#### One x One Degree

## Climate Change Atlas Tree Species

#### Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 8,837.4 3,412.1 29

### **Species Information**

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

| Genus   | Species |          |        |        |             |              | Potentia  | al Change | in Habitat Suitability | Capability | to Cope or | Persist  | Migratio | n Poten | tial  |
|---------|---------|----------|--------|--------|-------------|--------------|-----------|-----------|------------------------|------------|------------|----------|----------|---------|-------|
| Ash     | 2       |          |        | Ν      | Лodel       |              |           | Scenario  | Scenario               |            | Scenario   | Scenario |          | SHIFT   | SHIFT |
| Hickory | 1       | Abu      | ndance | R      | Reliability | Adaptability |           | RCP45     | RCP85                  |            | RCP45      | RCP85    |          | RCP45   | RCP85 |
| Maple   | 3       | Abundant | 0      | High   | 6           | 12           | Increase  | 8         | 8                      | Very Good  | 0          | 0        | Likely   | 0       | 0     |
| Oak     | 4       | Common   | 3      | Medium | 14          | 17           | No Change | 2         | 2                      | Good       | 4          | 5        | Infill   | 11      | 11    |
| Pine    | 0       | Rare     | 26     | Low    | 12          | 6            | Decrease  | 16        | 16                     | Fair       | 6          | 5        | Migrate  | 2       | 4     |
| Other   | 19      | Absent   | 6      | FIA    | 3           |              | New       | 6         | 6                      | Poor       | 7          | 7        |          | 13      | 15    |
| •       | 29      | _        | 35     | -      | 35          | 35           | Unknown   | 3         | 3                      | Very Poor  | 8          | 8        |          |         |       |
|         |         |          |        |        |             |              | -         | 35        | 35                     | FIA Only   | 3          | 3        |          |         |       |

#### **Potential Changes in Climate Variables**

| Temperatu | ıre (°F) |      |      |      |      |
|-----------|----------|------|------|------|------|
|           | Scenario | 2009 | 2039 | 2069 | 2099 |
| Annual    | CCSM45   | 44.9 | 46.8 | 49.7 | 50.2 |
| Average   | CCSM85   | 44.9 | 47.7 | 50.8 | 54.3 |
|           | GFDL45   | 44.9 | 51.5 | 50.2 | 51.5 |
|           | GFDL85   | 44.9 | 48.0 | 51.3 | 56.1 |
|           | HAD45    | 44.9 | 47.8 | 51.5 | 53.4 |
|           | HAD85    | 44.9 | 48.4 | 53.0 | 58.0 |
| Growing   | CCSM45   | 65.9 | 68.0 | 70.6 | 71.1 |
| Season    | CCSM85   | 65.9 | 68.8 | 71.8 | 76.1 |
| May—Sep   | GFDL45   | 65.9 | 74.0 | 72.1 | 74.0 |
|           | GFDL85   | 65.9 | 69.6 | 73.3 | 78.9 |
|           | HAD45    | 65.9 | 68.6 | 71.6 | 73.7 |
|           | HAD85    | 65.9 | 69.0 | 73.4 | 78.2 |
| Coldest   | CCSM45   | 11.3 | 13.3 | 15.7 | 16.4 |
| Month     | CCSM85   | 11.3 | 13.5 | 15.7 | 18.0 |
| Average   | GFDL45   | 11.3 | 15.0 | 16.4 | 16.7 |
|           | GFDL85   | 11.3 | 15.0 | 16.8 | 19.4 |
|           | HAD45    | 11.3 | 13.0 | 17.2 | 17.1 |
|           | HAD85    | 11.3 | 16.6 | 20.6 | 23.8 |
| Warmest   | CCSM45   | 72.3 | 74.9 | 76.4 | 77.2 |
| Month     | CCSM85   | 72.3 | 76.4 | 78.3 | 81.0 |
| Average   | GFDL45   | 72.3 | 75.5 | 77.0 | 78.4 |
|           | GFDL85   | 72.3 | 76.3 | 78.1 | 81.6 |
|           | HAD45    | 72.3 | 75.0 | 76.9 | 78.1 |
|           | HAD85    | 72.3 | 76.4 | 78.7 | 82.1 |

| Precipitation (in) |          |      |      |      |            |  |  |  |  |  |  |  |
|--------------------|----------|------|------|------|------------|--|--|--|--|--|--|--|
|                    | Scenario | 2009 | 2039 | 2069 | 2099       |  |  |  |  |  |  |  |
| Annual             | CCSM45   | 29.5 | 30.5 | 30.0 | 29.4 🛶 🛶   |  |  |  |  |  |  |  |
| Total              | CCSM85   | 29.5 | 29.5 | 29.4 | 30.0       |  |  |  |  |  |  |  |
|                    | GFDL45   | 29.5 | 32.7 | 35.1 | 32.3       |  |  |  |  |  |  |  |
|                    | GFDL85   | 29.5 | 33.2 | 35.7 | 34.3       |  |  |  |  |  |  |  |
|                    | HAD45    | 29.5 | 32.2 | 31.3 | 31.2       |  |  |  |  |  |  |  |
|                    | HAD85    | 29.5 | 30.5 | 31.6 | 33.9       |  |  |  |  |  |  |  |
|                    |          |      |      |      |            |  |  |  |  |  |  |  |
| Growing            | CCSM45   | 18.9 | 18.9 | 18.2 | 17.7 🔶 🔶 🔶 |  |  |  |  |  |  |  |
| Season             | CCSM85   | 18.9 | 18.0 | 17.0 | 16.7 +++++ |  |  |  |  |  |  |  |
| May—Sep            | GFDL45   | 18.9 | 21.0 | 22.0 | 19.5       |  |  |  |  |  |  |  |
|                    | GFDL85   | 18.9 | 21.4 | 21.5 | 19.8 🔸 🔸 🔸 |  |  |  |  |  |  |  |
|                    | HAD45    | 18.9 | 19.5 | 18.2 | 17.9 ++++  |  |  |  |  |  |  |  |
|                    | HAD85    | 18.9 | 18.0 | 17.2 | 17.1 🔶 🔶   |  |  |  |  |  |  |  |

**NOTE:** For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Unknown

0

28

0

28

**Cite as:** Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.



S44 E94

## One x One Degree

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

# Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

|                         |                        |       | 00     |         |       |       |               |               | p a , , |        |             |             |           | iverson, r | eleis, riasau |
|-------------------------|------------------------|-------|--------|---------|-------|-------|---------------|---------------|---------|--------|-------------|-------------|-----------|------------|---------------|
| Common Name             | Scientific Name        | Range | MR     | %Cell I | IAsum | FIAiv | ChngCl45      | ChngCl85      | Adap    | Abund  | Capabil45   | Capabil85   | SHIFT45   | SHIFT85    | SSO N         |
| boxelder                | Acer negundo           | WSH   | Low    | 46.4    | 102.4 | 24.8  | Sm. dec.      | Lg. dec.      | High    | Common | Fair        | Fair        | Infill +  | Infill +   | 2 1           |
| green ash               | Fraxinus pennsylvanica | WSH   | Low    | 53.5    | 94.7  | 19.2  | Sm. dec.      | Sm. dec.      | Medium  | Common | Poor        | Poor        | Infill +  | Infill +   | 2 2           |
| silver maple            | Acer saccharinum       | NSH   | Low    | 18.6    | 53.1  | 34.4  | Sm. dec.      | Sm. dec.      | High    | Common | Fair        | Fair        | Infill +  | Infill +   | 2 3           |
| American basswood       | Tilia americana        | WSL   | Medium | 33.8    | 44.1  | 8.3   | Sm. dec.      | Lg. dec.      | Medium  | Rare   | Very Poor   | Very Poor   |           |            | 2 4           |
| American elm            | Ulmus americana        | WDH   | Medium | 37.7    | 32.1  | 8.6   | Sm. inc.      | Sm. inc.      | Medium  | Rare   | Fair        | Fair        | Infill +  | Infill +   | 2 5           |
| sugar maple             | Acer saccharum         | WDH   | High   | 25.3    | 31.4  | 10.5  | Sm. dec.      | Lg. dec.      | High    | Rare   | Poor        | Poor        | Infill +  | Infill +   | 2 6           |
| bur oak                 | Quercus macrocarpa     | NDH   | Medium | 25.9    | 26.3  | 4.8   | Lg. inc.      | Lg. inc.      | High    | Rare   | Good        | Good        |           |            | 2 7           |
| northern red oak        | Quercus rubra          | WDH   | Medium | 19.9    | 25.6  | 10.4  | Lg. dec.      | Lg. dec.      | High    | Rare   | Poor        | Poor        | Infill +  | Infill +   | 2 8           |
| eastern cottonwood      | Populus deltoides      | NSH   | Low    | 15.5    | 21.3  | 8.5   | Sm. inc.      | Lg. inc.      | Medium  | Rare   | Fair        | Good        | Infill +  |            | 2 9           |
| slippery elm            | Ulmus rubra            | WSL   | Low    | 41      | 20.5  | 5.3   | Sm. dec.      | Sm. dec.      | Medium  | Rare   | Very Poor   | Very Poor   |           |            | 2 10          |
| hackberry               | Celtis occidentalis    | WDH   | Medium | 27.8    | 20.0  | 8.4   | Sm. inc.      | Sm. inc.      | High    | Rare   | Good        | Good        |           |            | 2 11          |
| eastern hophornbeam; ir | ronw Ostrya virginiana | WSL   | Low    | 33.2    | 19.4  | 4.1   | Sm. dec.      | Sm. dec.      | High    | Rare   | Poor        | Poor        | Infill +  | Infill +   | 2 12          |
| red mulberry            | Morus rubra            | NSL   | Low    | 9.1     | 4.6   | 8.1   | No change     | No change     | Medium  | Rare   | Poor        | Poor        | Infill +  |            | 2 13          |
| rock elm                | Ulmus thomasii         | NSLX  | FIA    | 4.5     | 3.5   | 12.3  | Unknown       | Unknown       | Low     | Rare   | FIA Only    | FIA Only    |           |            | 0 14          |
| black cherry            | Prunus serotina        | WDL   | Medium | 14.3    | 3.3   | 2.5   | Lg. inc.      | Sm. inc.      | Low     | Rare   | Fair        | Poor        | Infill +  | Infill +   | 2 15          |
| black walnut            | Juglans nigra          | WDH   | Low    | 11.9    | 3.3   | 3.4   | Lg. inc.      | Lg. inc.      | Medium  | Rare   | Good        | Good        |           |            | 2 16          |
| quaking aspen           | Populus tremuloides    | WDH   | High   | 3.1     | 3.0   | 2.0   | Sm. dec.      | Sm. dec.      | Medium  | Rare   | Very Poor   | Very Poor   |           |            | 0 17          |
| white oak               | Quercus alba           | WDH   | Medium | 4.5     | 3.0   | 10.7  | No change     | Sm. dec.      | High    | Rare   | Fair        | Poor        | Infill +  | Infill +   | 2 18          |
| butternut               | Juglans cinerea        | NSLX  | FIA    | 7.8     | 2.9   | 2.2   | Unknown       | Unknown       | Low     | Rare   | FIA Only    | FIA Only    |           |            | 0 19          |
| bitternut hickory       | Carya cordiformis      | WSL   | Low    | 8.3     | 2.8   | 2.7   | Sm. dec.      | No change     | High    | Rare   | Poor        | Fair        |           | Infill +   | 2 20          |
| wild plum               | Prunus americana       | NSLX  | FIA    | 3.2     | 2.3   | 5.7   | Unknown       | Unknown       | Medium  | Rare   | FIA Only    | FIA Only    |           |            | 0 21          |
| paper birch             | Betula papyrifera      | WDH   | High   | 0.3     | 2.2   | 0.4   | Sm. dec.      | Sm. dec.      | Medium  | Rare   | Very Poor   | Very Poor   |           |            | 0 22          |
| yellow birch            | Betula alleghaniensis  | NDL   | High   | 4.5     | 1.4   | 4.8   | Sm. dec.      | Sm. dec.      | Medium  | Rare   | Very Poor   | Very Poor   |           |            | 0 23          |
| eastern redcedar        | Juniperus virginiana   | WDH   | Medium | 6.2     | 1.2   | 1.4   | Lg. inc.      | Lg. inc.      | Medium  | Rare   | Good        | Good        |           |            | 2 24          |
| northern pin oak        | Quercus ellipsoidalis  | NSH   | Medium | 0.9     | 0.7   | 0.5   | Very Lg. dec. | Very Lg. dec. | High    | Rare   | Lost        | Lost        |           |            | 0 25          |
| bigtooth aspen          | Populus grandidentata  | NSL   | Medium | 0.3     | 0.5   | 0.1   | Lg. dec.      | Lg. dec.      | Medium  | Rare   | Very Poor   | Very Poor   |           |            | 0 26          |
| black ash               | Fraxinus nigra         | WSH   | Medium | 3.1     | 0.4   | 0.2   | Lg. dec.      | Lg. dec.      | Low     | Rare   | Very Poor   | Very Poor   |           |            | 0 27          |
| white spruce            | Picea glauca           | NSL   | Medium | 4.5     | 0.3   | 1.2   | Lg. dec.      | Lg. dec.      | Medium  | Rare   | Very Poor   | Very Poor   |           |            | 0 28          |
| black willow            | Salix nigra            | NSH   | Low    | 3.6     | 0.1   | 0.3   | Sm. inc.      | Lg. inc.      | Low     | Rare   | Poor        | Fair        |           | Infill +   | 2 29          |
| shagbark hickory        | Carya ovata            | WSL   | Medium | 0       | 0     | 0     | New Habitat   | New Habitat   | Medium  | Absent | New Habitat | New Habitat | Migrate + | Migrate +  | 3 30          |
| white ash               | Fraxinus americana     | WDL   | Medium | 0       | 0     | 0     | New Habitat   | New Habitat   | Low     | Absent | New Habitat | New Habitat |           | Migrate +  | 3 31          |
| honeylocust             | Gleditsia triacanthos  | NSH   | Low    | 0       | 0     | 0     | New Habitat   | New Habitat   | High    | Absent | New Habitat | New Habitat | Migrate + | Migrate +  | 3 32          |
| sycamore                | Platanus occidentalis  | NSL   | Low    | 0       | 0     | 0     | New Habitat   | New Habitat   | Medium  | Absent | New Habitat | New Habitat |           |            | 3 33          |
| post oak                | Quercus stellata       | WDH   | High   | 0       | 0     | 0     | New Habitat   | New Habitat   | High    | Absent | New Habitat | New Habitat |           |            | 3 34          |
| black oak               | Quercus velutina       | WDH   | High   | 0       | 0     | 0     | New Habitat   | New Habitat   | Medium  | Absent | New Habitat | New Habitat |           | Migrate +  | 3 35          |
|                         |                        |       |        |         |       |       |               |               |         |        |             |             |           |            |               |

