One x One Degree

Climate Change Atlas Tree Species
Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

 sq. km
 sq. mi
 FIA Plots

 Area of Region
 10,533
 4,066.9
 119

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitability	Capability	to Cope o	r Persist	Migratio	n Potent	tial
Ash	2				Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	1	Abu	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	1	Abundant	1	High	3	9	Increase	5	8	Very Good	0	0	Likely	0	0
Oak	7	Common	5	Medium	12	20	No Change	9	6	Good	4	7	Infill	10	7
Pine	0	Rare	23	Low	16	4	Decrease	12	12	Fair	8	6	Migrate	0	0
Other	18	Absent	5	FIA	3		New	0	0	Poor	6	5	·	10	7
-	29	_	34	•	34	33	Unknown	8	8	Very Poor	8	8			
							-	34	34	FIA Only	3	3			
										Unknown	5	5			
Potentia	I Change	es in Climate Var	iahles							•	24	24			

Potential Changes in Climate Variables

Temperatu	ıre (°F)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	66.0	67.6	68.9	69.5
Average	CCSM85	66.0	68.0	70.1	72.4
	GFDL45	66.0	71.1	70.2	71.7
	GFDL85	66.0	68.8	71.8	75.4
	HAD45	66.0	68.1	70.6	71.6
	HAD85	66.0	68.5	72.1	75.4
Growing	CCSM45	79.7	81.2	82.1	82.9
Season	CCSM85	79.7	81.8	83.6	86.5
May—Sep	GFDL45	79.7	86.3	84.5	87.1
	GFDL85	79.7	83.3	86.8	91.3
	HAD45	79.7	81.9	83.9	84.6
	HAD85	79.7	82.4	86.4	89.2
Coldest	CCSM45	45.3	47.6	48.2	48.6
Month	CCSM85	45.3	47.6	48.7	49.9
Average	GFDL45	45.3	48.9	48.9	49.0
	GFDL85	45.3	46.4	47.5	47.9
	HAD45	45.3	45.7	47.5	47.9
	HAD85	45.3	48.1	49.6	51.3
Warmest	CCSM45	84.6	85.7	86.4	86.8
Month	CCSM85	84.6	86.6	87.3	88.9
Average	GFDL45	84.6	89.4	89.7	91.4
	GFDL85	84.6	89.6	91.2	94.6
	HAD45	84.6	86.9	87.9	88.3
	HAD85	84.6	87.7	89.7	90.6

Precipitati	on (in)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	34.9	34.8	36.9	34.5 ◆◆◆◆
Total	CCSM85	34.9	34.4	38.2	36.5
	GFDL45	34.9	34.8	40.6	33.2
	GFDL85	34.9	34.2	36.6	34.7
	HAD45	34.9	35.7	34.9	35.8 ◆◆◆◆
	HAD85	34.9	35.5	31.9	34.2
Growing	CCSM45	15.4	16.7	16.2	15.7
Season	CCSM85	15.4	15.6	16.5	14.9 ◆◆◆◆
May—Sep	GFDL45	15.4	15.9	19.2	15.1
	GFDL85	15.4	16.1	16.9	16.0 ◆◆◆◆
	HAD45	15.4	15.3	14.5	15.4 ◆◆◆◆
	HAD85	15.4	15.0	12.8	13.8

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

One x One Degree

Climate Change Atlas Tree Species

Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

USDA Forest Service

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
ashe juniper	Juniperus ashei	NDH	High	68.6	1237.2	42.2	Sm. dec.	Sm. dec.	Medium	Abundant	Fair	Fair			0 1
cedar elm	Ulmus crassifolia	NDH	Medium	77.8	423.9	17.1	No change	No change	Low	Common	Poor	Poor			0 2
live oak	Quercus virginiana	NDH	High	52.6	195.7	10.0	Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 3
post oak	Quercus stellata	WDH	High	16.9	109.6	10.5	Sm. dec.	Sm. dec.	High	Common	Fair	Fair			1 4
bur oak	Quercus macrocarpa	NDH	Medium	5.1	74.8	25.3	Lg. dec.	Lg. dec.	High	Common	Fair	Fair			0 5
sugarberry	Celtis laevigata	NDH	Medium	46.4	70.4	7.8	Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 6
pecan	Carya illinoinensis	NSH	Low	21.4	41.4	9.5	Sm. inc.	Sm. inc.	Low	Rare	Poor	Poor			1 7
green ash	Fraxinus pennsylvanica	WSH	Low	31.7	37.9	11.4	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 8
durand oak	Quercus sinuata var. sinuata	NSL	FIA	9.5	35.2	10.0	Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 9
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	34.2	28.6	3.6	Sm. inc.	Sm. inc.	High	Rare	Good	Good			1 10
hackberry	Celtis occidentalis	WDH	Medium	17	26.8	4.9	No change	Sm. inc.	High	Rare	Fair	Good	Infill +	Infill ++	1 11
Texas ash	Fraxinus texensis	NDH	FIA	20.6	16.8	2.4	Unknown	Unknown	NA	Rare	FIA Only	FIA Only			0 12
American elm	Ulmus americana	WDH	Medium	9.9	9.0	3.7	No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 13
blackjack oak	Quercus marilandica	NSL	Medium	5.7	7.7	3.1	No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 14
eastern redcedar	Juniperus virginiana	WDH	Medium	10.2	7.7	4.6	Lg. inc.	Lg. inc.	Medium	Rare	Good	Good	Infill ++	Infill ++	2 15
Shumard oak	Quercus shumardii	NSL	Low	10.1	7.1	1.6	Lg. dec.	Lg. dec.	High	Rare	Poor	Poor	Infill +	Infill +	2 16
black willow	Salix nigra	NSH	Low	4.1	6.9	10.3	Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 17
water elm	Planera aquatica	NSL	Low	3.8	4.8	20.0	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 18
eastern cottonwood	Populus deltoides	NSH	Low	2.4	3.4	8.9	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 19
honeylocust	Gleditsia triacanthos	NSH	Low	2.9	3.3	1.1	No change	No change	High	Rare	Fair	Fair	Infill +		2 20
winged elm	Ulmus alata	WDL	Medium	6	3.1	2.9	No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 21
Osage-orange	Maclura pomifera	NDH	Medium	7.6	3.0	1.4	No change	Sm. inc.	High	Rare	Fair	Good	Infill +		2 22
boxelder	Acer negundo	WSH	Low	3.8	2.7	11.5	No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 23
eastern redbud	Cercis canadensis	NSL	Low	4.4	0.6	0.5	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 24
black walnut	Juglans nigra	WDH	Low	3.8	0.5	2.0	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 25
bear oak; scrub oak	Quercus ilicifolia	NSLX	FIA	3	0.4	1.4	Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 26
slippery elm	Ulmus rubra	WSL	Low	3	0.4	1.2	No change	Lg. inc.	Medium	Rare	Poor	Good	Infill +		2 27
red mulberry	Morus rubra	NSL	Low	3.8	0.2	0.7	Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 28
black locust	Robinia pseudoacacia	NDH	Low	1.7	0.1	0.1	Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 29
shellbark hickory	Carya laciniosa	NSL	Low	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 30
flowering dogwood	Cornus florida	WDL	Medium	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 31
black cherry	Prunus serotina	WDL	Medium	0	0	0	Unknown	Unknown	Low	Absent	Unknown	Unknown			0 32
sassafras	Sassafras albidum	WSL	Low	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 33
American basswood	Tilia americana	WSL	Medium	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 34

