#### One x One Degree

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

**USDA Forest Service Northern Research Station** Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 10,533 4,066.9 379

#### **Species Information**

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

| Genus                                  | Species |          |        |        |             |              | Potential Change in Habitat Suitability |       |          | Capability | Migration Potential |          |         |       |       |
|----------------------------------------|---------|----------|--------|--------|-------------|--------------|-----------------------------------------|-------|----------|------------|---------------------|----------|---------|-------|-------|
| Ash                                    | 2       |          | Model  |        |             |              |                                         |       | Scenario |            | Scenario            | Scenario |         | SHIFT | SHIFT |
| Hickory                                | 7       | Abu      | ndance | 1      | Reliability | Adaptability |                                         | RCP45 | RCP85    |            | RCP45               | RCP85    |         | RCP45 | RCP85 |
| Maple                                  | 4       | Abundant | 3      | High   | 15          | 25           | Increase                                | 34    | 36       | Very Good  | 13                  | 16       | Likely  | 4     | 4     |
| Oak                                    | 18      | Common   | 23     | Medium | 34          | 55           | No Change                               | 14    | 18       | Good       | 18                  | 19       | Infill  | 13    | 14    |
| Pine                                   | 6       | Rare     | 49     | Low    | 37          | 9            | Decrease                                | 24    | 18       | Fair       | 11                  | 11       | Migrate | 2     | 3     |
| Other                                  | 38      | Absent   | 12     | FIA    | 3           |              | New                                     | 8     | 9        | Poor       | 13                  | 11       | •       | 19    | 21    |
| •                                      | 75      | _        | 87     | _      | 89          | 89           | Unknown                                 | 9     | 8        | Very Poor  | 14                  | 12       |         |       |       |
|                                        |         |          |        |        |             |              | -                                       | 89    | 89       | FIA Only   | 3                   | 3        |         |       |       |
|                                        |         |          |        |        |             |              |                                         |       |          | Unknown    | 6                   | 5        |         |       |       |
| Potential Changes in Climate Variables |         |          |        |        |             |              |                                         |       |          | •          | 70                  | 77       |         |       |       |

#### Potential Changes in Climate variables

| Temperature (°F) |          |      |      |      |      |  |  |  |  |  |  |  |
|------------------|----------|------|------|------|------|--|--|--|--|--|--|--|
|                  | Scenario | 2009 | 2039 | 2069 | 2099 |  |  |  |  |  |  |  |
| Annual           | CCSM45   | 65.2 | 66.8 | 68.6 | 68.8 |  |  |  |  |  |  |  |
| Average          | CCSM85   | 65.2 | 67.1 | 69.6 | 71.9 |  |  |  |  |  |  |  |
|                  | GFDL45   | 65.2 | 67.9 | 69.4 | 70.3 |  |  |  |  |  |  |  |
|                  | GFDL85   | 65.2 | 67.7 | 70.8 | 74.1 |  |  |  |  |  |  |  |
|                  | HAD45    | 65.2 | 67.6 | 70.4 | 71.6 |  |  |  |  |  |  |  |
|                  | HAD85    | 65.2 | 67.9 | 71.7 | 75.5 |  |  |  |  |  |  |  |
|                  |          |      |      |      |      |  |  |  |  |  |  |  |
| Growing          | CCSM45   | 77.7 | 79.2 | 80.5 | 81.0 |  |  |  |  |  |  |  |
| Season           | CCSM85   | 77.7 | 79.4 | 81.7 | 84.6 |  |  |  |  |  |  |  |
| May—Sep          | GFDL45   | 77.7 | 80.7 | 82.1 | 83.8 |  |  |  |  |  |  |  |
|                  | GFDL85   | 77.7 | 80.6 | 83.7 | 87.8 |  |  |  |  |  |  |  |
|                  | HAD45    | 77.7 | 80.9 | 83.5 | 84.4 |  |  |  |  |  |  |  |
|                  | HAD85    | 77.7 | 81.1 | 86.4 | 89.6 |  |  |  |  |  |  |  |
|                  |          |      |      |      |      |  |  |  |  |  |  |  |
| Coldest          | CCSM45   | 46.1 | 48.4 | 49.3 | 49.2 |  |  |  |  |  |  |  |
| Month            | CCSM85   | 46.1 | 48.8 | 50.1 | 51.2 |  |  |  |  |  |  |  |
| Average          | GFDL45   | 46.1 | 49.7 | 49.7 | 49.8 |  |  |  |  |  |  |  |
|                  | GFDL85   | 46.1 | 47.5 | 48.4 | 49.0 |  |  |  |  |  |  |  |
|                  | HAD45    | 46.1 | 46.6 | 48.3 | 49.2 |  |  |  |  |  |  |  |
|                  | HAD85    | 46.1 | 48.0 | 49.3 | 51.1 |  |  |  |  |  |  |  |
|                  |          |      |      |      |      |  |  |  |  |  |  |  |
| Warmest          |          | 81.3 | 82.6 | 83.0 | 83.2 |  |  |  |  |  |  |  |
| Month            | CCSM85   | 81.3 | 82.9 | 83.8 | 85.5 |  |  |  |  |  |  |  |
| Average          | GFDL45   | 81.3 | 84.9 | 84.8 | 86.1 |  |  |  |  |  |  |  |
|                  | GFDL85   | 81.3 | 84.3 | 85.7 | 88.1 |  |  |  |  |  |  |  |
|                  | HAD45    | 81.3 | 85.3 | 87.0 | 87.2 |  |  |  |  |  |  |  |
|                  | HAD85    | 81.3 | 85.8 | 89.0 | 90.0 |  |  |  |  |  |  |  |

| Precipitation (in) |          |      |      |      |              |  |  |  |  |  |  |  |  |
|--------------------|----------|------|------|------|--------------|--|--|--|--|--|--|--|--|
|                    | Scenario | 2009 | 2039 | 2069 | 2099         |  |  |  |  |  |  |  |  |
| Annual             | CCSM45   | 59.9 | 63.3 | 67.8 | 65.6         |  |  |  |  |  |  |  |  |
| Total              | CCSM85   | 59.9 | 63.5 | 64.2 | 68.7         |  |  |  |  |  |  |  |  |
|                    | GFDL45   | 59.9 | 66.4 | 72.8 | 70.0         |  |  |  |  |  |  |  |  |
|                    | GFDL85   | 59.9 | 65.2 | 67.3 | 68.9         |  |  |  |  |  |  |  |  |
|                    | HAD45    | 59.9 | 58.6 | 61.2 | 63.9         |  |  |  |  |  |  |  |  |
|                    | HAD85    | 59.9 | 62.4 | 55.7 | 60.2         |  |  |  |  |  |  |  |  |
|                    |          |      |      |      |              |  |  |  |  |  |  |  |  |
| Growing            | CCSM45   | 23.4 | 24.2 | 25.0 | 24.6         |  |  |  |  |  |  |  |  |
| Season             | CCSM85   | 23.4 | 22.5 | 23.2 | 23.5 ◆ ◆ ◆ ◆ |  |  |  |  |  |  |  |  |
| May—Sep            | GFDL45   | 23.4 | 27.0 | 31.4 | 28.2         |  |  |  |  |  |  |  |  |
|                    | GFDL85   | 23.4 | 27.6 | 29.7 | 31.3         |  |  |  |  |  |  |  |  |
|                    | HAD45    | 23.4 | 22.3 | 23.7 | 23.4 ◆◆◆◆    |  |  |  |  |  |  |  |  |
|                    | HAD85    | 23.4 | 23.2 | 19.3 | 19.6         |  |  |  |  |  |  |  |  |

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.



# One x One Degree

# Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

### Current and Potential Future Habitat, Capability, and Migration

| Common Nama              | Scientific Name           | Dan   | MD     | %Coll | ElAcum | FIAir Chaclas  | Chacles   |        | J        | CanabildE | Canabiler | CHIETAE   |           | SSO N      |
|--------------------------|---------------------------|-------|--------|-------|--------|----------------|-----------|--------|----------|-----------|-----------|-----------|-----------|------------|
| Common Name              | Scientific Name           | Range |        |       |        | FIAiv ChngCl45 | ChngCl85  | Adap   | Abundant | Capabil45 | Capabil85 | SHIFT45   | SHIFT85   |            |
| loblolly pine            | Pinus taeda               | WDH   | High   | 97.1  |        | - J            | No change |        | Abundant | Good      | Good      |           |           | 1 1        |
| sweetgum                 | Liquidambar styraciflua   | WDH   | High   | 96.7  |        |                | No change | Medium |          | Good      | Good      |           |           | 1 2<br>1 3 |
| water oak                | Quercus nigra             | WDH   | High   | 95.2  |        | 7.6 Sm. inc.   | Sm. inc.  | Medium |          | Very Good | Very Good |           |           |            |
| white oak                | Quercus alba              | WDH   | Medium | 63.1  | 345.3  | 4.2 No change  | No change | High   | Common   | Good      | Good      |           |           | 1 4<br>1 5 |
| shortleaf pine           | Pinus echinata            | WDH   | High   | 60.6  | 332.8  | 4.3 Lg. inc.   | Lg. inc.  | Medium |          | Very Good | Very Good |           |           |            |
| yellow-poplar            | Liriodendron tulipifera   | WDH   | High   | 50.8  | 259.0  | 3.3 No change  | Sm. dec.  | High   | Common   | Good      | Fair      |           |           | 1 6        |
| southern red oak         | Quercus falcata           | WDL   | Medium | 71.6  | 249.2  | 2.6 Lg. inc.   | Lg. inc.  | High   | Common   | Very Good | Very Good |           |           | 1 7        |
| blackgum                 | Nyssa sylvatica           | WDL   | Medium | 72.7  | 240.8  | 2.3 Lg. inc.   | Lg. inc.  | High   | Common   | Very Good | Very Good |           |           | 1 8<br>0 9 |
| black cherry             | Prunus serotina           | WDL   | Medium | 72.9  | 233.5  | 2.6 No change  | No change | Low    | Common   | Poor      | Poor      |           |           |            |
| winged elm               | Ulmus alata               | WDL   | Medium | 60.7  | 182.8  | 2.3 Lg. inc.   | Lg. inc.  |        | Common   | Very Good | Very Good |           |           | 1 10       |
| ,                        | scle Carpinus caroliniana | WSL   | Low    | 60.1  | 180.4  | 2.3 Sm. inc.   | Lg. inc.  | Medium |          | Good      | Very Good |           |           | 1 11       |
| cherrybark oak; swamp ro |                           | NSL   | Medium | 43.5  | 172.1  | 2.8 Sm. inc.   | Lg. inc.  | Medium |          | Good      | Very Good |           |           | 1 12       |
| American beech           | Fagus grandifolia         | WDH   | High   | 47.2  |        | 2.5 Sm. inc.   | Sm. inc.  | Medium |          | Good      | Good      |           |           | 1 13       |
| post oak                 | Quercus stellata          | WDH   | High   | 44.6  | 125.4  | 2.1 Lg. inc.   | Lg. inc.  | High   | Common   | Very Good | Very Good |           |           | 1 14       |
| red maple                | Acer rubrum               | WDH   | High   | 70.2  |        | 9              | Lg. inc.  | High   | Common   | Very Good | Very Good |           |           | 1 15       |
| mockernut hickory        | Carya alba                | WDL   | Medium | 42.5  | 100.7  | 1.6 Lg. inc.   | Lg. inc.  | High   | Common   | Very Good | Very Good |           |           | 1 16       |
| pignut hickory           | Carya glabra              | WDL   | Medium | 40.8  | 95.8   | 1.8 Sm. dec.   | No change | Medium |          | Poor      | Fair      |           |           | 1 17       |
| flowering dogwood        | Cornus florida            | WDL   | Medium | 56.2  | 92.7   | 1.1 Sm. inc.   | Sm. inc.  | Medium |          | Good      | Good      |           |           | 1 18       |
| southern magnolia        | Magnolia grandiflora      | NSL   | Low    | 29.5  | 72.5   | 1.9 Lg. inc.   | Lg. inc.  | Medium |          | Very Good | Very Good |           |           | 1 19       |
| spruce pine              | Pinus glabra              | NSL   | Low    | 18    | 69.6   | 3.1 Lg. dec.   | Lg. dec.  |        | Common   | Poor      | Poor      |           |           | 0 20       |
| swamp chestnut oak       | Quercus michauxii         | NSL   | Low    | 15.2  | 65.9   | 3.4 Sm. inc.   | Sm. inc.  |        | Common   | Good      | Good      |           |           | 1 21       |
| eastern hophornbeam; ir  | , ,                       | WSL   | Low    | 44.7  | 65.6   | 1.0 Lg. inc.   | Lg. inc.  | High   | Common   | Very Good | Very Good |           |           | 1 22       |
| sugarberry               | Celtis laevigata          | NDH   | Medium | 13.5  | 62.8   | 2.2 Lg. inc.   | Lg. inc.  |        | Common   | Very Good | Very Good |           |           | 1 23       |
| American elm             | Ulmus americana           | WDH   | Medium | 28.9  | 60.1   | 1.3 Lg. inc.   | Lg. inc.  | Medium |          | Very Good | Very Good |           |           | 1 24       |
| common persimmon         | Diospyros virginiana      | NSL   | Low    | 38.3  | 59.3   | 1.2 Sm. dec.   | Sm. inc.  | High   | Common   | Fair      | Very Good |           |           | 1 25       |
| sweetbay                 | Magnolia virginiana       | NSL   | Medium | 17.7  | 54.2   | J              | Lg. inc.  |        | Common   | Very Good | Very Good |           |           | 1 26       |
| sourwood                 | Oxydendrum arboreum       | NDL   | High   | 33.5  | 44.1   | 0.9 Sm. dec.   | Sm. dec.  | High   | Rare     | Poor      | Poor      |           |           | 1 27       |
| sassafras                | Sassafras albidum         | WSL   | Low    | 26.1  | 43.6   | 1.0 Sm. inc.   | Lg. inc.  | Medium |          | Fair      | Good      |           |           | 1 28       |
| willow oak               | Quercus phellos           | NSL   | Low    | 18.4  | 43.1   | 1.8 Lg. inc.   | Lg. inc.  | Medium | Rare     | Good      | Good      |           |           | 1 29       |
| swamp tupelo             | Nyssa biflora             | NDH   | Medium | 6     | 42.1   | 3.8 No change  | No change | Low    | Rare     | Very Poor | Very Poor |           |           | 0 30       |
| laurel oak               | Quercus laurifolia        | NDH   | Medium | 21.3  | 40.8   | 1.4 Lg. inc.   | Lg. inc.  | Medium | Rare     | Good      | Good      |           |           | 1 31       |
| sycamore                 | Platanus occidentalis     | NSL   | Low    | 8.8   | 39.3   | 2.0 No change  | No change | Medium | Rare     | Poor      | Poor      | Infill +  | Infill +  | 1 32       |
| American holly           | llex opaca                | NSL   | Medium | 24.9  | 31.8   | 1.0 Lg. inc.   | Lg. inc.  | Medium | Rare     | Good      | Good      |           |           | 1 33       |
| pecan                    | Carya illinoinensis       | NSH   | Low    | 6.4   | 31.4   | 3.0 No change  | No change | Low    | Rare     | Very Poor | Very Poor |           |           | 0 34       |
| eastern redcedar         | Juniperus virginiana      | WDH   | Medium | 15.8  | 31.0   | 1.5 Lg. inc.   | Lg. inc.  | Medium | Rare     | Good      | Good      | Infill ++ | Infill ++ | 1 35       |
| water tupelo             | Nyssa aquatica            | NSH   | Medium | 3.5   | 27.8   | 5.5 Sm. dec.   | No change | Low    | Rare     | Very Poor | Very Poor |           |           | 2 36       |
| blackjack oak            | Quercus marilandica       | NSL   | Medium | 6.7   | 25.3   | 1.3 Lg. inc.   | Lg. inc.  | High   | Rare     | Good      | Good      | Infill ++ | Infill ++ | 1 37       |
| slash pine               | Pinus elliottii           | NDH   | High   | 1.3   | 21.7   | 5.5 Lg. inc.   | Lg. inc.  | Medium | Rare     | Good      | Good      |           |           | 2 38       |
| green ash                | Fraxinus pennsylvanica    | WSH   | Low    | 12.7  | 21.4   | 0.8 Lg. inc.   | Lg. inc.  | Medium | Rare     | Good      | Good      |           |           | 1 39       |
| black willow             | Salix nigra               | NSH   | Low    | 5.9   | 21.3   | 3.1 Sm. inc.   | Lg. inc.  | Low    | Rare     | Poor      | Fair      |           |           | 1 40       |
| overcup oak              | Quercus lyrata            | NSL   | Medium | 5.5   | 20.8   | 2.1 No change  | No change | Low    | Rare     | Very Poor | Very Poor |           |           | 2 41       |
| white ash                | Fraxinus americana        | WDL   | Medium | 17.4  | 19.5   | 0.7 Lg. inc.   | Lg. inc.  | Low    | Rare     | Fair      | Fair      | Infill +  | Infill +  | 1 42       |
| waterlocust              | Gleditsia aquatica        | NSLX  | FIA    | 0.9   | 19.0   | 18.7 Unknown   | Unknown   | Medium | Rare     | FIA Only  | FIA Only  |           |           | 0 43       |
| water hickory            | Carya aquatica            | NSL   | Medium | 0.5   | 18.9   | 2.3 Sm. dec.   | No change | Medium | Rare     | Very Poor | Poor      |           | Infill +  | 2 44       |
| boxelder                 | Acer negundo              | WSH   | Low    | 8.1   | 17.7   | 0.9 No change  | No change | High   | Rare     | Fair      | Fair      | Infill +  | Infill +  | 1 45       |
| bitternut hickory        | Carya cordiformis         | WSL   | Low    | 11.1  | 16.1   | 0.9 Sm. dec.   | Sm. dec.  | High   | Rare     | Poor      | Poor      | Infill +  | Infill +  | 1 46       |
| black oak                | Quercus velutina          | WDH   | High   | 14.3  | 14.8   | 0.7 Sm. dec.   | No change | Medium | Rare     | Very Poor | Poor      |           |           | 1 47       |
|                          |                           |       |        |       |        |                |           |        |          |           |           |           |           |            |



# One x One Degree

# Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

### Current and Potential Future Habitat, Capability, and Migration

| Common Name            | Scientific Name              | Range | MR     | %Cell | FIAsum | FIAiv | ChngCl45      | ChngCl85      | Adap   | Abund   | Capabil45   | Capabil85   | SHIFT45    | SHIFT85    | SSO N |
|------------------------|------------------------------|-------|--------|-------|--------|-------|---------------|---------------|--------|---------|-------------|-------------|------------|------------|-------|
| Shumard oak            | Quercus shumardii            | NSL   | Low    | 10    | 14.4   | 1.3   | Sm. dec.      | Sm. inc.      | High   | Rare    | Poor        | Good        | Infill +   | Infill ++  | 1 48  |
| longleaf pine          | Pinus palustris              | NSH   | Medium | 9.4   | 14.1   | 0.7   | Lg. inc.      | Lg. inc.      | Medium | Rare    | Good        | Good        | Infill ++  | Infill ++  | 1 49  |
| slippery elm           | Ulmus rubra                  | WSL   | Low    | 13.7  | 13.8   | 0.7   | Sm. inc.      | Lg. inc.      | Medium | Rare    | Fair        | Good        |            |            | 1 50  |
| red mulberry           | Morus rubra                  | NSL   | Low    | 11.5  | 13.3   | 0.7   | Sm. dec.      | Sm. dec.      | Medium | Rare    | Very Poor   | Very Poor   |            |            | 0 51  |
| nuttall oak            | Quercus texana               | NSH   | Medium | 1.2   | 12.0   | 3.0   | Sm. dec.      | No change     | High   | Rare    | Poor        | Fair        |            |            | 0 52  |
| bigleaf magnolia       | Magnolia macrophylla         | NSL   | Low    | 11    | 9.7    | 0.7   | Lg. dec.      | Lg. dec.      | Medium | Rare    | Very Poor   | Very Poor   |            |            | 0 53  |
| redbay                 | Persea borbonia              | NSL   | Low    | 6.2   | 8.9    | 0.7   | No change     | No change     | High   | Rare    | Fair        | Fair        |            |            | 1 54  |
| honeylocust            | Gleditsia triacanthos        | NSH   | Low    | 3.9   | 8.8    | 0.9   | No change     | No change     | High   | Rare    | Fair        | Fair        | Infill +   | Infill +   | 2 55  |
| river birch            | Betula nigra                 | NSL   | Low    | 1.2   | 8.4    | 2.7   | Sm. inc.      | Lg. inc.      | Medium | Rare    | Fair        | Good        | Infill +   | Infill ++  | 2 56  |
| cucumbertree           | Magnolia acuminata           | NSL   | Low    | 5.6   | 4.7    | 0.8   | Sm. dec.      | Lg. dec.      | Medium | Rare    | Very Poor   | Very Poor   |            |            | 0 57  |
| eastern cottonwood     | Populus deltoides            | NSH   | Low    | 0.3   | 4.6    | 1.4   | Sm. dec.      | Sm. dec.      | Medium | Rare    | Very Poor   | Very Poor   |            |            | 0 58  |
| florida maple          | Acer barbatum                | NSL   | Low    | 2.8   | 4.0    | 1.4   | No change     | No change     | High   | Rare    | Fair        | Fair        | Infill +   | Infill +   | 2 59  |
| bald cypress           | Taxodium distichum           | NSH   | Medium | 1.9   | 3.9    | 2.1   | Sm. inc.      | Sm. inc.      | Medium | Rare    | Fair        | Fair        | Infill +   | Infill +   | 2 60  |
| northern red oak       | Quercus rubra                | WDH   | Medium | 3.6   | 3.9    | 1.0   | Sm. dec.      | Lg. dec.      | High   | Rare    | Poor        | Poor        |            |            | 0 61  |
| chinkapin oak          | Quercus muehlenbergii        | NSL   | Medium | 2.3   | 3.8    | 0.7   | Sm. dec.      | Sm. dec.      | Medium | Rare    | Very Poor   | Very Poor   |            |            | 0 62  |
| scarlet oak            | Quercus coccinea             | WDL   | Medium | 2     | 3.8    | 0.6   | Lg. dec.      | Lg. dec.      | Medium | Rare    | Very Poor   | Very Poor   |            |            | 0 63  |
| black locust           | Robinia pseudoacacia         | NDH   | Low    | 1.7   | 2.6    | 1.2   | No change     | No change     | Medium | Rare    | Poor        | Poor        | Infill +   | Infill +   | 2 64  |
| turkey oak             | Quercus laevis               | NSH   | Medium | 2.8   | 2.4    | 0.9   | Lg. dec.      | Lg. dec.      | High   | Rare    | Poor        | Poor        |            |            | 0 65  |
| silver maple           | Acer saccharinum             | NSH   | Low    | 1.5   | 2.3    | 0.9   | Sm. dec.      | Sm. dec.      | High   | Rare    | Poor        | Poor        |            |            | 0 66  |
| black walnut           | Juglans nigra                | WDH   | Low    | 1.5   | 2.0    | 0.9   | Very Lg. dec. | Very Lg. dec. | Medium | Rare    | Lost        | Lost        |            |            | 0 67  |
| eastern redbud         | Cercis canadensis            | NSL   | Low    | 2.3   | 1.7    | 0.5   | Very Lg. dec. | Very Lg. dec. | Medium | Rare    | Lost        | Lost        |            |            | 0 68  |
| black hickory          | Carya texana                 | NDL   | High   | 0.9   | 1.3    | 1.4   | Lg. inc.      | Lg. inc.      | Medium | Rare    | Good        | Good        |            |            | 2 69  |
| American basswood      | Tilia americana              | WSL   | Medium | 0.1   | 0.9    | 0.1   | Very Lg. dec. | Very Lg. dec. | Medium | Rare    | Lost        | Lost        |            |            | 0 70  |
| Virginia pine          | Pinus virginiana             | NDH   | High   | 0.8   | 0.7    | 0.6   | Sm. dec.      | Sm. dec.      | Medium | Rare    | Very Poor   | Very Poor   |            |            | 0 71  |
| shagbark hickory       | Carya ovata                  | WSL   | Medium | 0.3   | 0.5    | 0.1   | Lg. dec.      | Lg. dec.      | Medium | Rare    | Very Poor   | Very Poor   |            |            | 0 72  |
| serviceberry           | Amelanchier spp.             | NSL   | Low    | 0.9   | 0.3    | 0.3   | Sm. inc.      | Sm. inc.      | Medium | Rare    | Fair        | Fair        |            |            | 0 73  |
| chokecherry            | Prunus virginiana            | NSLX  | FIA    | 0.9   | 0.3    | 0.3   | Unknown       | Unknown       | Medium | Rare    | FIA Only    | FIA Only    |            |            | 0 74  |
| durand oak             | Quercus sinuata var. sinuata | NSL   | FIA    | 0.9   | 0.2    | 0.2   | Unknown       | Unknown       | Medium | Rare    | FIA Only    | FIA Only    |            |            | 0 75  |
| Table Mountain pine    | Pinus pungens                | NSL   | Low    | 0     | 0      | C     | Unknown       | Unknown       | High   | Absent  | Unknown     | Unknown     |            |            | 0 76  |
| striped maple          | Acer pensylvanicum           | NSL   | Medium | 0     | 0      | C     | New Habitat   | New Habitat   | Medium | Absent  | New Habitat | New Habitat |            |            | 3 77  |
| pawpaw                 | Asimina triloba              | NSL   | Low    | 0     | 0      | C     | New Habitat   | New Habitat   | Medium | Absent  | New Habitat | New Habitat | Likely +   | Likely +   | 3 78  |
| cittamwood/gum bumelia | Sideroxylon lanuginosum ssp  | . NSL | Low    | 0     | 0      | C     | New Habitat   | New Habitat   | High   | Absent  | New Habitat | New Habitat |            | Migrate +  | 3 79  |
| shellbark hickory      | Carya laciniosa              | NSL   | Low    | 0     | 0      | C     | Unknown       | Unknown       | Medium | Absent  | Unknown     | Unknown     |            |            | 0 80  |
| black ash              | Fraxinus nigra               | WSH   | Medium | 0     | 0      | C     | Unknown       | New Habitat   | Low    | Absent  | Unknown     | New Habitat |            |            | 3 81  |
| silverbell             | Halesia spp.                 | NSL   | Low    | 0     | 0      | C     | New Habitat   | New Habitat   | Medium | Absent  | New Habitat | New Habitat | Likely +   | Likely +   | 3 82  |
| Osage-orange           | Maclura pomifera             | NDH   | Medium | 0     | 0      | C     | Unknown       | Unknown       | High   | Modeled | Unknown     | Unknown     |            |            | 0 83  |
| water elm              | Planera aquatica             | NSL   | Low    | 0     | 0      | C     | New Habitat   | New Habitat   | Medium | Absent  | New Habitat | New Habitat | Likely +   | Likely +   | 3 84  |
| pin cherry             | Prunus pensylvanica          | NSL   | Low    | 0     | 0      | C     | New Habitat   | New Habitat   | Medium | Absent  | New Habitat | New Habitat | Likely +   | Likely +   | 3 85  |
| swamp white oak        | Quercus bicolor              | NSL   | Low    | 0     | 0      | C     | Unknown       | Unknown       | Medium | Modeled | Unknown     | Unknown     |            |            | 0 86  |
| chestnut oak           | Quercus prinus               | NDH   | High   | 0     | 0      | C     | Unknown       | Unknown       | High   | Absent  | Unknown     | Unknown     |            |            | 0 87  |
| live oak               | Quercus virginiana           | NDH   | High   | 0     | 0      | C     | New Habitat   | New Habitat   | Medium | Absent  | New Habitat | New Habitat | Migrate ++ | Migrate ++ | 3 88  |
| cedar elm              | Ulmus crassifolia            | NDH   | Medium | 0     | 0      | C     | New Habitat   | New Habitat   | Low    | Absent  | New Habitat | New Habitat | Migrate +  | Migrate ++ | 3 89  |
|                        |                              |       |        |       |        |       |               |               |        |         |             |             |            |            |       |

