One x One Degree

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 10,188 3,933.4 17

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitability	Capability	to Cope o	r Persist	Migration	n Potent	ial
Ash	0				Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	1	Abu	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	0	Abundant	0	High	3	6	Increase	1	1	Very Good	0	0	Likely	2	2
Oak	0	Common	0	Medium	8	13	No Change	6	5	Good	0	0	Infill	3	4
Pine	0	Rare	15	Low	10	3	Decrease	6	7	Fair	3	2	Migrate	2	2
Other	14	Absent	8	FIA	2		New	5	5	Poor	5	6	<u>-</u>	7	8
=	15	_	23		23	22	Unknown	5	5	Very Poor	5	5			
							_	23	23	FIA Only	1	1			
										Unknown	3	3			
Potentia	l Chang	es in Climate Var	iables							•	17	17			

Potential Changes in Climate Variables

Temperatu	ıre (°F)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	61.9	63.6	65.1	65.9
Average	CCSM85	61.9	64.2	65.9	68.9
	GFDL45	61.9	68.1	66.6	68.2
	GFDL85	61.9	65.0	68.1	72.3
	HAD45	61.9	64.1	66.8	67.7
	HAD85	61.9	64.6	68.9	71.7
Growing	CCSM45	78.2	79.8	81.6	82.4
Season	CCSM85	78.2	80.6	82.4	86.0
May—Sep	GFDL45	78.2	86.5	84.0	86.7
, .	GFDL85	78.2	82.5	86.1	91.6
	HAD45	78.2	80.1	82.3	83.0
	HAD85	78.2	80.8	85.3	87.7
Coldest	CCSM45	38.3	40.5	41.1	42.1
Month	CCSM85	38.3	40.7	41.2	42.9
Average	GFDL45	38.3	41.6	41.6	41.8
	GFDL85	38.3	39.2	40.5	41.1
	HAD45	38.3	39.2	41.4	41.6
	HAD85	38.3	41.6	43.5	45.1
Warmest	CCSM45	84.5	86.2	87.6	88.0
Month	CCSM85	84.5	87.0	87.8	90.0
Average	GFDL45	84.5	89.8	90.3	92.5
	GFDL85	84.5	90.0	92.1	96.7
	HAD45	84.5	86.2	87.5	87.7
	HAD85	84.5	87.3	89.4	90.5

Precipitation (in)													
	Scenario	2009	2039	2069	2099								
Annual	CCSM45	27.4	28.8	28.0	26.9 ◆◆◆◆								
Total	CCSM85	27.4	27.0	29.3	27.8								
	GFDL45	27.4	27.8	32.1	27.3								
	GFDL85	27.4	27.8	29.8	27.6								
	HAD45	27.4	30.2	28.3	29.3								
	HAD85	27.4	28.2	24.8	28.8								
Growing	CCSM45	15.2	15.2	14.5	14.2 ◆◆◆◆								
Season	CCSM85	15.2	15.0	15.1	14.1								
May—Sep	GFDL45	15.2	15.3	18.0	15.1								
	GFDL85	15.2	16.3	16.9	15.1								
	HAD45	15.2	16.7	16.1	16.2								
	HAD85	15.2	14.6	12.5	15.1								

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

One x One Degree

Climate Change Atlas Tree Species

Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

USDA Forest Service

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
ashe juniper	Juniperus ashei	NDH	High	0.9	45.5	10.7	No change	No change	Medium	Rare	Poor	Poor			0 1
black willow	Salix nigra	NSH	Low	14.6	43.0	42.6	Lg. dec.	Lg. dec.	Low	Rare	Very Poor	Very Poor			0 2
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	16.2	41.0	24.3	No change	Sm. dec.	High	Rare	Fair	Poor			1 3
American elm	Ulmus americana	WDH	Medium	5.4	23.7	26.7	No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 4
black locust	Robinia pseudoacacia	NDH	Low	6.2	22.7	30.8	Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 5
sugarberry	Celtis laevigata	NDH	Medium	6.9	14.1	14.1	No change	No change	Medium	Rare	Poor	Poor			1 6
eastern cottonwood	Populus deltoides	NSH	Low	3.9	12.3	50.0	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 7
honeylocust	Gleditsia triacanthos	NSH	Low	8.1	9.7	9.2	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor	Infill +	Infill +	1 8
Siberian elm	Ulmus pumila	NDH	FIA	6.9	9.7	17.6	Unknown	Unknown	NA	Rare	NNIS	NNIS			0 9
Osage-orange	Maclura pomifera	NDH	Medium	3	7.3	22.7	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 10
hackberry	Celtis occidentalis	WDH	Medium	2.8	5.6	3.5	No change	No change	High	Rare	Fair	Fair		Infill +	2 11
red mulberry	Morus rubra	NSL	Low	6.9	5.3	8.7	Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 12
eastern redcedar	Juniperus virginiana	WDH	Medium	7.7	1.7	3.3	Sm. inc.	Sm. inc.	Medium	Rare	Fair	Fair	Infill +	Infill +	2 13
pecan	Carya illinoinensis	NSH	Low	3.9	1.1	4.5	No change	No change	Low	Rare	Very Poor	Very Poor			2 14
wild plum	Prunus americana	NSLX	FIA	3.9	0.9	3.7	' Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 15
striped maple	Acer pensylvanicum	NSL	Medium	0	0	C	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 16
serviceberry	Amelanchier spp.	NSL	Low	0	0	C	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 17
green ash	Fraxinus pennsylvanica	WSH	Low	0	0	C	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 18
blackjack oak	Quercus marilandica	NSL	Medium	0	0	C	New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Likely +	Likely +	3 19
swamp chestnut oak	Quercus michauxii	NSL	Low	0	0	C	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 20
post oak	Quercus stellata	WDH	High	0	0	C	New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Likely +	Likely +	3 21
live oak	Quercus virginiana	NDH	High	0	0	(New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate ++	Migrate ++	3 22
cedar elm	Ulmus crassifolia	NDH	Medium	0	0	C	New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat	Migrate ++	Migrate ++	3 23

