Alabama

States

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

	sq. km	sq. mi	FIA Plots
Area of Region	133,746	51,640	4,263

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species								Potentia	al Change i	n Habitat S	uitability	Capability	to Cope o	Persist	Migratior	n Potent	tial
Ash	5					Model				Scenario	Scenario			Scenario	Scenario		SHIFT	SHIFT
Hickory	9		Abu	ndance		Reliability	Adaptabili	ty		RCP45	RCP85			RCP45	RCP85		RCP45	RCP85
Maple	5	A	bundant	3	High	23	30		Increase	31	40		Very Good	16	19	Likely	1	0
Oak	22	(Common	27	Medium	39	61	No	Change	30	26		Good	18	16	Infill	26	29
Pine	7		Rare	74	Low	44	18	[Decrease	31	26		Fair	12	18	Migrate	1	1
Other	56		Absent	13	FIA	12			New	7	7		Poor	18	16		28	30
	104		_	117		118	109	- L	Inknown	19	19		Very Poor	28	23			
									-	118	118		FIA Only	9	9			
													Unknown	7	7			
Potentia	al Chang	ges in Clim	nate Var	iables										108	108			
Temperatu	re (°F)						Precipitati	on (in)										
	Scenario	2009	2039	2069	2099			Scenario	2009	2039	2069	2099						
Annual	CCSM45	63.1	64.8	66.8	66.8 🛶 🔶		Annual	CCSM45	55.6	57.6	62.0	61.0	•					
Average	CCSM85	63.1	65.0	67.5	70.1		Total	CCSM85	55.6	58.8	60.6	66.6						
	GFDL45	63.1	65.8	67.7	68.4			GFDL45	55.6	62.3	65.8	67.9	•					
	GFDL85	63.1	65.6	68.7	72.1			GFDL85	55.6	62.2	65.0	66.2						
	HAD45	63.1	65.3	68.1	69.5			HAD45	55.6	53.8	59.7	60.2	•					
	HAD85	63.1	65.6	69.7	73.5			HAD85	55.6	59.0	53.1	56.9	•					
Growing	CCSM45	76.3	77.9	79.5	80.0		Growing	CCSM45	22.3	23.2	24.4	24.5 + + + +	•					
Season	CCSM85	76.3	78.0	80.6	83.8		Season	CCSM85	22.3	22.4	23.0	24.9 ++++						
May—Sep	GFDL45	76.3	79.2	81.0	82.4		May—Sep	GFDL45	22.3	27.0	29.0	28.7	•					
	GFDL85	76.3	78.9	82.3	86.3			GFDL85	22.3	27.4	29.7	30.4						
	HAD45	76.3	79.5	82.0	83.5			HAD45	22.3	21.3	23.2	22.3 ++++	•					
	HAD85	76.3	79.5	85.4	88.8			HAD85	22.3	23.5	17.8	19.1 +++++++++++++++++++++++++++++++++++	•					
					-							•						
Coldest	CCSM45	43.1	45.3	46.2	46.1													

47.9

46.9

46.4

45.4

47.2

83.0

85.3

84.9

86.7

87.1

90.2

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

Month

Month

CCSM85

GFDL85

HAD45

HAD85

CCSM85

GFDL85

HAD45

HAD85

Average GFDL45

Warmest CCSM45

Average GFDL45

43.1

43.1

43.1

43.1

43.1

80.5

80.5

80.5

80.5

80.5

80.5

45.5

46.5

44.9

43.0

44.3

82.1

82.1

83.3

82.9

84.7

85.0

46.7

46.7

46.0

44.8

45.6

82.8

83.5

84.1

84.5

86.5

88.8

Alabama	
---------	--

States

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

а н		-								a 1.14-	a 1.105			eters, Prasau, Ivia
Common Name	Scientific Name	Range				FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
loblolly pine	Pinus taeda	WDH	High	87.5		35.0 No change	No change		Abundant	Good	Good			1 1
sweetgum	Liquidambar styraciflua	WDH	High	84.5		10.1 No change	Sm. inc.	Medium	Abundant	Good	Very Good			1 2
water oak	Quercus nigra	WDH	High	72.6	575.1	7.4 Lg. inc.	Lg. inc.	Medium	Abundant	Very Good	Very Good			1 3
yellow-poplar	Liriodendron tulipifera	WDH	High	60.1	354.5	5.4 Sm. dec.	Sm. dec.	High	Common	Fair	Fair			1 4
red maple	Acer rubrum	WDH	High	70.7	285.3	3.7 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 5
longleaf pine	Pinus palustris	NSH	Medium	20.7		U U	Lg. inc.	Medium	Common	Very Good	Very Good			1 6
white oak	Quercus alba	WDH	Medium	53.3	277.2	4.7 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 7
slash pine	Pinus elliottii	NDH	High	12	235.3	15.6 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good	Infill ++	Infill ++	1 8
southern red oak	Quercus falcata	WDL	Medium	54.3	234.2	3.9 Lg. inc.	Lg. inc.	High	Common	Very Good	Very Good			1 9
shortleaf pine	Pinus echinata	WDH	High	45.2	207.7	4.3 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 10
blackgum	Nyssa sylvatica	WDL	Medium	64.4	203.5	2.9 Sm. inc.	Lg. inc.	High	Common	Very Good	Very Good			1 11
laurel oak	Quercus laurifolia	NDH	Medium	28.7	171.2	5.5 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 12
Virginia pine	Pinus virginiana	NDH	High	18.6	170.7	8.9 Sm. dec.	Sm. dec.	Medium	Common	Poor	Poor	Infill +	Infill +	0 13
mockernut hickory	Carya alba	WDL	Medium	46.2	165.5	3.3 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 14
pignut hickory	Carya glabra	WDL	Medium	47.4	162.6	3.2 Sm. dec.	Sm. dec.	Medium	Common	Poor	Poor			0 15
chestnut oak	Quercus prinus	NDH	High	21.1	153.3	6.7 No change	No change	High	Common	Good	Good	Infill ++	Infill ++	1 16
post oak	Quercus stellata	WDH	High	42.5	138.1	3.0 Lg. inc.	Lg. inc.	High	Common	Very Good	Very Good			1 17
sweetbay	Magnolia virginiana	NSL	Medium	24.5	134.9	4.8 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 18
black cherry	Prunus serotina	WDL	Medium	56.1	131.6	2.2 Lg. inc.	Lg. inc.	Low	Common	Good	Good			1 19
eastern redcedar	Juniperus virginiana	WDH	Medium	29.2	125.8	4.2 Sm. inc.	Lg. inc.	Medium	Common	Good	Very Good			1 20
green ash	Fraxinus pennsylvanica	WSH	Low	27.8	111.6	3.9 Sm. inc.	Lg. inc.	Medium	Common	Good	Very Good			1 21
flowering dogwood	Cornus florida	WDL	Medium	51	106.4	1.9 No change	No change	Medium	Common	Fair	Fair			1 22
winged elm	Ulmus alata	WDL	Medium	40.2	97.6	2.4 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 23
sourwood	Oxydendrum arboreum	NDL	High	35.2	90.2	2.3 Sm. dec.	Sm. dec.	High	Common	Fair	Fair			1 24
sugarberry	Celtis laevigata	NDH	Medium	16.1	88.4	5.4 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 25
swamp tupelo	Nyssa biflora	NDH	Medium	10.8	72.5	5.6 Lg. inc.	Lg. inc.	Low	Common	Good	Good	Infill ++	Infill ++	1 26
	iscles Carpinus caroliniana	WSL	Low	28.5	71.9	2.4 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 27
black oak	Quercus velutina	WDH	High	23.1	63.3	2.5 No change	No change		Common	, Fair	, Fair			1 28
northern red oak	Quercus rubra	WDH	Medium	19	51.1	2.6 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good	Infill ++	Infill ++	1 29
willow oak	Quercus phellos	NSL	Low	13.3	50.8	3.7 Lg. inc.	Lg. inc.	_	Common	, Very Good	, Very Good			1 30
scarlet oak	Quercus coccinea	WDL	Medium	16.1	49.6	2.8 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 31
American beech	Fagus grandifolia	WDH	High	21.9	47.3	2.0 Lg. inc.	Lg. inc.	Medium		Good	Good	Infill ++	Infill ++	1 32
common persimmon	Diospyros virginiana	NSL	Low	32.4	46.3	1.4 No change	Sm. inc.	High	Rare	Fair	Good			1 33
shagbark hickory	Carya ovata	WSL	Medium	13.5	43.6	3.1 Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 34
cherrybark oak; swamp re		NSL	Medium	13.3	40.6	2.9 Lg. inc.	Lg. inc.	Medium		Good	Good	Infill ++	Infill ++	1 35
eastern hophornbeam; ir		WSL	Low	20.4	38.2	1.8 Lg. inc.	Lg. inc.	High	Rare	Good	Good			1 36
American elm	Ulmus americana	WDH	Medium	18.5	37.6	2.0 Lg. inc.	Lg. inc.	Medium	Rare	Good	Good			1 37
boxelder	Acer negundo	WSH	Low	7.6	35.6	5.0 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	1 38
florida maple	Acer barbatum	NSL	Low	15.5	33.6	2.0 Sm. dec.	No change	High	Rare	Poor	Fair			1 39
water tupelo	Nyssa aguatica	NSH	Medium	3.5	31.0	8.0 No change	No change	Low	Rare	Very Poor	Very Poor			2 40
bald cypress	Taxodium distichum	NSH	Medium	4.6	30.6	6.7 No change	No change	Medium		Poor	Poor	Infill +	Infill +	2 40
black willow	Salix nigra	NSH	Low	4.0 8.1	29.3	3.6 No change	Sm. inc.	Low	Rare	Very Poor	Poor		Infill +	1 42
	Platanus occidentalis	NSH	Low	8.1 8.6	29.3	3.0 No change		Medium		Poor	Poor	Infill +	Infill +	1 42
sycamore		NSL	Medium	17.9	28.2 27.9		No change	_		Good	Good		111111 +	1 43
American holly	Ilex opaca					1.5 Lg. inc.	Lg. inc.	Medium						
white ash	Fraxinus americana	WDL	Medium	9.8	27.6	2.7 No change	No change	Low	Rare	Very Poor	Very Poor	Infill -	Indill .	0 45
southern magnolia	Magnolia grandiflora	NSL	Low	8.6	27.3	2.8 No change	Sm. inc.	Medium		Poor	Fair	Infill +	Infill +	1 46
spruce pine	Pinus glabra	NSL	Low	9.7	27.0	2.6 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 47

Alabama

States

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

			Cu	nem		tential Future	nabilal, Ca	papinty,	anu iviigi	ation			lverson, Pe	eters, Prasad,		
Common Name Sci	ientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N		
sassafras Sas	ssafras albidum	WSL	Low	18.8	26.0	1.4 Lg. inc.	Lg. inc.	Medium	Rare	Good	Good			1 48		
blackjack oak Qu	iercus marilandica	NSL	Medium	11	24.0	2.0 Lg. inc.	Lg. inc.	High	Rare	Good	Good	Infill ++	Infill ++	1 49		
river birch Be	tula nigra	NSL	Low	5.3	22.9	4.0 No change	Sm. inc.	Medium	Rare	Poor	Fair	Infill +	Infill +	1 50		
Osage-orange Ma	aclura pomifera	NDH	Medium	2.6	20.1	7.4 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 51		
chinkapin oak Qu	iercus muehlenbergii	NSL	Medium	5.1	18.9	3.6 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			2 52		
swamp chestnut oak Qu	iercus michauxii	NSL	Low	8.2	15.3	1.8 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	1 53		
red mulberry Mo	orus rubra	NSL	Low	10.1	14.4	1.4 Sm. dec.	Sm. inc.	Medium	Rare	Very Poor	Fair			1 54		
hackberry Ce	ltis occidentalis	WDH	Medium	4.1	13.8	4.0 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 55		
overcup oak Qu	iercus lyrata	NSL	Medium	4	13.6	3.2 No change	No change	Low	Rare	Very Poor	Very Poor			2 56		
pecan Cai	rya illinoinensis	NSH	Low	4.3	13.0	2.9 No change	Sm. inc.	Low	Rare	Very Poor	Poor		Infill +	2 57		
black walnut Jug	glans nigra	WDH	Low	4.4	12.6	2.8 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 58		
eastern redbud Ce	rcis canadensis	NSL	Low	10	12.4	1.2 Sm. dec.	No change	Medium	Rare	Very Poor	Poor			0 59		
bigleaf magnolia Ma	agnolia macrophylla	NSL	Low	5.7	12.4	2.1 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 60		
· ·	iercus virginiana	NDH	High	2.2	11.8	4.4 Lg. inc.	Lg. inc.	Medium		Good	Good			2 61		
	mus rubra	WSL	Low	8.2	11.6	1.5 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	1 62		
	rya aquatica	NSL	Medium	2.3	9.5	4.1 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 63		
•	editsia triacanthos	NSH	Low	2.8		3.7 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 64		
,	iercus laevis	NSH	Medium	2.6	7.8	2.6 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 65		
•	pulus deltoides	NSH	Low	1.3	7.2	5.3 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			2 66		
	iercus shumardii	NSL	Low	2.5	7.0	1.9 Sm. dec.	No change	High	Rare	Poor	Fair	Infill +	Infill +	2 67		
	rya cordiformis	WSL	Low	3.2	6.8	2.0 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor	Infill +	Infill +	2 68		
	ia americana	WSL	Medium	3.4	6.6	2.1 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			2 69		
	rsea borbonia	NSL	Low	4.4	6.1	1.2 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 70		
,	binia pseudoacacia	NDH	Low	2.2	5.6	2.2 Lg. dec.	Lg. dec.	Medium		Very Poor	Very Poor			2 71		
	er saccharum	WDH	High	2.1	5.3	2.2 Lg. dec.	Lg. dec.	High	Rare	Poor	Poor	Infill +		2 72		
0 1	uga canadensis	NSH	High	0.7	4.7	6.9 Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 73		
	agnolia acuminata	NSL	Low	2.9	4.5	1.5 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			2 74		
	xodium ascendens	NSH	Medium	0.7	4.4	5.4 No change	Sm. inc.	Medium		Poor	Fair	Infill +	Infill +	2 75		
	iercus sinuata var. sinuata		FIA	1.6	4.4	2.6 Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 76		
	iercus incana	NSL	Low	1.0	3.9	2.7 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 77		
	amaecyparis thyoides	NSH	Low	0.5	3.8	5.4 No change	No change	Low	Rare	Very Poor	Very Poor			2 78		
	ulownia tomentosa	NSL	FIA	0.9	3.7	3.5 Unknown	Unknown	NA	Rare	NNIS	NNIS			0 79		
	iercus texana	NSH	Medium	0.8		4.4 No change	No change	High	Rare	Fair	Fair			0 80		
	nelanchier spp.	NSL	Low	2.4	2.3	0.7 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 80		
,	unus americana	NSLX	FIA	3.5	2.0	0.7 Unknown	Unknown	Medium		FIA Only	FIA Only			0 81		
	sculus flava	NSL	Low	5.5 1.2	2.0 1.8	1.7 Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 82		
, ,	rya laciniosa	NSL	Low	0.8	1.8	1.7 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 83		
,	•	NSL	FIA	0.8	1.5	2.3 Unknown	Unknown	NA	Rare	FIA Only	FIA Only			0 85		
	rya pallida	NSLX	FIA	0.5	1.5	1.5 Unknown		Low	Rare					0 85		
	glans cinerea			0.7			Unknown			FIA Only	FIA Only					
1	orus alba	NSL	FIA		0.9	2.2 Unknown	Unknown	NA	Rare	NNIS	NNIS			0 87		
,	rya texana	NDL	High	0.2	0.8	3.4 Lg. inc.	Lg. inc.	Medium		Good	Good			2 88		
	anthus altissima	NSL	FIA	0.9	0.7	2.0 Unknown	Unknown	NA	Rare	NNIS	NNIS Voru Door			0 89		
	unus pensylvanica	NSL	Low	0.4	0.7	1.4 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor		Infill			
	anera aquatica	NSL	Low	0.4	0.6	1.7 No change	Sm. inc.	Medium		Poor	Fair		Infill +	2 91		
	er saccharinum	NSH	Low	0.8	0.6	1.2 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 92		
	editsia aquatica	NSLX	FIA	0.1	0.5	3.6 Unknown	Unknown	Medium		FIA Only	FIA Only			0 93		
blue ash Fra	axinus quadrangulata	NSL	Low	0.1	0.3	0.6 Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 94		

Alabama

States

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Climate Change Atlas Tree Species

	Current and Potential Future Habitat, Capability, and Migration												Landscape Change Re Iverson, Peters, Prasa		
Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
sweet birch	Betula lenta	NDH	High	0.1	0.3	2.0	Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 95
pawpaw	Asimina triloba	NSL	Low	0.4	0.3	0.6	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 96
pumpkin ash	Fraxinus profunda	NSH	FIA	0.1	0.2	2.6	Unknown	Unknown	NA	Rare	FIA Only	FIA Only			0 97
sand pine	Pinus clausa	NDH	High	0.1	0.2	2.4	No change	No change	Low	Rare	Very Poor	Very Poor			2 98
Carolina ash	Fraxinus caroliniana	NSL	FIA	0.1	0.1	1.9	Unknown	Unknown	NA	Rare	FIA Only	FIA Only			0 99
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp.	NSL	Low	0.1	0.1	0.6	Lg. inc.	Lg. inc.	High	Rare	Good	Good			2 100
loblolly-bay	Gordonia lasianthus	NSH	Medium	0.1	0.1	0.6	Lg. dec.	No change	Medium	Rare	Very Poor	Poor		Infill +	2 101
rock elm	Ulmus thomasii	NSLX	FIA	0	0.1	0.2	Unknown	Unknown	Low	Rare	FIA Only	FIA Only			0 102
Kentucky coffeetree	Gymnocladus dioicus	NSLX	FIA	0.1	0.0	0.4	Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 103
bur oak	Quercus macrocarpa	NDH	Medium	0.1	0.0	0.3	Sm. dec.	Lg. dec.	High	Rare	Poor	Poor			0 104
ashe juniper	Juniperus ashei	NDH	High	0	0	0	New Habitat	New Habitat	NA	Absent	New Habitat	New Habitat			0 105
Table Mountain pine	Pinus pungens	NSL	Low	0	0	0	New Habitat	New Habitat	High	Absent	New Habitat	New Habitat			3 106
pitch pine	Pinus rigida	NSH	High	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 107
eastern white pine	Pinus strobus	WDH	High	0	0	0	New Habitat	Unknown	Low	Absent	New Habitat	Unknown	Likely +		3 108
black maple	Acer nigrum	NSH	Low	0	0	0	Unknown	Unknown	High	Modeled	Unknown	Unknown			0 109
striped maple	Acer pensylvanicum	NSL	Medium	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 110
mountain maple	Acer spicatum	NSL	Low	0	0	0	Unknown	New Habitat	High	Absent	Unknown	New Habitat			3 111
Ohio buckeye	Aesculus glabra	NSL	Low	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 112
yellow birch	Betula alleghaniensis	NDL	High	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 113
black ash	Fraxinus nigra	WSH	Medium	0	0	0	New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat			3 114
silverbell	Halesia spp.	NSL	Low	0	0	0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 115
mountain or Fraser magnolia	Magnolia fraseri	NSL	Low	0	0	0	Unknown	Unknown	NA	Absent	Unknown	Unknown			0 116
cabbage palmetto	Sabal palmetto	NDH	Medium	0	0	0	New Habitat	New Habitat	NA	Absent	New Habitat	New Habitat			0 117
cedar elm	Ulmus crassifolia	NDH	Medium	0	0	C	New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat	Migrate +	 Migrate + 	3 118

