One x One Degree

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration **USDA Forest Service Northern Research Station** Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 10,533 4,066.9 307

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species								in Habitat Suitability	Capability	to Cope o	Migration Potential			
Ash	2				Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	7	Abu	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	3	Abundant	7	High	12	18	Increase	16	17	Very Good	7	8	Likely	1	1
Oak	12	Common	13	Medium	26	40	No Change	16	20	Good	11	14	Infill	2	3
Pine	3	Rare	37	Low	28	9	Decrease	24	19	Fair	7	4	Migrate	2	1
Other	30	Absent	9	FIA	1		New	4	4	Poor	12	16		5	5
-	57		66	•	67	67	Unknown	7	7	Very Poor	17	14			
							-	67	67	FIA Only	1	1			
											6	6			
Potentia	Potential Changes in Climate Variables											62			

Potential Changes in Climate Variables

Temperature (°F)												
	Scenario	2009	2039	2069	2099							
Annual	CCSM45	66.2	67.8	69.2	69.5							
Average	CCSM85	66.2	68.4	70.7	72.9							
	GFDL45	66.2	69.2	70.3	71.6							
	GFDL85	66.2	68.8	71.7	75.2							
	HAD45	66.2	68.4	71.1	72.0							
	HAD85	66.2	68.7	72.4	75.9							
Growing	CCSM45	79.2	80.7	81.6	82.2							
Season	CCSM85	79.2	81.5	83.5	86.3							
May—Sep	GFDL45	79.2	82.7	83.7	86.2							
	GFDL85	79.2	82.5	85.8	90.1							
	HAD45	79.2	81.8	84.2	84.7							
	HAD85	79.2	82.3	86.5	89.4							
Coldest	CCSM45	46.4	48.9	49.7	49.8							
Month	CCSM85	46.4	49.0	50.2	51.4							
Average	GFDL45	46.4	50.1	50.2	50.1							
	GFDL85	46.4	47.4	48.5	49.0							
	HAD45	46.4	46.7	48.4	49.0							
	HAD85	46.4	48.7	50.2	52.1							
Warmest	CCSM45	83.8	84.8	85.2	85.5							
Month	CCSM85	83.8	85.7	86.4	87.9							
Average	GFDL45	83.8	88.3	88.2	90.0							
	GFDL85	83.8	88.0	89.5	92.6							
	HAD45	83.8	86.6	87.7	87.9							
			~= ~									

Precipitation (in)													
	Scenario	2009	2039	2069	2099								
Annual	CCSM45	44.4	43.4	49.4	46.8								
Total	CCSM85	44.4	44.9	48.8	48.0								
	GFDL45	44.4	45.4	52.6	44.6								
	GFDL85	44.4	44.8	47.7	46.7								
	HAD45	44.4	45.1	43.2	46.6								
	HAD85	44.4	46.3	40.4	42.9								
Growing	CCSM45	17.7	18.3	20.0	18.7 ◆◆◆◆								
Season	CCSM85	17.7	17.5	18.0	16.8 ◆◆◆◆								
May—Sep	GFDL45	17.7	19.2	23.7	18.7								
	GFDL85	17.7	19.5	21.0	20.8								
	HAD45	17.7	17.1	16.3	17.7 ◆◆◆◆								
	HAD85	17.7	17.5	14.4	14.8								

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

HAD85

83.8

87.3

90.3

One x One Degree

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

			Cu		una i o			•	pability,	and wingi	ation				eters, Prasa
Common Name	Scientific Name	Range					ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
loblolly pine	Pinus taeda	WDH	High	73.7	3040.4		No change	No change	Medium		Good	Good			1 1
sweetgum	Liquidambar styraciflua	WDH	High	80.3	1138.4	11.6	No change	No change	Medium	Abundant	Good	Good			1 2
post oak	Quercus stellata	WDH	High	78.4	1026.6		Sm. inc.	Sm. inc.	High	Abundant	Very Good	Very Good			1 3
winged elm	Ulmus alata	WDL	Medium	83.1	755.6	6.3	No change	No change	Medium	Abundant	Good	Good			1 4
shortleaf pine	Pinus echinata	WDH	High	55.5	642.6	9.0	No change	No change	Medium	Abundant	Good	Good			1 5
water oak	Quercus nigra	WDH	High	76.5	540.5	5.4	Lg. inc.	Lg. inc.	Medium	Abundant	Very Good	Very Good			1 6
southern red oak	Quercus falcata	WDL	Medium	72.6	523.5	5.5	No change	No change	High	Abundant	Very Good	Very Good			1 7
sugarberry	Celtis laevigata	NDH	Medium	42.9	351.5	6.6	No change	No change	Medium	Common	Fair	Fair			1 8
eastern redcedar	Juniperus virginiana	WDH	Medium	36.3	208.3	4.6	Sm. inc.	Lg. inc.	Medium	Common	Good	Very Good			1 9
willow oak	Quercus phellos	NSL	Low	32.6	193.7	6.0	No change	No change	Medium	Common	Fair	Fair			1 10
green ash	Fraxinus pennsylvanica	WSH	Low	26.9	182.4	6.7	Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 11
American elm	Ulmus americana	WDH	Medium	29.3	125.9	3.4	Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 12
blackjack oak	Quercus marilandica	NSL	Medium	28.2	123.9	3.3	Lg. inc.	Lg. inc.	High	Common	Very Good	Very Good			1 13
black hickory	Carya texana	NDL	High	35.2	122.1	2.7	Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 14
pecan	Carya illinoinensis	NSH	Low	12.8	122.1	10.0	Lg. dec.	Sm. dec.	Low	Common	Very Poor	Poor			0 15
cedar elm	Ulmus crassifolia	NDH	Medium	18.9	110.8	8.3	Lg. inc.	Lg. inc.	Low	Common	Good	Good			1 16
blackgum	Nyssa sylvatica	WDL	Medium	37.4	97.5	2.2	Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 17
white ash	Fraxinus americana	WDL	Medium	27	84.4	2.7	Sm. dec.	Sm. dec.	Low	Common	Poor	Poor			0 18
cherrybark oak; swamp red o	Quercus pagoda	NSL	Medium	22.5	77.1	2.4	No change	Sm. inc.	Medium	Common	Fair	Good			1 19
mockernut hickory	Carya alba	WDL	Medium	23.9	55.1	1.8	Lg. inc.	Lg. inc.	High	Common	Very Good	Very Good			1 20
black willow	Salix nigra	NSH	Low	7.9	49.9		No change	No change	Low	Rare	Very Poor	Very Poor			0 21
eastern hophornbeam; ironw	•	WSL	Low	19.9	49.0		No change	No change	High	Rare	Fair	Fair			1 22
sassafras	Sassafras albidum	WSL	Low	27.4	45.6	1.5	No change	No change	Medium	Rare	Poor	Poor			1 23
bluejack oak	Quercus incana	NSL	Low	10.2	45.4		Lg. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 24
American hornbeam; muscle		WSL	Low	15.4	45.0		Sm. inc.	Lg. inc.	Medium	Rare	Fair	Good			1 25
honeylocust	Gleditsia triacanthos	NSH	Low	16.8	43.8	3.2	Lg. dec.	Sm. dec.	High	Rare	Poor	Poor			1 26
red maple	Acer rubrum	WDH	High	16.7	39.1		Lg. inc.	Lg. inc.	High	Rare	Good	Good			1 27
white oak	Quercus alba	WDH	Medium	12.6	37.1		Sm. inc.	Sm. inc.	High	Rare	Good	Good	Infill ++	Infill ++	1 28
overcup oak	Quercus lyrata	NSL	Medium	3.4	36.5	8.2	Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 29
river birch	Betula nigra	NSL	Low	13.5	34.9		Sm. inc.	Lg. inc.	Medium	Rare	Fair	Good			1 30
black walnut	Juglans nigra	WDH	Low	2.8	32.9		Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 31
flowering dogwood	Cornus florida	WDL	Medium	21.4	30.2	0.7	No change	No change	Medium	Rare	Poor	Poor			1 32
common persimmon	Diospyros virginiana	NSL	Low	12.4	28.2		Lg. dec.	Sm. dec.	High	Rare	Poor	Poor			1 33
slash pine	Pinus elliottii	NDH	High	1.9	26.5		No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 34
eastern redbud	Cercis canadensis	NSL	Low	13.1	25.7		Sm. dec.	No change	Medium	Rare	Very Poor	Poor			1 35
red mulberry	Morus rubra	NSL	Low	11.5	20.9		Sm. dec.	No change	Medium	Rare	Very Poor	Poor			1 36
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp		Low	7.4	20.4		Lg. inc.	Lg. inc.	High	Rare	Good	Good			1 37
boxelder	Acer negundo	WSH	Low	3.8	19.4		Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			1 38
American holly	Ilex opaca	NSL	Medium	16.1	18.6		Sm. inc.	Lg. inc.	Medium	Rare	Fair	Good			1 39
Osage-orange	Maclura pomifera	NDH	Medium	1.8	12.1		Sm. dec.	No change	High	Rare	Poor	Fair		Infill +	2 40
black cherry	Prunus serotina	WDL	Medium	7.3	11.5		No change	No change	Low	Rare	Very Poor	Very Poor			0 41
water elm	Planera aquatica	NSL	Low	6.6	11.5		Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 42
shagbark hickory	Carya ovata	WSL	Medium	2.7	11.3		Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 43
florida maple	Acer barbatum	NSL	Low	2.6	10.2		Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 44
water hickory	Carya aquatica	NSL	Medium	6.3	7.7		Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			2 45
sycamore	Platanus occidentalis	NSL	Low	2.8	7.7		Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 46
eastern cottonwood	Populus deltoides	NSH	Low	0.9	5.1		Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 48
eastern cottonwood	r opulus delloides	NOIT	LUW	0.9	5.1	5.4	Jill. uec.	Jill. UEC.	Medialli	Mare	very roof	very roof			0 47

One x One Degree

Climate Change Atlas Tree Species

climate change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv (ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
wild plum	Prunus americana	NSLX	FIA	0.2	5.0	1.2	Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 48
American basswood	Tilia americana	WSL	Medium	6.6	4.9	1.7 9	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 49
slippery elm	Ulmus rubra	WSL	Low	2.9	3.8	0.6	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 50
bitternut hickory	Carya cordiformis	WSL	Low	1.9	3.3	1.7	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 51
swamp tupelo	Nyssa biflora	NDH	Medium	0.9	3.1	3.3	No change	No change	Low	Rare	Very Poor	Very Poor			2 52
Shumard oak	Quercus shumardii	NSL	Low	0.8	2.4	2.2	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 53
sweetbay	Magnolia virginiana	NSL	Medium	1.1	1.1	0.5	Very Lg. dec.	No change	Medium	Rare	Lost	Poor			0 54
black oak	Quercus velutina	WDH	High	0.9	1.1	1.2 9	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 55
laurel oak	Quercus laurifolia	NDH	Medium	1	1.0	0.2	Very Lg. dec.	No change	Medium	Rare	Lost	Poor			0 56
shellbark hickory	Carya laciniosa	NSL	Low	0.9	0.6	0.7	No change	No change	Medium	Rare	Poor	Poor			0 57
ashe juniper	Juniperus ashei	NDH	High	0	0	0 1	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			0 58
longleaf pine	Pinus palustris	NSH	Medium	0	0	0 1	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 59
yellow buckeye	Aesculus flava	NSL	Low	0	0	0 1	Unknown	Unknown	Low	Absent	Unknown	Unknown			0 60
serviceberry	Amelanchier spp.	NSL	Low	0	0	0 1	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 61
American beech	Fagus grandifolia	WDH	High	0	0	0 1	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate +		3 62
black ash	Fraxinus nigra	WSH	Medium	0	0	0 1	Unknown	Unknown	Low	Absent	Unknown	Unknown			0 63
redbay	Persea borbonia	NSL	Low	0	0	0 1	Unknown	Unknown	High	Modeled	Unknown	Unknown			0 64
northern red oak	Quercus rubra	WDH	Medium	0	0	0 1	Unknown	Unknown	High	Absent	Unknown	Unknown			0 65
live oak	Quercus virginiana	NDH	High	0	0	0 1	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Likely +	Likely +	3 66
black locust	Robinia pseudoacacia	NDH	Low	0	0	0 1	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 67

