U.S. Census Bureau Urban Areas

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 8,014.7 3,094.5 140

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitabi	lity Capability	to Cope o	r Persist	Migratio	n Poten	tial
Ash	2			Ν	۸odel			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	0	Abur	ndance	R	Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	1	Abundant	3	High	5	9	Increase	6	6	Very Good	4	4	Likely	0	0
Oak	3	Common	6	Medium	15	19	No Change	4	5	Good	4	4	Infill	9	9
Pine	1	Rare	7	Low	11	3	Decrease	5	4	Fair	0	1	Migrate	1	2
Other	9	Absent	11	FIA	1		New	4	4	Poor	3	3		10	11
-	16		27	—	32	31	Unknown	13	13	Very Poor	1	0			
							-	32	32	FIA Only	1	1			

Potential Changes in Climate Variables

Temperatu	ıre (°F)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	74.4	75.6	76.9	76.9 🛶 🛶
Average	CCSM85	74.4	75.6	77.7	79.8
	GFDL45	74.4	77.7	78.3	79.2
	GFDL85	74.4	76.5	79.3	82.3
	HAD45	74.4	75.7	77.6	78.7
	HAD85	74.4	76.2	78.3	81.4
Growing	CCSM45	81.2	82.3	83.4	83.6
Season	CCSM85	81.2	82.4	84.5	86.7 🛶 🔶
May—Sep	GFDL45	81.2	84.6	85.1	86.2
	GFDL85	81.2	83.4	86.2	89.4
	HAD45	81.2	82.9	84.5	85.6
	HAD85	81.2	83.2	85.7	88.4
Coldest	CCSM45	62.9	64.5	65.3	65.2
Month	CCSM85	62.9	63.9	64.8	66.4
Average	GFDL45	62.9	65.2	65.6	66.1
	GFDL85	62.9	65.1	66.2	67.4
	HAD45	62.9	63.2	64.4	64.9 🛶 🔶
	HAD85	62.9	63.8	64.5	66.4
Warmest	CCSM45	82.9	84.1	84.7	84.7
Month	CCSM85	82.9	84.2	85.3	86.7 🛶 🔶
Average	GFDL45	82.9	85.1	86.1	86.7
	GFDL85	82.9	85.2	86.8	88.6
	HAD45	82.9	84.7	85.4	85.9
	HAD85	82.9	84.8	86.0	87.4

Precipitation (in)											
	Scenario	2009	2039	2069	2099						
Annual	CCSM45	54.1	55.2	53.6	58.3 ++++						
Total	CCSM85	54.1	55.7	53.6	49.7 +++++						
	GFDL45	54.1	61.0	61.6	62.4						
	GFDL85	54.1	58.1	65.0	58.0 +++++						
	HAD45	54.1	57.1	56.8	56.0 ++++						
	HAD85	54.1	51.8	54.2	51.2 ++++						
Growing	CCSM45	38.4	39.3	37.9	41.1 ++++						
Season	CCSM85	38.4	39.5	38.7	34.4 +++++						
May—Sep	GFDL45	38.4	41.6	40.9	39.2						
	GFDL85	38.4	40.2	42.1	36.6 +++++						
	HAD45	38.4	39.5	39.5	36.2 +++++						
	HAD85	38.4	36.2	35.4	32.6 ++++						

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Unknown

12

25

12

25

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

ua 08974

U.S. Census Bureau Urban Areas

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Cap	ability, and Migration
---	------------------------

			00			terrerar i acare i	iabitat) ear	paomey,					iverson, r	eters, Prasau
Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
slash pine	Pinus elliottii	NDH	High	79.4	1901.2	37.1 No change	No change	Medium	Abundant	Good	Good	Infill ++	Infill ++	1 1
cabbage palmetto	Sabal palmetto	NDH	Medium	60.5	1332.4	27.7 No change	No change	Medium	Abundant	Good	Good			0 2
pond cypress	Taxodium ascendens	NSH	Medium	53.9	1143.2	29.5 Sm. inc.	Sm. inc.	Medium	Abundant	Very Good	Very Good	Infill ++	Infill ++	1 3
bald cypress	Taxodium distichum	NSH	Medium	21.2	252.8	13.4 Sm. inc.	No change	Medium	Common	Good	Fair	Infill ++	Infill +	2 4
live oak	Quercus virginiana	NDH	High	38.6	177.7	10.1 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good	Infill ++	Infill ++	2 5
red maple	Acer rubrum	WDH	High	19.9	129.1	7.2 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good	Infill ++	Infill ++	1 6
laurel oak	Quercus laurifolia	NDH	Medium	41.9	104.4	4.4 Sm. inc.	Sm. inc.	Medium	Common	Good	Good	Infill ++	Infill ++	1 7
Carolina ash	Fraxinus caroliniana	NSL	FIA	14.9	71.5	7.4 Unknown	Unknown	NA	Common	FIA Only	FIA Only			0 8
redbay	Persea borbonia	NSL	Low	26.2	59.3	2.4 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good	Infill ++	Infill ++	1 9
sweetbay	Magnolia virginiana	NSL	Medium	8.7	16.4	3.1 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 10
green ash	Fraxinus pennsylvanica	WSH	Low	2.5	12.4	4.5 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 11
hackberry	Celtis occidentalis	WDH	Medium	1.2	3.8	2.7 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 12
red mulberry	Morus rubra	NSL	Low	1.2	3.6	2.6 Very Lg. dec.	Very Lg. dec.	Medium	Rare	Lost	Lost			0 13
swamp tupelo	Nyssa biflora	NDH	Medium	1.2	2.3	1.6 Very Lg. dec.	Very Lg. dec.	Low	Rare	Lost	Lost			0 14
water oak	Quercus nigra	WDH	High	4.8	1.5	1.0 Very Lg. dec.	Very Lg. dec.	Medium	Rare	Lost	Lost			0 15
sugarberry	Celtis laevigata	NDH	Medium	5	0.4	1.3 Sm. dec.	Lg. inc.	Medium	Rare	Very Poor	Good			2 16
sand pine	Pinus clausa	NDH	High	0	0	0 New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat			3 17
pawpaw	Asimina triloba	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 18
eastern redbud	Cercis canadensis	NSL	Low	0	0	0 Unknown	Unknown	Medium	Modeled	Unknown	Unknown			0 19
flowering dogwood	Cornus florida	WDL	Medium	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 20
loblolly-bay	Gordonia lasianthus	NSH	Medium	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 21
cucumbertree	Magnolia acuminata	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 22
mountain or Fraser magnolia	a Magnolia fraseri	NSL	Low	0	0	0 Unknown	Unknown	Low	Absent	Unknown	Unknown			0 23
blackgum	Nyssa sylvatica	WDL	Medium	0	0	0 Unknown	Unknown	High	Modeled	Unknown	Unknown			0 24
eastern hophornbeam; ironv	v Ostrya virginiana	WSL	Low	0	0	0 Unknown	Unknown	High	Modeled	Unknown	Unknown			0 25
pin cherry	Prunus pensylvanica	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 26
turkey oak	Quercus laevis	NSH	Medium	0	0	0 New Habitat	New Habitat	High	Absent	New Habitat	New Habitat			3 27
bur oak	Quercus macrocarpa	NDH	Medium	0	0	0 Unknown	Unknown	High	Absent	Unknown	Unknown			0 28
Nuttall oak	Quercus texana	NSH	Medium	0	0	0 Unknown	Unknown	High	Absent	Unknown	Unknown			0 29
Shumard oak	Quercus shumardii	NSL	Low	0	0	0 Unknown	Unknown	High	Modeled	Unknown	Unknown			0 30
American elm	Ulmus americana	WDH	Medium	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat		Migrate +	3 31
slippery elm	Ulmus rubra	WSL	Low	0	0	0 Unknown	Unknown	Medium	Modeled	Unknown	Unknown			0 32

