One x One Degree

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 9,412.7 3,634.3 77

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species								Potential Change in Habitat Suitability			Capability to Cope or Persist			
Ash	4				Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	4	Abu	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	4	Abundant	0	High	8	21	Increase	12	13	Very Good	0	0	Likely	0	0
Oak	9	Common	8	Medium	24	32	No Change	9	7	Good	10	9	Infill	24	20
Pine	0	Rare	41	Low	26	7	Decrease	25	26	Fair	9	11	Migrate	4	8
Other	28	Absent	10	FIA	3		New	9	9	Poor	13	10	•	28	28
-	49	_	59	•	61	60	Unknown	6	6	Very Poor	14	15			
							-	61	61	FIA Only	2	2			
										Unknown	3	3			
Potentia	I Change	es in Climate Var	iahles							•	E1	EO			

Potential Changes in Climate variables

Temperatu	ıre (°F)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	50.9	52.7	55.0	55.3
Average	CCSM85	50.9	53.4	55.9	58.9
	GFDL45	50.9	57.2	56.4	57.3
	GFDL85	50.9	54.0	57.4	61.6
	HAD45	50.9	53.7	57.3	58.9
	HAD85	50.9	54.1	58.8	63.5
Growing	CCSM45	68.4	70.2	72.2	73.0
Season	CCSM85	68.4	71.1	73.5	77.1
May—Sep	GFDL45	68.4	76.2	74.9	76.4
	GFDL85	68.4	72.1	76.2	81.2
	HAD45	68.4	71.6	74.8	76.8
	HAD85	68.4	71.8	77.6	82.4
Coldest	CCSM45	22.9	24.2	26.1	26.4
Month	CCSM85	22.9	25.6	27.0	28.5
Average	GFDL45	22.9	26.9	27.5	28.1
	GFDL85	22.9	26.4	27.6	28.7
	HAD45	22.9	24.3	27.5	27.5
	HAD85	22.9	26.1	28.8	31.3
Warmest	CCSM45	74.0	75.8	77.1	77.9
Month	CCSM85	74.0	77.4	79.2	80.9
Average	GFDL45	74.0	76.9	78.7	79.8
	GFDL85	74.0	77.9	80.1	83.0
	HAD45	74.0	77.6	80.1	81.0
	HAD85	74.0	78.9	82.8	85.9

Precipitati	on (in)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	39.6	38.9	39.8	39.3
Total	CCSM85	39.6	40.1	39.7	41.0
	GFDL45	39.6	42.8	46.8	47.6
	GFDL85	39.6	42.4	47.7	49.7
	HAD45	39.6	41.1	43.3	43.0
	HAD85	39.6	42.6	40.3	43.3
Growing	CCSM45	19.7	19.8	19.5	18.3
Season	CCSM85	19.7	18.6	18.5	18.1
May—Sep	GFDL45	19.7	20.8	21.7	22.3
	GFDL85	19.7	21.0	22.0	21.9
	HAD45	19.7	20.1	18.6	19.7
	HAD85	19.7	19.7	16.6	16.7

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

One x One Degree

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Namo	Scientific Name	Range	MD	%Coll	ElAcum	FIAiv ChngCl45	ChngCl85		Ahund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
Common Name	Acer saccharum	WDH		59.3	202.7			Adap	Abund		Fair	Infill +	Infill +	2 1
sugar maple black cherry	Prunus serotina	WDH	High Medium	78.5		13.3 Lg. dec. 11.0 Sm. dec.	Lg. dec. Lg. dec.	High Low	Common	Fair Poor	Very Poor	Infill +	1111111 +	2 1
black walnut	Juglans nigra	WDL	Low	55.2	107.3	7.6 Sm. dec.	Sm. dec.	Medium	Common	Poor	Poor	Infill +	Infill +	2 2
hackberry	Celtis occidentalis	WDH	Medium	65.2	92.0	7.9 Sm. dec.	Sm. dec.	High	Common	Fair	Fair	Infill +	Infill +	2 4
white ash	Fraxinus americana	WDL	Medium	65.6	62.3	7.8 No change	No change	Low	Common	Poor	Poor	Infill +	Infill +	2 5
bitternut hickory	Carya cordiformis	WSL	Low	20.5	52.2		Sm. dec.	High	Common	Fair	Fair	Infill +	Infill +	2 6
Osage-orange	Maclura pomifera	NDH	Medium	16	51.6		No change	High	Common	Fair	Good	Infill +	11111111 +	2 7
American elm	Ulmus americana	WDH	Medium	71.3	51.3	4.8 Sm. inc.	Sm. inc.	Medium		Good	Good	Infill ++	Infill ++	2 8
green ash	Fraxinus pennsylvanica	WSH	Low	26.7	40.9		Sm. inc.	Medium		Fair	Fair	Infill +	Infill +	2 9
pin oak	Quercus palustris	NSH	Low	25.9	38.1		Sm. dec.	Low	Rare	Very Poor	Very Poor	11111111 7	1111111 +	2 10
slippery elm	Ulmus rubra	WSL	Low	42.6	35.7	3.0 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			2 10
white oak	Quercus alba	WDH	Medium	42.0	28.1	3.0 Sm. inc.	Sm. dec.	High	Rare	Good	Poor	Infill ++	Infill +	2 11
black oak	Quercus velutina	WDH	High	17.1	25.3	5.6 Sm. inc.	Sm. inc.	Medium	Rare	Fair	Fair	Infill +	Infill +	2 12
northern red oak	Quercus rubra	WDH	Medium	37.8	24.4	3.6 Sm. inc.	No change	High	Rare	Good	Fair	Infill ++	Infill +	2 13
silver maple	Acer saccharinum	NSH	Low	11.6	23.0		Lg. inc.	High	Rare	Good	Good	1111111 77	11111111 +	2 14
boxelder	Acer negundo	WSH	Low	42.7	23.0	6.5 Sm. inc.	Sm. inc.	High	Rare	Good	Good	Infill ++	Infill ++	2 15
honeylocust	Gleditsia triacanthos	NSH	Low	38.7	22.8	6.2 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 17
red mulberry	Morus rubra	NSL	Low	33.4	22.2	4.3 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor	11111111 7	1111111 +	2 17
pignut hickory	Carya glabra	WDL	Medium	23.6	21.4	4.2 Sm. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			2 19
sassafras	Sassafras albidum	WSL	Low	30.5	15.4	3.4 No change	Sm. dec.	Medium	Rare	Poor	Very Poor	Infill +		2 20
shagbark hickory	Carya ovata	WSL	Medium	38	14.7	2.5 Lg. inc.	Sm. inc.	Medium	Rare	Good	Fair	Infill ++	Infill +	2 21
red maple	Acer rubrum	WDH	High	22.9	13.8	5.2 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor	Infill +	Infill +	2 21
yellow-poplar	Liriodendron tulipifera	WDH	High	17.5	13.1	1.8 No change	Sm. dec.	High	Rare	Fair	Poor	Infill +	Infill +	2 22
eastern hophornbeam; ir	•	WSL	Low	25.2	12.5	3.3 Lg. dec.	Lg. dec.	High	Rare	Poor	Poor	Infill +	Infill +	2 24
American basswood	Tilia americana	WSL	Medium	34.8	11.6	3.8 Lg. dec.	Lg. dec.	Medium		Very Poor	Very Poor	111111111111111111111111111111111111111	11111111111	2 25
eastern cottonwood	Populus deltoides	NSH	Low	19.6	8.4	3.6 Lg. inc.	Lg. inc.	Medium		Good	Good			2 26
sycamore	Platanus occidentalis	NSL	Low	10.3	8.2	1.7 Lg. inc.	Lg. inc.	Medium		Good	Good			2 27
shingle oak	Quercus imbricaria	NDH	Medium	6.8	6.9	10.8 No change	No change	Medium	Rare	Poor	Poor	Infill +		2 28
blackgum	Nyssa sylvatica	WDL	Medium	8.8	5.9	6.6 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor	111111111111111111111111111111111111111		0 29
black willow	Salix nigra	NSH	Low	11	5.9	6.6 Sm. dec.	Lg. inc.	Low	Rare	Very Poor	Fair		Infill +	2 30
chinkapin oak	Quercus muehlenbergii	NSL	Medium	13.2	5.8	2.1 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 31
bur oak	Quercus macrocarpa	NDH	Medium	10	5.4	3.7 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 32
black locust	Robinia pseudoacacia	NDH	Low	4.8	5.2	5.7 No change	Sm. inc.	Medium	Rare	Poor	Fair	Infill +	Infill +	2 32
Ohio buckeye	Aesculus glabra	NSL	Low	13.5	4.0	2.0 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor	111111111111111111111111111111111111111	111111111111111111111111111111111111111	2 34
mockernut hickory	Carya alba	WDL	Medium	13.3	4.0	2.4 Lg. dec.	Sm. inc.	High	Rare	Poor	Good	Infill +		2 35
•	sclev Carpinus caroliniana	WSL	Low	14.1	2.7	1.1 Lg. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 36
Siberian elm	Ulmus pumila	NDH	FIA	8.5	1.5	2.8 Unknown	Unknown	NA	Rare	NNIS	NNIS			0 37
eastern redbud	Cercis canadensis	NSL	Low	13.3	1.4	0.9 Lg. dec.	Lg. dec.	Medium		Very Poor	Very Poor			2 38
flowering dogwood	Cornus florida	WDL	Medium	6.9	1.1	0.6 Sm. dec.	Lg. dec.	Medium		Very Poor	Very Poor			0 39
northern catalpa	Catalpa speciosa	NSHX	FIA	12.4	0.9	1.1 Unknown	Unknown	Medium		FIA Only	FIA Only			0 40
black ash	Fraxinus nigra	WSH	Medium	2.8	0.7	1.7 Lg. dec.	Very Lg. dec.		Rare	Very Poor	Lost			0 41
American beech	Fagus grandifolia	WDH	High	12.7	0.7	0.8 No change	Sm. dec.	Medium		Poor	Very Poor			0 41
bigtooth aspen	Populus grandidentata	NSL	Medium	4.2	0.7	1.7 Lg. dec.	Lg. dec.	Medium		Very Poor	Very Poor			0 42
blue ash	Fraxinus quadrangulata	NSL	Low	3.4	0.3	1.1 Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 44
northern pin oak	Quercus ellipsoidalis	NSH	Medium	4.2	0.4	1.2 Lg. dec.	Lg. dec.	High	Rare	Poor	Poor			0 44
Kentucky coffeetree	Gymnocladus dioicus	NSLX	FIA	2.3	0.3	0.6 Unknown	Unknown	Medium		FIA Only	FIA Only			0 45
swamp white oak	Quercus bicolor	NSL	Low	4.2	0.3			Medium		Good	Good			2 47
Swamp willte bak	Quercus bicolor	INOL	LOW	4.2	0.3	I.U Lg. IIIC.	Lg. inc.	Medium	Naie	Good	doou			2 4/

One x One Degree

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
serviceberry	Amelanchier spp.	NSL	Low	4.2	0.1	0.5	Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 48
eastern redcedar	Juniperus virginiana	WDH	Medium	4.2	0.1	0.4	Lg. inc.	Lg. inc.	Medium	Rare	Good	Good			2 49
jack pine	Pinus banksiana	NSH	Medium	C) () C	Unknown	Unknown	High	Modeled	Unknown	Unknown			0 50
pawpaw	Asimina triloba	NSL	Low	C) 0) C	Unknown	Unknown	Medium	Modeled	Unknown	Unknown			0 51
pecan	Carya illinoinensis	NSH	Low	C) () C	New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat		Migrate ++	3 52
black hickory	Carya texana	NDL	High	C) 0) C	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 53
sugarberry	Celtis laevigata	NDH	Medium	C) () C	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat		Migrate +	3 54
common persimmon	Diospyros virginiana	NSL	Low	C) 0) C	New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 55
sweetgum	Liquidambar styraciflua	WDH	High	C) () C	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 56
pin cherry	Prunus pensylvanica	NSL	Low	C) 0) C	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 57
blackjack oak	Quercus marilandica	NSL	Medium	C) 0) C	New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Migrate +	Migrate ++	3 58
Shumard oak	Quercus shumardii	NSL	Low	C) 0) C	New Habitat	New Habitat	High	Absent	New Habitat	New Habitat		Migrate +	3 59
post oak	Quercus stellata	WDH	High	C) 0) C	New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Migrate ++	Migrate ++	3 60
winged elm	Ulmus alata	WDL	Medium	C) () (New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat		Migrate ++	- 3 61

