One x One Degree

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi **FIA Plots** Area of Region 8,837.4 3,412.1 4

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitability	Capability	to Cope or	Persist	Migratio	n Poten	tial
Ash	1			M	odel			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	0	Abu	ndance	Re	liability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	1	Abundant	0	High	0	5	Increase	0	1	Very Good	0	0	Likely	0	0
Oak	0	Common	1	Medium	6	6	No Change	1	1	Good	0	1	Infill	0	0
Pine	1	Rare	5	Low	6	1	Decrease	5	4	Fair	1	0	Migrate	1	1
Other	3	Absent	6	FIA	0		New	5	5	Poor	3	4	_	1	1
-	6	_	12		12	12	Unknown	1	1	Very Poor	1	0			
							-	12	12	FIA Only	0	0			
										Unknown	1	1			

Potential Changes in Climate Variables

Temperature (°F)												
	Scenario	2009	2039	2069	2099							
Annual	CCSM45	44.4	46.3	49.0	49.7 🛶 🛶							
Average	CCSM85	44.4	47.1	50.0	53.4							
	GFDL45	44.4	50.6	49.2	50.6							
	GFDL85	44.4	47.3	50.5	55.1							
	HAD45	44.4	47.5	51.5	53.0							
	HAD85	44.4	48.1	53.2	57.8							
Growing	CCSM45	65.3	67.5	70.1	70.8							
Season	CCSM85	65.3	68.3	71.1	75.4							
May—Sep	GFDL45	65.3	73.1	71.3	73.1							
	GFDL85	65.3	68.8	72.5	78.1							
	HAD45	65.3	68.0	71.1	72.9							
	HAD85	65.3	68.3	72.5	77.1							
Coldest	CCSM45	11.6	14.0	15.8	16.6 🛶 🔶							
Month	CCSM85	11.6	13.1	15.1	17.3 🛶 🔶							
Average	GFDL45	11.6	15.4	16.2	16.7							
	GFDL85	11.6	15.0	16.6	19.0							
	HAD45	11.6	14.4	18.2	17.8							
	HAD85	11.6	17.5	22.4	25.0							
Warmest	CCSM45	72.3	75.1	76.7	77.5							
Month	CCSM85	72.3	76.6	78.4	81.2							
Average	GFDL45	72.3	75.9	77.4	78.6							
	GFDL85	72.3	76.4	78.1	81.8							
	HAD45	72.3	75.2	76.9	78.1							
	HAD85	72.3	76.0	78.4	81.6							

Precipitati	on (in)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	24.1	24.4	24.3	23.6 🛶 🛶
Total	CCSM85	24.1	24.1	23.7	24.5 🛶 🛶
	GFDL45	24.1	27.6	30.0	28.1
	GFDL85	24.1	27.8	30.7	30.1
	HAD45	24.1	26.9	25.3	26.2
	HAD85	24.1	25.7	26.5	28.5
Growing	CCSM45	15.8	15.2	14.8	14.1 🛶 🛶
Season	CCSM85	15.8	14.6	14.2	13.9 🛶 🛶
May—Sep	GFDL45	15.8	18.3	19.8	17.8 + + + + + + + + + + + + + + + + + + +
	GFDL85	15.8	18.3	19.4	18.2 •
	HAD45	15.8	16.3	15.2	15.1 ++++
	HAD85	15.8	15.5	14.9	14.0 🔶 🛶 🛶

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

6

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

S44 E97

One x One Degree Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45 SH	IFT85	SSO N	_
green ash	Fraxinus pennsylvanica	WSH	Low	20.7	82.8	53.5	Lg. dec.	Lg. dec.	Medium	Common	Poor	Poor			2 1	ī.
boxelder	Acer negundo	WSH	Low	8.7	41.5	29.4	Lg. dec.	Lg. dec.	High	Rare	Poor	Poor			0 2	2
red pine	Pinus resinosa	NSH	Medium	0.4	28.3	9.0	Very Lg. dec.	Very Lg. dec.	Low	Rare	Lost	Lost			0 3	\$
American elm	Ulmus americana	WDH	Medium	9.1	23.2	41.1	Sm. dec.	No change	Medium	Rare	Very Poor	Poor			2 4	ŧ
honeylocust	Gleditsia triacanthos	NSH	Low	0.6	14.1	6.5	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 5	\$
hackberry	Celtis occidentalis	WDH	Medium	4.5	3.7	13.1	No change	Sm. inc.	High	Rare	Fair	Good			06	;
eastern redcedar	Juniperus virginiana	WDH	Medium	0	0	0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 7	/
mountain maple	Acer spicatum	NSL	Low	0	0	0	Unknown	Unknown	High	Absent	Unknown	Unknown			0 8	3
red mulberry	Morus rubra	NSL	Low	0	0	0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 9	ġ.
eastern cottonwood	Populus deltoides	NSH	Low	0	0	0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			0 10)
bur oak	Quercus macrocarpa	NDH	Medium	0	0	0	New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Migrate ++ M	igrate +	3 11	Ĺ
American basswood	Tilia americana	WSL	Medium	0	0	0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 12	2

