One x One Degree

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

 sq. km
 sq. mi
 FIA Plots

 Area of Region
 10,533
 4,066.9
 159

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitability	Capability	to Cope o	r Persist	Migratio	n Potent	ial
Ash	0				Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	2	Abur	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	0	Abundant	4	High	4	5	Increase	1	1	Very Good	0	0	Likely	0	0
Oak	4	Common	4	Medium	6	10	No Change	5	4	Good	4	4	Infill	0	0
Pine	0	Rare	9	Low	8	3	Decrease	11	12	Fair	3	3	Migrate	0	0
Other	11	Absent	1	FIA	0		New	0	0	Poor	4	3	·	0	0
•	17	_	18	-	18	18	Unknown	1	1	Very Poor	6	7			
							-	18	18	FIA Only	0	0			
										Unknown	1	1			
Potentia	ıl Chang	es in Climate Var	iahles							•	10	10			

Potential Changes in Climate Variables

Temperatu	ıre (°F)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	65.0	66.5	68.0	68.6
Average	CCSM85	65.0	67.0	69.0	71.5
	GFDL45	65.0	69.0	69.3	70.9
	GFDL85	65.0	67.9	70.9	74.7
	HAD45	65.0	67.2	69.7	70.5
	HAD85	65.0	67.7	71.2	74.2
Growing	CCSM45	78.6	79.9	81.2	82.0
Season	CCSM85	78.6	80.7	82.5	85.6
May—Sep		78.6	83.4	83.6	86.2
may sep	GFDL85	78.6	82.5	86.0	90.7
	HAD45	78.6	80.7	82.7	83.2
	HAD85	78.6	81.3	85.1	87.7
Coldest	CCSM45	44.6	46.8	47.4	47.9
Month	CCSM85	44.6	46.6	47.5	48.9
Average	GFDL45	44.6	47.9	47.8	48.0
	GFDL85	44.6	45.7	46.8	47.1 ◆◆◆◆
	HAD45	44.6	45.0	46.8	47.1
	HAD85	44.6	47.8	49.3	50.8
Warmest	CCSM45	83.5	84.5	85.4	85.6
Month	CCSM85	83.5	85.4	86.1	87.7
Average	GFDL45	83.5	88.4	88.7	90.4
	GFDL85	83.5	88.7	90.3	93.8
	HAD45	83.5	85.7	86.6	86.9
	HAD85	83.5	86.5	88.4	89.4

Precipitation (in)											
	Scenario	2009	2039	2069	2099						
Annual	CCSM45	30.5	31.6	31.5	29.6						
Total	CCSM85	30.5	29.9	33.4	31.5						
	GFDL45	30.5	30.0	34.8	28.3						
	GFDL85	30.5	29.3	31.2	29.2						
	HAD45	30.5	31.3	30.5	32.1						
	HAD85	30.5	30.7	27.8	30.8 ◆◆◆◆						
Growing	CCSM45	15.0	16.8	15.2	14.9						
Season	CCSM85	15.0	15.4	16.4	14.5 ◆◆◆◆						
May—Sep	GFDL45	15.0	15.0	17.6	14.2						
	GFDL85	15.0	15.2	15.7	14.6 ◆◆◆◆						
	HAD45	15.0	14.8	14.6	16.0						
	HAD85	15.0	14.4	12.6	14.6						

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

One x One Degree

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45 SHIFT85	SSO N
ashe juniper	Juniperus ashei	NDH	High	66.2	2791.8	43.0	No change	No change	Medium	Abundant	Good	Good		0 1
live oak	Quercus virginiana	NDH	High	67.8	1522.0	22.6	No change	No change	Medium	Abundant	Good	Good		1 2
cedar elm	Ulmus crassifolia	NDH	Medium	52.3	554.6	12.9	Sm. inc.	Sm. inc.	Low	Abundant	Good	Good		1 3
post oak	Quercus stellata	WDH	High	25.1	536.1	18.7	Sm. dec.	Lg. dec.	High	Abundant	Good	Good		1 4
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	18	234.0	10.0	Sm. dec.	Lg. dec.	High	Common	Fair	Fair		1 5
hackberry	Celtis occidentalis	WDH	Medium	16.1	88.1	12.1	Lg. dec.	Lg. dec.	High	Common	Fair	Fair		1 6
red mulberry	Morus rubra	NSL	Low	1.4	60.7	28.6	Sm. dec.	Sm. dec.	Medium	Common	Poor	Poor		0 7
sugarberry	Celtis laevigata	NDH	Medium	12.2	54.0	5.9	Sm. dec.	Sm. dec.	Medium	Common	Poor	Poor		0 8
sycamore	Platanus occidentalis	NSL	Low	4.7	34.6	18.6	Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor		0 9
blackjack oak	Quercus marilandica	NSL	Medium	10.7	29.9	7.5	No change	No change	High	Rare	Fair	Fair		1 10
black hickory	Carya texana	NDL	High	0.9	15.9	16.7	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor		0 11
American elm	Ulmus americana	WDH	Medium	6.8	10.3	1.9	No change	Sm. dec.	Medium	Rare	Poor	Very Poor		1 12
pecan	Carya illinoinensis	NSH	Low	6.3	5.9	4.0	No change	No change	Low	Rare	Very Poor	Very Poor		0 13
bur oak	Quercus macrocarpa	NDH	Medium	4.4	5.7	3.7	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor		0 14
black willow	Salix nigra	NSH	Low	2	3.9	8.6	Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor		0 15
black walnut	Juglans nigra	WDH	Low	3.8	2.1	8.9	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor		0 16
eastern redbud	Cercis canadensis	NSL	Low	3.8	0.2	0.8	Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor		0 17
shellbark hickory	Carya laciniosa	NSL	Low	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown		0 18

