S31 E93

One x One Degree

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi **FIA Plots** Area of Region 10,533 4,066.9 375

Species Information

Season CCSM85

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species										l Change i	n Habitat S	uitability	Capability	to Cope o	Migration Potential			
Ash	3						Model			:	Scenario	Scenario			Scenario	Scenario		SHIFT	SHIFT
Hickory	7		Abu	ndance			Reliability	Adaptabili	ty		RCP45	RCP85			RCP45	RCP85		RCP45	RCP85
Maple	3	Ab	oundant	2		High	14	23		Increase	31	34		Very Good	13	13	Likely	0	0
Oak		С	ommon	25		Medium	35	52	No	Change	22	22		Good	14	17	Infill	17	21
Pine	4		Rare	45		Low	33	10	C	ecrease	16	13		Fair	11	12	Migrate	3	3
Other	39		Absent	12		FIA	3			New	6	6		Poor	18	15	· -	20	24
	72			84			85	85	U	nknown	10	10		Very Poor	12	11			
											85	85		FIA Only	3	3			
														Unknown	7	7			
Potential Changes in Climate Variables														78	78				
Temperature (°F)							Precipitat	ion (in)											
	Scenario	2009	2039	2069	2099			•	Scenario	2009	2039	2069	2099						
Annual	CCSM45	65.6	67.3	69.0	69.2			Annual	CCSM45	54.9	55.4	62.2	60.5 ++++						
Average	CCSM85	65.6	67.6	70.0		-		Total	CCSM85	54.9	57.1	61.7	63.0 ++++						
	GFDL45	65.6	68.3	69.6		-			GFDL45	54.9	58.4	68.7	59.6 +++++						
	GFDL85	65.6	68.1	71.0		-			GFDL85	54.9	58.1	60.9	61.5 ++++						
	HAD45	65.6	68.0	70.8		-			HAD45	54.9	53.9	53.4	57.7 ++++						
	HAD85	65.6	68.3	72.1	75.7				HAD85	54.9	56.9	49.7	53.1 +++++						
Growing	CCSM45	78.7	80.2	81.5	81.9			Growing	CCSM45	20.3	20.6	22.3	21.4 + + + +						
								0											

20.3

20.3

20.3

20.3

20.3

19.5

22.8

23.3

19.4

19.7

20.5

29.2

25.4

19.2

Season CCSM85

GFDL85

HAD45

HAD85

May—Sep GFDL45

GFDL45	78.7	81.8	82.9	85.2
GFDL85	78.7	81.7	84.8	88.9
HAD45	78.7	81.6	84.3	84.7
HAD85	78.7	81.9	86.6	89.7
CCSM45	46.1	48.8	49.7	49.8
CCSM85	46.1	48.7	50.0	51.3
GFDL45	46.1	49.5	49.6	49.5 🛹 🕂
GFDL85	46.1	47.1	48.0	48.7 🛶 🔶
HAD45	46.1	47.0	48.7	49.6
HAD85	46.1	48.5	50.0	51.9
0001445	02.0		045	
				84.6 🛶 🔶
CCSM85	82.9	84.6	85.3	86.8 🛶 🔶
GFDL45	82.9	86.9	86.7	88.4
GFDL85	82.9	86.6	87.9	90.6
HAD45	82.9	86.6	87.8	87.7
HAD85	82.9	87.0	89.5	90.4
	GFDL85 HAD45 HAD85 CCSM45 CCSM85 GFDL45 GFDL85 HAD45 HAD45 CCSM45 CCSM45 GFDL45 GFDL45 GFDL45 GFDL85 HAD45	GFDL85 78.7 HAD45 78.7 HAD85 78.7 CCSM45 46.1 CCSM85 46.1 GFDL45 46.1 GFDL85 46.1 HAD45 46.1 GFDL85 46.1 HAD45 46.1 HAD45 46.1 CCSM45 82.9 CCSM85 82.9 GFDL45 82.9 GFDL85 82.9 HAD45 82.9 HAD45 82.9	GFDL85 78.7 81.7 HAD45 78.7 81.6 HAD85 78.7 81.9 CCSM45 46.1 48.8 CCSM85 46.1 48.7 GFDL45 46.1 49.5 GFDL85 46.1 47.1 HAD45 46.1 47.0 HAD45 46.1 48.5 CCSM45 82.9 84.6 GFDL45 82.9 86.9 GFDL85 82.9 86.6 HAD45 82.9 86.6	GFDL85 78.7 81.7 84.8 HAD45 78.7 81.6 84.3 HAD85 78.7 81.6 84.3 HAD85 78.7 81.9 86.6 CCSM45 46.1 48.8 49.7 CCSM85 46.1 48.7 50.0 GFDL45 46.1 49.5 49.6 GFDL85 46.1 47.1 48.0 HAD45 46.1 47.0 48.7 HAD85 46.1 47.0 48.7 HAD85 46.1 48.5 50.0 CCSM45 82.9 84.1 84.5 CCSM85 82.9 84.6 85.3 GFDL45 82.9 86.9 86.7 GFDL85 82.9 86.6 87.9 HAD45 82.9 86.6 87.8

80.5

82.7

85.6

78.7

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

19.9

26.2

19.7 ++++

-

23.6 🔶

15.8 16.2

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

S31 E93

One x One Degree

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
loblolly pine	Pinus taeda	WDH	High	95.7	5271.8		Sm. dec.	Medium		Fair	Fair			0 1
sweetgum	Liquidambar styraciflua	WDH	High	92.3	929.7	7.4 Sm. inc.	Sm. inc.	Medium	Abundant	Very Good	Very Good			1 2
water oak	Quercus nigra	WDH	High	75.7	396.3	3.6 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 3
longleaf pine	Pinus palustris	NSH	Medium	25	392.5		Sm. inc.	Medium	Common	Good	Good			1 4
white oak	Quercus alba	WDH	Medium	67.8	360.7	4.6 Sm. dec.	No change	High	Common	Fair	Good			1 5
shortleaf pine	Pinus echinata	WDH	High	60.9	353.9	4.7 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			16
southern red oak	Quercus falcata	WDL	Medium	75.8	317.8	3.3 Lg. inc.	Lg. inc.	High	Common	Very Good	Very Good			1 7
slash pine	Pinus elliottii	NDH	High	17.9	299.9	-	Lg. inc.	Medium	Common	Very Good	Very Good			1 8
blackgum	Nyssa sylvatica	WDL	Medium	69.9	266.9	2.9 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 9
post oak	Quercus stellata	WDH	High	53.4	206.7	3.1 Lg. inc.	Lg. inc.	High	Common	Very Good	Very Good			1 10
red maple	Acer rubrum	WDH	High	76.5	192.0	2.1 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 11
cherrybark oak; swamp red o	Quercus pagoda	NSL	Medium	46.5	185.2	3.2 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 12
green ash	Fraxinus pennsylvanica	WSH	Low	29.9	164.8	3.1 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 13
American hornbeam; muscle	N Carpinus caroliniana	WSL	Low	52.6	149.2	2.2 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 14
winged elm	Ulmus alata	WDL	Medium	55.4	120.5	1.7 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 15
American beech	Fagus grandifolia	WDH	High	34.8	119.0	2.9 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 16
willow oak	Quercus phellos	NSL	Low	27.9	108.5	3.3 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 17
pecan	Carya illinoinensis	NSH	Low	4.3	104.4	14.6 No change	No change	Low	Common	Poor	Poor	Infill +	Infill +	0 18
black willow	Salix nigra	NSH	Low	3.2	96.4	9.1 No change	No change	Low	Common	Poor	Poor	Infill +	Infill +	0 19
sweetbay	Magnolia virginiana	NSL	Medium	22.1	92.4	3.0 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 20
American elm	Ulmus americana	WDH	Medium	28.9	84.0	1.9 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 21
eastern hophornbeam; ironv		WSL	Low	42.1	81.2	1.6 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 22
mockernut hickory	Carya alba	WDL	Medium	46.1	79.6	1.6 Lg. inc.	Lg. inc.	High	Common	Very Good	Very Good			1 23
laurel oak	Quercus laurifolia	NDH	Medium	15.5	66.3	2.7 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 24
sugarberry	Celtis laevigata	NDH	Medium	9.9	65.5	2.2 Sm. inc.	Sm. inc.	Medium	Common	Good	Good	Infill ++	Infill ++	1 25
bald cypress	Taxodium distichum	NSH	Medium	9.9	64.3	3.9 No change	No change	Medium	Common	Fair	Fair	Infill +	Infill +	1 26
American holly	llex opaca	NSL	Medium	37.1	56.7	1.2 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 27
overcup oak	Quercus lyrata	NSL	Medium	8.4	41.2	2.6 No change	No change	Low	Rare	Very Poor	Very Poor			0 28
flowering dogwood	Cornus florida	WDL	Medium	41.3	41.0	0.8 Lg. inc.	Lg. inc.	Medium	Rare	Good	Good			1 29
white ash	Fraxinus americana	WDL	Medium	30.7	36.4	1.0 Lg. inc.	Lg. inc.	Low	Rare	Fair	Fair			1 30
florida maple	Acer barbatum	NSL	Low	18.9	27.9	1.0 Lg. dec.	Lg. dec.	High	Rare	Poor	Poor			1 31
black cherry	Prunus serotina	WDL	Medium	33.5	27.3	0.7 Sm. inc.	Lg. inc.	Low	Rare	Poor	Fair			1 32
sassafras	Sassafras albidum	WSL	Low	30	26.8	0.7 Sm. inc.	Lg. inc.	Medium	Rare	Fair	Good			1 33
blackjack oak	Quercus marilandica	NSL	Medium	14.4	25.6	1.2 Lg. inc.	Lg. inc.	High	Rare	Good	Good	Infill ++	Infill ++	1 34
southern magnolia	Magnolia grandiflora	NSL	Low	14.6	25.1	1.4 Lg. inc.	Lg. inc.	Medium	Rare	Good	Good			1 35
eastern cottonwood	Populus deltoides	NSH	Low	3.8	23.8	6.3 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 36
sycamore	Platanus occidentalis	NSL	Low	8	21.6	2.1 Sm. dec.	Sm. dec.	Medium	Rare	, Very Poor	, Very Poor			0 37
, black hickory	Carya texana	NDL	High	9.5	20.7	1.6 No change	Sm. inc.	Medium	Rare	Poor	, Fair	Infill +	Infill +	2 38
water hickory	Carya aquatica	NSL	Medium	6.2	18.6	0.8 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 39
honeylocust	Gleditsia triacanthos	NSH	Low	4.1	18.5	1.8 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	1 40
swamp tupelo	Nyssa biflora	NDH	Medium	2.2	18.1	5.9 No change	No change	Low	Rare	Very Poor	Very Poor			2 41
water elm	Planera aquatica	NSL	Low	2.5	15.4	2.9 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 42
swamp chestnut oak	Quercus michauxii	NSL	Low	6.8	14.9	1.4 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	1 43
Shumard oak	Quercus shumardii	NSL	Low	5.7	13.9	2.4 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			1 44
black oak	Quercus velutina	WDH	High	5.7	12.2	2.1 Lg. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 45
eastern redcedar	Juniperus virginiana	WDH	Medium	6.9	11.9	1.0 Lg. inc.	Lg. inc.	Medium	Rare	Good	Good	Infill ++	Infill ++	2 46
redbay	Persea borbonia	NSL	Low	11.1	11.1		No change	High	Rare	Poor	Fair			1 47
,														,

S31 E93

One x One Degree

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

							,	. ,,	0				werson, re	cers, rrasaa, n
Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
pignut hickory	Carya glabra	WDL	Medium	6.5	10.9	1.4 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 48
common persimmon	Diospyros virginiana	NSL	Low	7.6	10.4	0.9 No change	No change	High	Rare	Fair	Fair		Infill +	1 49
river birch	Betula nigra	NSL	Low	1.1	9.7	1.7 No change	Sm. inc.	Medium	Rare	Poor	Fair	Infill +	Infill +	2 50
nuttall oak	Quercus texana	NSH	Medium	2.7	9.6	3.4 No change	No change	High	Rare	Fair	Fair			0 51
waterlocust	Gleditsia aquatica	NSLX	FIA	1.4	9.1	3.5 Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 52
red mulberry	Morus rubra	NSL	Low	10.2	7.4	0.5 Lg. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 53
boxelder	Acer negundo	WSH	Low	2.9	6.8	1.6 No change	No change	High	Rare	Fair	Fair		Infill +	2 54
slippery elm	Ulmus rubra	WSL	Low	5.9	6.7	0.7 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	1 55
pond cypress	Taxodium ascendens	NSH	Medium	0.4	5.9	2.6 Sm. dec.	No change	Medium	Rare	Very Poor	Poor		Infill +	2 56
bitternut hickory	Carya cordiformis	WSL	Low	1	5.3	2.7 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor		Infill +	2 57
black walnut	Juglans nigra	WDH	Low	1.2	5.3	1.0 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 58
water tupelo	Nyssa aquatica	NSH	Medium	4.5	4.5	0.9 No change	No change	Low	Rare	Very Poor	Very Poor			2 59
cittamwood/gum bumelia	Sideroxylon lanuginosum s	ssp. NSL	Low	3.8	4.1	1.1 Lg. inc.	Lg. inc.	High	Rare	Good	Good	Infill ++	Infill ++	2 60
bluejack oak	Quercus incana	NSL	Low	2.9	3.5	0.4 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 61
swamp white oak	Quercus bicolor	NSL	Low	0.9	2.3	2.4 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 62
eastern redbud	Cercis canadensis	NSL	Low	3	1.9	0.3 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 63
wild plum	Prunus americana	NSLX	FIA	1.4	. 1.7	0.2 Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 64
Osage-orange	Maclura pomifera	NDH	Medium	0.9	1.1	1.2 No change	Lg. inc.	High	Rare	Fair	Good			2 65
cedar elm	Ulmus crassifolia	NDH	Medium	1.2	0.8	0.3 Lg. inc.	Lg. inc.	Low	Rare	Fair	Fair	Infill +	Infill +	2 66
shagbark hickory	Carya ovata	WSL	Medium	0.9	0.8	0.8 Very Lg. dec.	Very Lg. dec.	Medium	Rare	Lost	Lost			0 67
black ash	Fraxinus nigra	WSH	Medium	0.9	0.8	0.8 No change	No change	Low	Rare	Very Poor	Very Poor			0 68
silverbell	Halesia spp.	NSL	Low	0.9	0.4	0.4 No change	No change	Medium	Rare	Poor	Poor			0 69
pin cherry	Prunus pensylvanica	NSL	Low	0.9	0.3	0.3 No change	No change	Medium	Rare	Poor	Poor			0 70
ogeechee tupelo	Nyssa ogeche	NSLX	FIA	0.6	0.2	0.1 Unknown	Unknown	Low	Rare	FIA Only	FIA Only			0 71
chestnut oak	Quercus prinus	NDH	High	0.9	0.1	0.2 Lg. dec.	Lg. dec.	High	Rare	Poor	Poor			0 72
striped maple	Acer pensylvanicum	NSL	Medium	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 73
serviceberry	Amelanchier spp.	NSL	Low	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 74
shellbark hickory	Carya laciniosa	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 75
yellow-poplar	Liriodendron tulipifera	WDH	High	0	0	0 New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 76
cucumbertree	Magnolia acuminata	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 77
bigleaf magnolia	Magnolia macrophylla	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 78
sourwood	Oxydendrum arboreum	NDL	High	0	0	0 Unknown	Unknown	High	Modeled	Unknown	Unknown			0 79
scarlet oak	Quercus coccinea	WDL	Medium	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 80
turkey oak	Quercus laevis	NSH	Medium	0	0	0 New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 81
chinkapin oak	Quercus muehlenbergii	NSL	Medium	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 82
northern red oak	Quercus rubra	WDH	Medium	0	0	0 Unknown	Unknown	High	Absent	Unknown	Unknown			0 83
live oak	Quercus virginiana	NDH	High	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate ++	Migrate ++	+ 384
American basswood	Tilia americana	WSL	Medium	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 85

