicolor	NSL	Low	3.5	15.7	4.5 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 38
black oak	Quercus velutina	WDH	High	15.1	15.5	1.4 Lg. dec.	Lg. dec.	Medium		Very Poor	Very Poor			0 39
sweetbay	Magnolia virginiana	NSL	Medium	9.3	14.2	1.5 Sm. inc.	Sm. inc.	Medium		Fair	Fair	Infill +	Infill +	1 40
black locust	Robinia pseudoacacia	NDH	Low	1.2	14.2	9.8 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 41
eastern redcedar	Juniperus virginiana	WDH	Medium	5.8	10.9	1.9 No change	Sm. inc.	Medium		Poor	Fair	Infill +	Infill +	2 42
laurel oak	Quercus laurifolia	NDH	Medium	3.5	9.5	2.7 Lg. inc.	Lg. inc.	Medium		Good	Good	Infill ++	Infill ++	2 42
white ash	Fraxinus americana	WDL	Medium	9.3	9.2	1.0 Sm. dec.	No change	Low	Rare	Very Poor	Very Poor			0 44
eastern cottonwood	Populus deltoides	NSH	Low	4.7	9.2	31.6 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 44
slippery elm	Ulmus rubra	WSL	Low	4.7	9.2 7.3	2.2 Lg. inc.	Lg. inc.	Medium	Rare	Good	Good	Infill ++	Infill ++	1 46
black hickory		NDL		18.6	7.3					Poor		Infill +	Infill +	2 47
DIACK HICKOTY	Carya texana	NDL	High	1.2	7.2	6.2 No change	Sm. inc.	Medium	Rare	1004	Fair	111111 +	111111 +	2 47

ua 58330

U.S. Census Bureau Urban Areas

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
blackjack oak	Quercus marilandica	NSL	Medium	3.5	7 .1	L 2.0) Lg. inc.	Lg. inc.	High	Rare	Good	Good	Infill ++	Infill ++	2 48
shellbark hickory	Carya laciniosa	NSL	Low	1.2	5.9	5.1	L Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 49
red mulberry	Morus rubra	NSL	Low	5.8	3 4.7	7 0.8	B Lg. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 50
pecan	Carya illinoinensis	NSH	Low	1.2	4.2	2 3.6	5 Lg. inc.	Lg. inc.	Low	Rare	Fair	Fair	Infill +	Infill +	2 51
pin cherry	Prunus pensylvanica	NSL	Low	3.5	3.7	7 1.1	L Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 52
bitternut hickory	Carya cordiformis	WSL	Low	2.3	3.5	5 1.5	5 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 53
sourwood	Oxydendrum arboreum	NDL	High	2.3	2.9	9 1.3	3 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 54
yellow-poplar	Liriodendron tulipifera	WDH	High	1.2	2.9	9 2.5	5 Sm. dec.	No change	High	Rare	Poor	Fair			0 55
sycamore	Platanus occidentalis	NSL	Low	1.2	2.3	3 2.0	No change	Sm. dec.	Medium	Rare	Poor	Very Poor			0 56
shagbark hickory	Carya ovata	WSL	Medium	1.2	2.3	3 2.0) Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 57
river birch	Betula nigra	NSL	Low	1.2	2 1.7	7 1.5	5 Lg. inc.	Lg. inc.	Medium	Rare	Good	Good			2 58
boxelder	Acer negundo	WSH	Low	1.2	2 1.2	2 1.1	L Sm. dec.	No change	High	Rare	Poor	Fair		Infill +	2 59
American basswood	Tilia americana	WSL	Medium	1.2	0.7	7 0.6	5 Lg. dec.	Very Lg. dec.	Medium	Rare	Very Poor	Lost			0 60
serviceberry	Amelanchier spp.	NSL	Low	1.2	2.0.5	5 0.4	1 No change	No change	Medium	Rare	Poor	Poor			0 61
swamp tupelo	Nyssa biflora	NDH	Medium	1.2	2 0.4	1 0.4	Lg. inc.	Lg. inc.	Low	Rare	Fair	Fair	Infill +	Infill +	2 62
Atlantic white-cedar	Chamaecyparis thyoides	NSH	Low	C) () () Unknown	Unknown	Low	Modeled	Unknown	Unknown			0 63
longleaf pine	Pinus palustris	NSH	Medium	C) () (New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate ++	Migrate ++	3 64
pond pine	Pinus serotina	NSH	Medium	C) () () Unknown	Unknown	Low	Modeled	Unknown	Unknown			0 65
florida maple	Acer barbatum	NSL	Low	C) () () Unknown	Unknown	High	Modeled	Unknown	Unknown			0 66
striped maple	Acer pensylvanicum	NSL	Medium	C) () (New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 67
sugar maple	Acer saccharum	WDH	High	C) () () Unknown	Unknown	High	Absent	Unknown	Unknown			0 68
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	C) () (New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Likely +	Likely +	3 69
black ash	Fraxinus nigra	WSH	Medium	C) () (New Habitat	Unknown	Low	Absent	New Habitat	Unknown			3 70
silverbell	Halesia spp.	NSL	Low	C) () (New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 71
southern magnolia	Magnolia grandiflora	NSL	Low	C) () (New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate ++	Migrate ++	3 72
bigleaf magnolia	Magnolia macrophylla	NSL	Low	C) () (New Habitat	Unknown	Medium	Absent	New Habitat	Unknown	Likely +		3 73
redbay	Persea borbonia	NSL	Low	C) () (New Habitat	New Habitat	High	Absent	New Habitat	New Habitat			3 74
scarlet oak	Quercus coccinea	WDL	Medium	C) () (New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 75
chinkapin oak	Quercus muehlenbergii	NSL	Medium	C) () () Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 76
northern red oak	Quercus rubra	WDH	Medium	C) () () Unknown	Unknown	High	Absent	Unknown	Unknown			0 77
live oak	Quercus virginiana	NDH	High	C) () () New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate ++	Migrate ++	3 78

