One x One Degree

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 10,066 3,886.5 45

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitability	Capability	to Cope or	Persist	Migratio	n Poten	tial
Ash	1				Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	1	Abu	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	1	Abundant	0	High	6	10	Increase	5	8	Very Good	0	0	Likely	0	0
Oak	6	Common	2	Medium	12	20	No Change	8	6	Good	3	4	Infill	10	13
Pine	0	Rare	26	Low	15	4	Decrease	12	11	Fair	3	4	Migrate	2	3
Other	19	Absent	8	FIA	3		New	6	6	Poor	12	11		12	16
-	28		36	-	36	34	Unknown	5	5	Very Poor	7	6			
							-	36	36	FIA Only	1	1			

Potential Changes in Climate Variables

Temperatu	ıre (°F)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	60.0	61.8	63.4	64.1 🛶 🛶
Average	CCSM85	60.0	62.4	64.3	67.1
	GFDL45	60.0	66.2	64.8	66.2
	GFDL85	60.0	63.0	66.0	70.1
	HAD45	60.0	62.2	64.9	65.9
	HAD85	60.0	62.5	67.0	69.9
Growing	CCSM45	76.4	78.5	80.2	80.9
Season	CCSM85	76.4	79.1	81.1	84.6
May—Sep	GFDL45	76.4	85.0	82.5	85.0
	GFDL85	76.4	80.6	84.2	89.5
	HAD45	76.4	78.4	80.7	81.4
	HAD85	76.4	79.1	83.9	86.3
Coldest	CCSM45	35.8	38.0	38.9	39.7
Month	CCSM85	35.8	38.3	38.8	40.6
Average	GFDL45	35.8	39.2	39.2	39.4
	GFDL85	35.8	36.6	37.9	38.6
	HAD45	35.8	36.7	39.0	39.1
	HAD85	35.8	38.8	40.8	42.5
Warmest	CCSM45	82.9	84.9	86.3	86.8 🛶 🔶
Month	CCSM85	82.9	85.6	86.5	88.6
Average	GFDL45	82.9	88.0	88.8	90.9
	GFDL85	82.9	88.1	90.1	94.6
	HAD45	82.9	84.7	86.2	86.3
	HAD85	82.9	86.0	88.3	89.4

Precipitati	on (in)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	31.5	31.2	32.1	30.8 ++++
Total	CCSM85	31.5	30.7	32.5	32.1 ++++
	GFDL45	31.5	32.6	36.7	33.0 +++++
	GFDL85	31.5	33.0	35.7	34.2 +++++
	HAD45	31.5	33.5	32.7	33.8 ++++
	HAD85	31.5	32.4	28.4	33.3 +++++
Growing	CCSM45	17.4	16.1	16.5	16.3 ++++
Season	CCSM85	17.4	16.8	16.9	16.5 ++++
May—Sep	GFDL45	17.4	17.9	20.6	18.5 ++++++
	GFDL85	17.4	19.2	20.7	19.2 + + + + + + + + + + + + + + + + + + +
	HAD45	17.4	18.4	18.4	18.4 + + + +
	HAD85	17.4	17.0	14.4	17.1 +++++++++++++++++++++++++++++++++++

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Unknown

2

28

2

28

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

S35 E98

One x One Degree

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
eastern redcedar	Juniperus virginiana	WDH	Medium	68.6	242.0	31.7	Lg. dec.	Lg. dec.	Medium	Common	Poor	Poor	Infill +	Infill +	0 1
American elm	Ulmus americana	WDH	Medium	46.6	89.8	19.4	Sm. dec.	Sm. dec.	Medium	Common	Poor	Poor	Infill +	Infill +	0 2
black locust	Robinia pseudoacacia	NDH	Low	16	38.4	16.7	Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			2 3
post oak	Quercus stellata	WDH	High	24.4	34.5	14.0	Lg. inc.	Lg. inc.	High	Rare	Good	Good	Infill ++	Infill ++	2 4
blackjack oak	Quercus marilandica	NSL	Medium	28.4	28.9	11.0	No change	Sm. inc.	High	Rare	Fair	Good	Infill +	Infill ++	2 5
eastern cottonwood	Populus deltoides	NSH	Low	12.6	27.8	18.6	No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 6
ashe juniper	Juniperus ashei	NDH	High	0.1	24.8	3.1	No change	Sm. inc.	Medium	Rare	Poor	Fair			0 7
Siberian elm	Ulmus pumila	NDH	FIA	5.6	12.0	19.8	Unknown	Unknown	NA	Rare	NNIS	NNIS			0 8
boxelder	Acer negundo	WSH	Low	4	11.7	3.5	Lg. dec.	Sm. dec.	High	Rare	Poor	Poor		Infill +	29
bur oak	Quercus macrocarpa	NDH	Medium	5.6	11.1	13.1	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 10
hackberry	Celtis occidentalis	WDH	Medium	15.6	10.3	3.2	Sm. inc.	Lg. inc.	High	Rare	Good	Good			2 11
black willow	Salix nigra	NSH	Low	10.1	8.7	4.4	Sm. inc.	Sm. inc.	Low	Rare	Poor	Poor	Infill +	Infill +	2 12
black walnut	Juglans nigra	WDH	Low	18.5	8.6	4.6	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			2 13
sugarberry	Celtis laevigata	NDH	Medium	9.8	3.9	4.6	No change	Sm. inc.	Medium	Rare	Poor	Fair	Infill +	Infill +	2 14
pecan	Carya illinoinensis	NSH	Low	7.9	3.5	7.0	Sm. inc.	Sm. inc.	Low	Rare	Poor	Poor	Infill +	Infill +	2 15
green ash	Fraxinus pennsylvanica	WSH	Low	5.4	2.9	5.0	No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 16
white mulberry	Morus alba	NSL	FIA	11.8	2.9	3.9	Unknown	Unknown	NA	Rare	NNIS	NNIS			0 17
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	14.7	2.6	1.7	Lg. inc.	Lg. inc.	High	Rare	Good	Good	Infill ++	Infill ++	2 18
Kentucky coffeetree	Gymnocladus dioicus	NSLX	FIA	11.9	2.6	3.4	Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 19
chinkapin oak	Quercus muehlenbergii	NSL	Medium	5.9	2.5	5.0	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 20
Osage-orange	Maclura pomifera	NDH	Medium	8.2	2.1	1.9	No change	No change	High	Rare	Fair	Fair		Infill +	2 21
red mulberry	Morus rubra	NSL	Low	11.9	1.7	2.3	Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 22
honeylocust	Gleditsia triacanthos	NSH	Low	4	1.5	6.2	No change	No change	High	Rare	Fair	Fair		Infill +	2 23
winged elm	Ulmus alata	WDL	Medium	9.7	1.5	1.1	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 24
eastern redbud	Cercis canadensis	NSL	Low	4	1.0	4.0	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 25
Shumard oak	Quercus shumardii	NSL	Low	4	0.6	2.4	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 26
black oak	Quercus velutina	WDH	High	4	0.3	1.3	No change	No change	Medium	Rare	Poor	Poor			0 27
slippery elm	Ulmus rubra	WSL	Low	4	0.3	1.2	Lg. dec.	No change	Medium	Rare	Very Poor	Poor			0 28
spruce pine	Pinus glabra	NSL	Low	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 29
serviceberry	Amelanchier spp.	NSL	Low	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 30
black hickory	Carya texana	NDL	High	0	0	0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 31
white ash	Fraxinus americana	WDL	Medium	0	0	0	New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat			3 32
water oak	Quercus nigra	WDH	High	0	0	0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat		Migrate +	3 33
northern red oak	Quercus rubra	WDH	Medium	0	0	0	New Habitat	New Habitat	High	Absent	New Habitat	New Habitat			3 34
live oak	Quercus virginiana	NDH	High	0	0	0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate ++	Migrate ++	3 35
cedar elm	Ulmus crassifolia	NDH	Medium	0	0	0	New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat	Migrate ++	Migrate ++	3 36

