### One x One Degree

## Climate Change Atlas Tree Species

### Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 8,837.4 3,412.1 5

# **Species Information**

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

| Genus   | Species |          |        |        |            |              |           |          | Potential Change in Habitat Suitability |           |          | Capability to Cope or Persist |         |       |       |
|---------|---------|----------|--------|--------|------------|--------------|-----------|----------|-----------------------------------------|-----------|----------|-------------------------------|---------|-------|-------|
| Ash     | 1       |          |        | Ν      | /lodel     |              |           | Scenario | Scenario                                |           | Scenario | Scenario                      |         | SHIFT | SHIFT |
| Hickory | 0       | Abun     | ndance | R      | eliability | Adaptability |           | RCP45    | RCP85                                   |           | RCP45    | RCP85                         |         | RCP45 | RCP85 |
| Maple   | 1       | Abundant | 0      | High   | 0          | 7            | Increase  | 1        | 2                                       | Very Good | 0        | 0                             | Likely  | 0     | 0     |
| Oak     | 1       | Common   | 1      | Medium | 7          | 7            | No Change | 2        | 2                                       | Good      | 1        | 2                             | Infill  | 3     | 4     |
| Pine    | 1       | Rare     | 9      | Low    | 9          | 2            | Decrease  | 6        | 5                                       | Fair      | 1        | 1                             | Migrate | 3     | 3     |
| Other   | 6       | Absent   | 7      | FIA    | 1          |              | New       | 6        | 6                                       | Poor      | 3        | 3                             |         | 6     | 7     |
| -       | 10      |          | 17     | _      | 17         | 16           | Unknown   | 2        | 2                                       | Very Poor | 2        | 1                             |         |       |       |
|         |         |          |        |        |            |              | -         | 17       | 17                                      | FIA Only  | 0        | 0                             |         |       |       |

### **Potential Changes in Climate Variables**

| Temperatu |          |      |      |      |          |  |  |  |  |  |  |
|-----------|----------|------|------|------|----------|--|--|--|--|--|--|
|           | Scenario | 2009 | 2039 | 2069 | 2099     |  |  |  |  |  |  |
| Annual    | CCSM45   | 43.9 | 45.9 | 48.6 | 49.2     |  |  |  |  |  |  |
| Average   | CCSM85   | 43.9 | 46.6 | 49.6 | 53.1     |  |  |  |  |  |  |
|           | GFDL45   | 43.9 | 50.3 | 48.9 | 50.3     |  |  |  |  |  |  |
|           | GFDL85   | 43.9 | 46.9 | 50.1 | 54.8     |  |  |  |  |  |  |
|           | HAD45    | 43.9 | 46.9 | 50.8 | 52.5     |  |  |  |  |  |  |
|           | HAD85    | 43.9 | 47.5 | 52.4 | 57.1     |  |  |  |  |  |  |
|           |          |      |      |      |          |  |  |  |  |  |  |
| Growing   | CCSM45   | 64.8 | 66.9 | 69.5 | 70.2     |  |  |  |  |  |  |
| Season    | CCSM85   | 64.8 | 67.8 | 70.7 | 74.9     |  |  |  |  |  |  |
| May—Sep   | GFDL45   | 64.8 | 72.7 | 70.9 | 72.7     |  |  |  |  |  |  |
|           | GFDL85   | 64.8 | 68.3 | 72.0 | 77.6     |  |  |  |  |  |  |
|           | HAD45    | 64.8 | 67.4 | 70.5 | 72.4     |  |  |  |  |  |  |
|           | HAD85    | 64.8 | 67.9 | 72.1 | 76.6     |  |  |  |  |  |  |
|           |          |      |      |      |          |  |  |  |  |  |  |
| Coldest   | CCSM45   | 11.1 | 13.5 | 15.6 | 16.3 🛶 🔶 |  |  |  |  |  |  |
| Month     | CCSM85   | 11.1 | 13.0 | 15.0 | 17.3 🛶 🔶 |  |  |  |  |  |  |
| Average   | GFDL45   | 11.1 | 14.7 | 15.7 | 16.2 🛶 🔶 |  |  |  |  |  |  |
|           | GFDL85   | 11.1 | 14.5 | 16.1 | 18.6     |  |  |  |  |  |  |
|           | HAD45    | 11.1 | 13.5 | 17.4 | 17.1     |  |  |  |  |  |  |
|           | HAD85    | 11.1 | 16.7 | 21.3 | 24.1     |  |  |  |  |  |  |
|           |          |      |      |      |          |  |  |  |  |  |  |
| Warmest   | CCSM45   | 71.4 | 74.2 | 75.8 | 76.6     |  |  |  |  |  |  |
| Month     | CCSM85   | 71.4 | 75.7 | 77.5 | 80.3     |  |  |  |  |  |  |
| Average   | GFDL45   | 71.4 | 74.9 | 76.5 | 77.8     |  |  |  |  |  |  |
|           | GFDL85   | 71.4 | 75.5 | 77.2 | 80.8     |  |  |  |  |  |  |
|           | HAD45    | 71.4 | 74.1 | 75.8 | 77.1     |  |  |  |  |  |  |
|           | HAD85    | 71.4 | 75.3 | 77.5 | 80.8     |  |  |  |  |  |  |
|           |          |      |      |      | •        |  |  |  |  |  |  |

| Precipitation (in) |          |      |      |      |            |  |  |  |  |  |  |
|--------------------|----------|------|------|------|------------|--|--|--|--|--|--|
|                    | Scenario | 2009 | 2039 | 2069 | 2099       |  |  |  |  |  |  |
| Annual             | CCSM45   | 25.9 | 26.6 | 26.3 | 25.9 🛶 🛶   |  |  |  |  |  |  |
| Total              | CCSM85   | 25.9 | 26.0 | 25.6 | 26.3       |  |  |  |  |  |  |
|                    | GFDL45   | 25.9 | 29.3 | 31.8 | 29.6       |  |  |  |  |  |  |
|                    | GFDL85   | 25.9 | 29.6 | 32.4 | 31.5       |  |  |  |  |  |  |
|                    | HAD45    | 25.9 | 29.0 | 27.5 | 28.1       |  |  |  |  |  |  |
|                    | HAD85    | 25.9 | 27.2 | 28.4 | 30.7       |  |  |  |  |  |  |
|                    |          |      |      |      |            |  |  |  |  |  |  |
| Growing            | CCSM45   | 16.7 | 16.3 | 15.9 | 15.3 🔸 🔸 🔶 |  |  |  |  |  |  |
| Season             | CCSM85   | 16.7 | 15.6 | 14.9 | 14.7 🛶 🛶   |  |  |  |  |  |  |
| May—Sep            | GFDL45   | 16.7 | 19.1 | 20.4 | 18.4       |  |  |  |  |  |  |
|                    | GFDL85   | 16.7 | 19.3 | 20.0 | 18.7       |  |  |  |  |  |  |
|                    | HAD45    | 16.7 | 17.3 | 16.1 | 15.9 🔸 🔸 🔶 |  |  |  |  |  |  |
|                    | HAD85    | 16.7 | 16.2 | 15.6 | 14.8 🔸 🔶   |  |  |  |  |  |  |

**NOTE:** For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Unknown

1

8

1

**Cite as:** Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.



S44 E96

# One x One Degree

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

# Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

|                         |                        |       |        |       |        |       |               | ,             |        |        |             | iverson, recers, riasau, n |            |            |       |  |
|-------------------------|------------------------|-------|--------|-------|--------|-------|---------------|---------------|--------|--------|-------------|----------------------------|------------|------------|-------|--|
| Common Name             | Scientific Name        | Range | MR     | %Cell | FIAsum | FIAiv | ChngCl45      | ChngCl85      | Adap   | Abund  | Capabil45   | Capabil85                  | SHIFT45    | SHIFT85    | SSO N |  |
| green ash               | Fraxinus pennsylvanica | WSH   | Low    | 20.5  | 104.9  | 46.6  | Lg. dec.      | Lg. dec.      | Medium | Common | Poor        | Poor                       | Infill +   | Infill +   | 2 1   |  |
| red pine                | Pinus resinosa         | NSH   | Medium | 0.3   | 28.3   | 7.0   | Very Lg. dec. | Very Lg. dec. | Low    | Rare   | Lost        | Lost                       |            |            | 0 2   |  |
| boxelder                | Acer negundo           | WSH   | Low    | 19.5  | 21.7   | 12.9  | Sm. dec.      | Sm. dec.      | High   | Rare   | Poor        | Poor                       | Infill +   | Infill +   | 2 3   |  |
| American elm            | Ulmus americana        | WDH   | Medium | 10.4  | 13.7   | 12.9  | No change     | Lg. inc.      | Medium | Rare   | Poor        | Good                       | Infill +   |            | 2 4   |  |
| hackberry               | Celtis occidentalis    | WDH   | Medium | 5.9   | 9.0    | 15.6  | No change     | No change     | High   | Rare   | Fair        | Fair                       |            | Infill +   | 2 5   |  |
| eastern cottonwood      | Populus deltoides      | NSH   | Low    | 1.4   | 7.9    | 8.5   | Sm. dec.      | No change     | Medium | Rare   | Very Poor   | Poor                       |            | Infill +   | 26    |  |
| Siberian elm            | Ulmus pumila           | NDH   | FIA    | 5.9   | 7.7    | 6.9   | Unknown       | Unknown       | NA     | Rare   | NNIS        | NNIS                       |            |            | 0 7   |  |
| slippery elm            | Ulmus rubra            | WSL   | Low    | 4.5   | 1.4    | 5.1   | Very Lg. dec. | Very Lg. dec. | Medium | Rare   | Lost        | Lost                       |            |            | 0 8   |  |
| black willow            | Salix nigra            | NSH   | Low    | 1.4   | 0.5    | 0.6   | Lg. dec.      | Lg. dec.      | Low    | Rare   | Very Poor   | Very Poor                  |            |            | 09    |  |
| bur oak                 | Quercus macrocarpa     | NDH   | Medium | 1.4   | 0.2    | 0.2   | Lg. inc.      | Lg. inc.      | High   | Rare   | Good        | Good                       |            |            | 2 10  |  |
| eastern redcedar        | Juniperus virginiana   | WDH   | Medium | 0     | 0      | 0     | New Habitat   | New Habitat   | Medium | Absent | New Habitat | New Habitat                | Migrate ++ | Migrate ++ | 3 11  |  |
| mountain maple          | Acer spicatum          | NSL   | Low    | 0     | 0      | 0     | Unknown       | Unknown       | High   | Absent | Unknown     | Unknown                    |            |            | 0 12  |  |
| honeylocust             | Gleditsia triacanthos  | NSH   | Low    | 0     | 0      | 0     | New Habitat   | New Habitat   | High   | Absent | New Habitat | New Habitat                |            |            | 3 13  |  |
| red mulberry            | Morus rubra            | NSL   | Low    | 0     | 0      | 0     | New Habitat   | New Habitat   | Medium | Absent | New Habitat | New Habitat                |            |            | 3 14  |  |
| eastern hophornbeam; ir | onw Ostrya virginiana  | WSL   | Low    | 0     | 0      | 0     | New Habitat   | New Habitat   | High   | Absent | New Habitat | New Habitat                | Migrate +  |            | 3 15  |  |
| northern red oak        | Quercus rubra          | WDH   | Medium | 0     | 0      | 0     | New Habitat   | New Habitat   | High   | Absent | New Habitat | New Habitat                |            | Migrate +  | 3 16  |  |
| American basswood       | Tilia americana        | WSL   | Medium | 0     | 0      | 0     | New Habitat   | New Habitat   | Medium | Absent | New Habitat | New Habitat                | Migrate ++ | Migrate ++ | 3 17  |  |
|                         |                        |       |        |       |        |       |               |               |        |        |             |                            |            |            |       |  |

