#### One x One Degree

# Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

 sq. km
 sq. mi
 FIA Plots

 Area of Region
 9,130.7
 3,525.4
 9

### **Species Information**

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

| Genus    | Species                                |          |        |        |             |              | Potentia  | al Change | in Habitat Suitability | Capability | to Cope o | r Persist | Migratio | n Potent | tial  |
|----------|----------------------------------------|----------|--------|--------|-------------|--------------|-----------|-----------|------------------------|------------|-----------|-----------|----------|----------|-------|
| Ash      | 3                                      |          |        |        | Model       |              |           | Scenario  | Scenario               |            | Scenario  | Scenario  |          | SHIFT    | SHIFT |
| Hickory  | 2                                      | Abu      | ndance |        | Reliability | Adaptability |           | RCP45     | RCP85                  |            | RCP45     | RCP85     |          | RCP45    | RCP85 |
| Maple    | 3                                      | Abundant | 0      | High   | 2           | 13           | Increase  | 7         | 7                      | Very Good  | 0         | 0         | Likely   | 0        | 0     |
| Oak      | 5                                      | Common   | 2      | Medium | 15          | 18           | No Change | 7         | 7                      | Good       | 3         | 4         | Infill   | 15       | 10    |
| Pine     | 0                                      | Rare     | 28     | Low    | 17          | 5            | Decrease  | 13        | 13                     | Fair       | 6         | 6         | Migrate  | 0        | 4     |
| Other    | 17                                     | Absent   | 7      | FIA    | 3           |              | New       | 5         | 6                      | Poor       | 10        | 6         | -        | 15       | 14    |
| •        | 30                                     | _        | 37     | •      | 37          | 36           | Unknown   | 5         | 4                      | Very Poor  | 7         | 9         |          |          |       |
|          |                                        |          |        |        |             |              | -         | 37        | 37                     | FIA Only   | 2         | 2         |          |          |       |
|          |                                        |          |        |        |             |              |           |           |                        | Unknown    | 2         | 1         |          |          |       |
| Potentia | Potential Changes in Climate Variables |          |        |        |             |              |           |           |                        |            |           | 20        |          |          |       |

## **Potential Changes in Climate Variables**

| Temperatu | ıre (°F) |      |      |      |      |
|-----------|----------|------|------|------|------|
|           | Scenario | 2009 | 2039 | 2069 | 2099 |
| Annual    | CCSM45   | 47.3 | 49.3 | 51.9 | 52.5 |
| Average   | CCSM85   | 47.3 | 50.0 | 52.8 | 56.1 |
|           | GFDL45   | 47.3 | 53.7 | 52.5 | 53.7 |
|           | GFDL85   | 47.3 | 50.3 | 53.6 | 58.1 |
|           | HAD45    | 47.3 | 50.1 | 53.5 | 55.2 |
|           | HAD85    | 47.3 | 50.8 | 55.3 | 59.7 |
|           |          |      |      | =    |      |
| Growing   | CCSM45   | 67.3 | 69.5 | 71.9 | 72.7 |
| Season    | CCSM85   | 67.3 | 70.3 | 73.0 | 76.9 |
| May—Sep   | GFDL45   | 67.3 | 75.3 | 73.4 | 75.4 |
|           | GFDL85   | 67.3 | 71.0 | 74.7 | 80.3 |
|           | HAD45    | 67.3 | 69.6 | 72.3 | 74.2 |
|           | HAD85    | 67.3 | 70.4 | 75.0 | 79.1 |
|           |          |      |      |      |      |
| Coldest   | CCSM45   | 15.4 | 17.8 | 19.9 | 20.5 |
| Month     | CCSM85   | 15.4 | 18.1 | 19.9 | 22.0 |
| Average   | GFDL45   | 15.4 | 18.9 | 20.0 | 20.2 |
|           | GFDL85   | 15.4 | 18.7 | 20.3 | 22.1 |
|           | HAD45    | 15.4 | 17.6 | 21.3 | 21.2 |
|           | HAD85    | 15.4 | 20.5 | 24.2 | 27.1 |
| Warmest   | CCCNAAE  | 73.4 | 75.9 | 77.6 | 79.4 |
|           |          |      |      |      | 78.4 |
| Month     | CCSM85   | 73.4 | 77.6 | 79.3 | 81.8 |
| Average   | GFDL45   | 73.4 | 76.6 | 78.1 | 79.5 |
|           | GFDL85   | 73.4 | 77.4 | 79.1 | 82.9 |
|           | HAD45    | 73.4 | 75.6 | 77.6 | 78.4 |
|           | HAD85    | 73.4 | 77.5 | 80.1 | 82.8 |

| Precipitati | on (in)  |      |      |      |              |
|-------------|----------|------|------|------|--------------|
|             | Scenario | 2009 | 2039 | 2069 | 2099         |
| Annual      | CCSM45   | 32.9 | 33.0 | 32.9 | 32.2         |
| Total       | CCSM85   | 32.9 | 33.0 | 33.8 | 34.5         |
|             | GFDL45   | 32.9 | 36.3 | 39.8 | 38.4         |
|             | GFDL85   | 32.9 | 37.0 | 39.6 | 39.0         |
|             | HAD45    | 32.9 | 36.4 | 35.7 | 35.5         |
|             | HAD85    | 32.9 | 33.6 | 34.0 | 37.5         |
|             |          |      |      |      |              |
| Growing     | CCSM45   | 20.8 | 20.4 | 19.9 | 19.8 • • • • |
| Season      | CCSM85   | 20.8 | 19.8 | 19.4 | 19.3         |
| May—Sep     | GFDL45   | 20.8 | 22.7 | 24.5 | 22.9         |
|             | GFDL85   | 20.8 | 23.5 | 23.8 | 22.5         |
|             | HAD45    | 20.8 | 22.0 | 20.9 | 20.6         |
|             | HAD85    | 20.8 | 19.8 | 19.1 | 19.0         |

**NOTE:** For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.



# One x One Degree

# Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

| Common Name              | Scientific Name            | Range | MR     | %Cell | FIAsum | FIAiv ChngCl45    | ChngCl85      | Adap   | Abund  | Capabil45   | Capabil85   | SHIFT45  | SHIFT85    | SSO N |
|--------------------------|----------------------------|-------|--------|-------|--------|-------------------|---------------|--------|--------|-------------|-------------|----------|------------|-------|
| silver maple             | Acer saccharinum           | NSH   | Low    | 7.9   | 69.3   | 10.4 Sm. dec.     | Sm. dec.      | High   | Common | Fair        | Fair        | Infill + | Infill +   | 2 1   |
| eastern cottonwood       | Populus deltoides          | NSH   | Low    | 7.8   | 66.2   | 36.0 Sm. dec.     | No change     | Medium | Common | Poor        | Fair        | Infill + | Infill +   | 2 2   |
| black walnut             | Juglans nigra              | WDH   | Low    | 24.2  | 46.0   | 8.3 No change     | No change     | Medium | Rare   | Poor        | Poor        | Infill + | Infill +   | 2 3   |
| bur oak                  | Quercus macrocarpa         | NDH   | Medium | 18.1  | 40.6   | 16.2 Sm. inc.     | Sm. inc.      | High   | Rare   | Good        | Good        |          |            | 2 4   |
| American elm             | Ulmus americana            | WDH   | Medium | 25.4  | 36.1   | 7.3 Sm. inc.      | Sm. inc.      | Medium | Rare   | Fair        | Fair        | Infill + | Infill +   | 2 5   |
| green ash                | Fraxinus pennsylvanica     | WSH   | Low    | 18.8  | 30.6   | 16.5 Sm. inc.     | Sm. inc.      | Medium | Rare   | Fair        | Fair        | Infill + | Infill +   | 2 6   |
| northern red oak         | Quercus rubra              | WDH   | Medium | 13.6  | 24.5   | 3.4 Lg. dec.      | Lg. dec.      | High   | Rare   | Poor        | Poor        | Infill + | Infill +   | 2 7   |
| bitternut hickory        | Carya cordiformis          | WSL   | Low    | 13.6  | 23.7   | 9.3 Lg. dec.      | Lg. dec.      | High   | Rare   | Poor        | Poor        | Infill + | Infill +   | 2 8   |
| boxelder                 | Acer negundo               | WSH   | Low    | 16.2  | 22.4   | 3.5 No change     | Sm. inc.      | High   | Rare   | Fair        | Good        | Infill + |            | 2 9   |
| American basswood        | Tilia americana            | WSL   | Medium | 12.7  | 21.1   | 4.5 No change     | Sm. dec.      | Medium | Rare   | Poor        | Very Poor   | Infill + |            | 2 10  |
| red mulberry             | Morus rubra                | NSL   | Low    | 17.5  | 18.8   | 6.0 Sm. dec.      | Sm. dec.      | Medium | Rare   | Very Poor   | Very Poor   |          |            | 2 11  |
| slippery elm             | Ulmus rubra                | WSL   | Low    | 14.6  | 18.4   | 3.2 Sm. dec.      | Sm. dec.      | Medium | Rare   | Very Poor   | Very Poor   |          |            | 2 12  |
| white oak                | Quercus alba               | WDH   | Medium | 3.9   | 18.2   | 3.8 Sm. dec.      | Sm. dec.      | High   | Rare   | Poor        | Poor        | Infill + |            | 2 13  |
| hackberry                | Celtis occidentalis        | WDH   | Medium | 16.8  | 17.9   | 2.9 Lg. inc.      | Lg. inc.      | High   | Rare   | Good        | Good        |          |            | 2 14  |
| eastern hophornbeam; iro | onw Ostrya virginiana      | WSL   | Low    | 6.4   | 13.6   | 2.4 No change     | No change     | High   | Rare   | Fair        | Fair        | Infill + | Infill +   | 2 15  |
| eastern redcedar         | Juniperus virginiana       | WDH   | Medium | 9.4   | 9.3    | 5.3 Sm. inc.      | Sm. inc.      | Medium | Rare   | Fair        | Fair        | Infill + | Infill +   | 2 16  |
| black maple              | Acer nigrum                | NSH   | Low    | 1.7   | 9.1    | 2.5 Lg. dec.      | Lg. dec.      | High   | Rare   | Poor        | Poor        |          |            | 0 17  |
| shagbark hickory         | Carya ovata                | WSL   | Medium | 9.8   | 8.9    | 3.1 No change     | Sm. dec.      | Medium | Rare   | Poor        | Very Poor   | Infill + |            | 2 18  |
| white ash                | Fraxinus americana         | WDL   | Medium | 3.7   | 5.7    | 2.5 No change     | No change     | Low    | Rare   | Very Poor   | Very Poor   |          |            | 2 19  |
| honeylocust              | Gleditsia triacanthos      | NSH   | Low    | 6.2   | 3.6    | 4.9 Sm. inc.      | Sm. inc.      | High   | Rare   | Good        | Good        |          |            | 2 20  |
| black willow             | Salix nigra                | NSH   | Low    | 4.9   | 3.2    | 4.3 Sm. dec.      | No change     | Low    | Rare   | Very Poor   | Very Poor   |          |            | 2 21  |
| black ash                | Fraxinus nigra             | WSH   | Medium | 1.7   | 3.0    | 0.6 Very Lg. dec. | Very Lg. dec. | Low    | Rare   | Lost        | Lost        |          |            | 0 22  |
| black oak                | Quercus velutina           | WDH   | High   | 0.4   | 2.7    | 1.0 No change     | No change     | Medium | Rare   | Poor        | Poor        | Infill + | Infill +   | 2 23  |
| black cherry             | Prunus serotina            | WDL   | Medium | 0.4   | 1.6    | 0.6 Sm. inc.      | No change     | Low    | Rare   | Poor        | Very Poor   | Infill + |            | 2 24  |
| wild plum                | Prunus americana           | NSLX  | FIA    | 4.7   | 1.4    | 1.6 Unknown       | Unknown       | Medium | Rare   | FIA Only    | FIA Only    |          |            | 0 25  |
| serviceberry             | Amelanchier spp.           | NSL   | Low    | 1.7   | 1.2    | 0.2 Lg. dec.      | Very Lg. dec. | Medium | Rare   | Very Poor   | Lost        |          |            | 0 26  |
| Siberian elm             | Ulmus pumila               | NDH   | FIA    | 4.4   | 1.1    | 3.9 Unknown       | Unknown       | NA     | Rare   | NNIS        | NNIS        |          |            | 0 27  |
| American hornbeam; mus   | scle\ Carpinus caroliniana | WSL   | Low    | 1.3   | 0.6    | 0.6 Sm. dec.      | Sm. dec.      | Medium | Rare   | Very Poor   | Very Poor   |          |            | 0 28  |
| chokecherry              | Prunus virginiana          | NSLX  | FIA    | 1.3   | 0.5    | 0.5 Unknown       | Unknown       | Medium | Rare   | FIA Only    | FIA Only    |          |            | 0 29  |
| chinkapin oak            | Quercus muehlenbergii      | NSL   | Medium | 1.3   | 0.2    | 0.2 Lg. dec.      | Lg. dec.      | Medium | Rare   | Very Poor   | Very Poor   |          |            | 0 30  |
| jack pine                | Pinus banksiana            | NSH   | Medium | 0     | 0      | 0 Unknown         | Unknown       | High   | Absent | Unknown     | Unknown     |          |            | 0 31  |
| pecan                    | Carya illinoinensis        | NSH   | Low    | 0     | 0      | 0 New Habitat     | New Habitat   | Low    | Absent | New Habitat | New Habitat |          | Migrate +  | 3 32  |
| eastern redbud           | Cercis canadensis          | NSL   | Low    | 0     | 0      | 0 Unknown         | New Habitat   | Medium | Absent | Unknown     | New Habitat |          |            | 3 33  |
| Osage-orange             | Maclura pomifera           | NDH   | Medium | 0     | 0      | 0 New Habitat     | New Habitat   | High   | Absent | New Habitat | New Habitat |          | Migrate ++ | 3 34  |
| sycamore                 | Platanus occidentalis      | NSL   | Low    | 0     | 0      | 0 New Habitat     | New Habitat   | Medium | Absent | New Habitat | New Habitat |          | Migrate +  | 3 35  |
| shingle oak              | Quercus imbricaria         | NDH   | Medium | 0     | 0      | 0 New Habitat     | New Habitat   | Medium | Absent | New Habitat | New Habitat |          |            | 3 36  |
| post oak                 | Quercus stellata           | WDH   | High   | 0     | 0      | 0 New Habitat     | New Habitat   | High   | Absent | New Habitat | New Habitat |          | Migrate ++ | 3 37  |
|                          |                            |       |        |       |        |                   |               |        |        |             |             |          |            |       |

