S32 E99

One x One Degree

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 10,421 4,023.6 85

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitability	Capability	to Cope o	r Persist	Migratio	n Poten	tial
Ash	0			Ν	۸odel			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	1	Abur	ndance	R	Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	0	Abundant	1	High	4	5	Increase	2	2	Very Good	2	2	Likely	0	0
Oak	6	Common	8	Medium	7	8	No Change	4	2	Good	1	0	Infill	2	2
Pine	0	Rare	6	Low	5	4	Decrease	8	10	Fair	3	4	Migrate	0	0
Other	8	Absent	1	FIA	1		New	0	0	Poor	4	4		2	2
-	15		16	_	17	17	Unknown	3	3	Very Poor	4	4			
							-	17	17	FIA Only	1	1			

Potential Changes in Climate Variables

Temperature (°F)							
	Scenario	2009	2039	2069	2099		
Annual	CCSM45	64.2	65.5	67.2	68.0		
Average	CCSM85	64.2	66.3	68.1	70.8		
	GFDL45	64.2	68.5	68.7	70.4		
	GFDL85	64.2	67.3	70.3	74.4		
	HAD45	64.2	66.5	69.0	69.8		
	HAD85	64.2	67.0	70.7	73.6	-	
Growing	CCSM45	78.6	79.7	81.5	82.3	• • • •	
Season	CCSM85	78.6	80.8	82.6	85.8		
May—Sep	GFDL45	78.6	84.1	84.1	87.0		
	GFDL85	78.6	83.0	86.6	91.9		
	HAD45	78.6	80.7	82.7	83.2	***	
	HAD85	78.6	81.3	85.2	87.8	••••	
Coldest	CCSM45	42.6	45.1	45.7	46.4	• • • •	
Month	CCSM85	42.6	44.8	45.7	47.1	• • • • •	
Average	GFDL45	42.6	45.8	45.8	45.9	• • • •	
	GFDL85	42.6	43.5	44.7	45.0	• • • • •	
	HAD45	42.6	43.2	45.3	45.5	•••	
	HAD85	42.6	46.1	47.8	49.3		
Warmest	CCSM45	84.1	85.2	86.5	86.6	• • • •	
Month	CCSM85	84.1	86.1	86.8	88.6	****	
Average	GFDL45	84.1	89.5	89.8	91.9		
	GFDL85	84.1	90.1	91.8	96.0		
	HAD45	84.1	86.1	87.1	87.3		
	HAD85	84.1	87.0	89.0	90.1	****	

Precipitation (in)								
	Scenario	2009	2039	2069	2099			
Annual	CCSM45	26.4	27.9	26.1	25.6 +++++			
Total	CCSM85	26.4	25.7	28.0	27.0 ++++			
	GFDL45	26.4	26.4	30.9	24.8 +			
	GFDL85	26.4	25.9	27.7	25.3 ++++			
	HAD45	26.4	27.7	26.7	28.1 ++++			
	HAD85	26.4	26.3	24.2	27.2			
Growing	CCSM45	13.9	15.2	13.0	13.2 + + + +			
Season	CCSM85	13.9	14.3	14.3	13.1 ++++			
May—Sep	GFDL45	13.9	14.0	16.4	13.0 +++++			
	GFDL85	13.9	14.2	14.5	13.1 ++++			
	HAD45	13.9	14.3	14.3	15.3 ++++			
	HAD85	13.9	13.3	11.7	14.0 ++++++			

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Unknown

2

17

2

17

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

One x One Degree USDA Forest Service S32 E99 **Northern Research Station Climate Change Atlas Tree Species** Landscape Change Research Group Current and Potential Future Habitat, Capability, and Migration Iverson, Peters, Prasad, Matthews Common Name Scientific Name Range MR %Cell FIAsum FIAiv ChngCl45 ChngCl85 Adap Abund Capabil45 Capabil85 SHIFT45 SHIFT85 SSO N ashe juniper Juniperus ashei NDH High 23.2 512.6 28.8 Lg. inc. Lg. inc. Medium Abundant Very Good Very Good 0 1 Quercus stellata WDH 14.4 456.4 24.2 Sm. dec. High Fair 1 2 post oak High Sm. dec. Common Fair Very Good live oak Quercus virginiana NDH High 15.6 337.7 18.3 Lg. inc. Lg. inc. Medium Common Very Good 1 3 cittamwood/gum bumelia Sideroxylon lanuginosum ssp. NSL 29.8 250.2 14.3 No change Sm. dec. High Good Fair 1 4 Low Common 1 5 blackjack oak Quercus marilandica NSL Medium 9.6 117.7 19.4 Sm. dec. Sm. dec. High Common Fair Fair Ulmus crassifolia NDH 2.5 93.5 28.6 No change No change Poor Infill + Infill + 0 6 cedar elm Medium Low Common Poor 1 7 hackberry Celtis occidentalis WDH 6.9 81.2 10.4 Sm. dec. Sm. dec. High Fair Medium Common Fair American elm Ulmus americana WDH Medium 4.8 79.2 15.3 Sm. dec. Sm. dec. Medium Common Poor Poor 0 8 0 9 black willow Salix nigra NSH 6.1 65.3 18.1 Lg. dec. Lg. dec. Low Very Poor Low Common Verv Poor Infill + sugarberry Celtis laevigata NDH Medium 10 43.3 3.4 No change No change Medium Rare Poor Poor Infill + 1 10 black oak Quercus velutina WDH 1 22.1 Sm. dec. Sm. dec. Very Poor 0 11 21.2 Medium Rare Very Poor High black walnut Juglans nigra WDH Low 1 17.0 17.8 Sm. dec. Sm. dec. Medium Rare Very Poor Very Poor 0 12 durand oak Quercus sinuata var. sinuata NSL FIA 1.9 11.0 5.7 Unknown Unknown Medium Rare FIA Only FIA Only 0 13 southern red oak **Quercus** falcata WDL Medium 0.7 8.5 6.4 Sm. dec. Sm. dec. High Poor 0 14 Rare Poor pecan Carya illinoinensis NSH Low 1.5 1.2 1.9 No change Sm. dec. Low Rare Very Poor Very Poor 0 15

0 Unknown

0 Unknown

Unknown

Unknown

Medium

Low

Absent

Modeled

Unknown

Unknown

Unknown

Unknown

0 16

0 17

shagbark hickory

pin oak

Carya ovata

Quercus palustris

WSL

NSH

Medium

Low

0

0

0

0