One x One Degree

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 10,642 4,108.9 120

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitability	Capability	to Cope o	r Persist	Migratio	n Potent	ial
Ash	3				Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	3	Abu	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	1	Abundant	2	High	7	11	Increase	5	5	Very Good	0	0	Likely	0	0
Oak	9	Common	4	Medium	13	22	No Change	10	11	Good	4	5	Infill	8	6
Pine	1	Rare	27	Low	15	4	Decrease	15	14	Fair	7	7	Migrate	0	0
Other	16	Absent	3	FIA	3		New	0	0	Poor	11	10	·	8	6
•	33	_	36	•	38	37	Unknown	8	8	Very Poor	8	8			
							-	38	38	FIA Only	3	3			
										Unknown	5	5			
Potentia	Potential Changes in Climate Variables										20	20			

Potential Changes in Climate Variables

Temperatu	ıre (°F)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	67.5	69.1	70.2	70.9
Average	CCSM85	67.5	69.4	71.5	73.8
	GFDL45	67.5	72.3	71.6	73.1
	GFDL85	67.5	70.1	73.2	76.8
	HAD45	67.5	69.5	72.0	73.0
	HAD85	67.5	70.0	73.4	76.5
Growing	CCSM45	80.4	81.9	82.6	83.5
Season	CCSM85	80.4	82.4	84.2	86.9
May—Sep	GFDL45	80.4	86.5	85.1	87.6
	GFDL85	80.4	83.8	87.3	91.6
	HAD45	80.4	82.6	84.5	85.3
	HAD85	80.4	83.0	86.7	89.5
Coldest	CCSM45	47.6	49.9	50.5	50.8
Month	CCSM85	47.6	49.9	50.9	52.2
Average	GFDL45	47.6	51.3	51.2	51.4
	GFDL85	47.6	48.7	49.7	50.2
	HAD45	47.6	48.0	49.6	50.2
	HAD85	47.6	50.4	51.8	53.5
Warmest	CCSM45	84.8	86.0	86.6	86.9
Month	CCSM85	84.8	86.7	87.4	88.8
Average	GFDL45	84.8	89.2	89.6	91.0
	GFDL85	84.8	89.4	90.9	93.9
	HAD45	84.8	87.1	88.1	88.5
	HAD85	84.8	87.8	89.6	90.6

Precipitati	on (in)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	34.2	33.9	37.6	34.3
Total	CCSM85	34.2	34.6	37.5	36.5
	GFDL45	34.2	33.9	39.5	31.8
	GFDL85	34.2	33.2	35.3	33.1
	HAD45	34.2	35.7	34.5	35.1 ◆◆◆◆
	HAD85	34.2	35.5	31.5	33.5
Growing	CCSM45	15.1	16.0	16.5	15.4 ◆◆◆◆
Season	CCSM85	15.1	15.5	16.1	14.5
May—Sep	GFDL45	15.1	15.7	19.4	14.6
	GFDL85	15.1	15.8	16.6	15.7 ◆◆◆◆
	HAD45	15.1	15.4	14.7	15.7 ◆◆◆◆
	HAD85	15.1	15.4	13.4	14.1

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

One x One Degree

Climate Change Atlas Tree Species

Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

USDA Forest Service

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv Chn	ngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
ashe juniper	Juniperus ashei	NDH	High	40.5	1368.3	38.1 No c	change	No change	Medium	Abundant	Good	Good			0 1
live oak	Quercus virginiana	NDH	High	38.5	742.9	23.4 No c	change	No change	Medium	Abundant	Good	Good			1 2
post oak	Quercus stellata	WDH	High	42.7	430.9	23.4 Sm.	dec.	Sm. dec.	High	Common	Fair	Fair			1 3
cedar elm	Ulmus crassifolia	NDH	Medium	64.8	334.4	15.5 Sm.	inc.	No change	Low	Common	Fair	Poor			1 4
eastern redcedar	Juniperus virginiana	WDH	Medium	36.9	235.3	13.9 Sm.	dec.	Sm. dec.	Medium	Common	Poor	Poor			0 5
loblolly pine	Pinus taeda	WDH	High	5.5	123.6	26.8 Sm.	dec.	Sm. dec.	Medium	Common	Poor	Poor	Infill +	Infill +	2 6
hackberry	Celtis occidentalis	WDH	Medium	19.4	43.2	8.3 No c	change	No change	High	Rare	Fair	Fair			1 7
blackjack oak	Quercus marilandica	NSL	Medium	21.8	39.6	5.8 Sm.	inc.	Sm. inc.	High	Rare	Good	Good			1 8
pecan	Carya illinoinensis	NSH	Low	17.4	35.2	13.5 Sm.	inc.	Lg. inc.	Low	Rare	Poor	Fair			1 9
green ash	Fraxinus pennsylvanica	WSH	Low	17.4	28.6	5.7 No c	change	No change	Medium	Rare	Poor	Poor			1 10
sugarberry	Celtis laevigata	NDH	Medium	24.1	27.5	4.7 Lg. ii	inc.	Lg. inc.	Medium	Rare	Good	Good			1 11
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	35.1	20.3	3.9 Sm.	dec.	No change	High	Rare	Poor	Fair			1 12
black walnut	Juglans nigra	WDH	Low	0.9	20.0	21.3 Sm.	dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 13
sycamore	Platanus occidentalis	NSL	Low	0.9	13.9	14.8 Sm.	dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 14
American elm	Ulmus americana	WDH	Medium	6.6	12.9	3.0 No c	change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	1 15
Osage-orange	Maclura pomifera	NDH	Medium	6.2	6.0	5.2 No c	change	No change	High	Rare	Fair	Fair	Infill +	Infill +	1 16
black oak	Quercus velutina	WDH	High	2.4	5.7	3.2 Sm.	dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 17
Shumard oak	Quercus shumardii	NSL	Low	4.7	5.5	3.7 Sm.	dec.	Sm. dec.	High	Rare	Poor	Poor			0 18
winged elm	Ulmus alata	WDL	Medium	5.4	5.3	2.9 No c	change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	1 19
Texas ash	Fraxinus texensis	NDH	FIA	4.7	4.3	3.7 Unki	known	Unknown	NA	Rare	FIA Only	FIA Only			0 20
red mulberry	Morus rubra	NSL	Low	0.9	3.2	3.4 Sm.	dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 21
water oak	Quercus nigra	WDH	High	4.6	3.1	1.0 Sm.	inc.	Sm. inc.	Medium	Rare	Fair	Fair	Infill +	Infill +	2 22
boxelder	Acer negundo	WSH	Low	3.8	2.2	9.2 No c	change	No change	High	Rare	Fair	Fair	Infill +		2 23
black cherry	Prunus serotina	WDL	Medium	0.4	1.7	0.8 Sm.	dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 24
white ash	Fraxinus americana	WDL	Medium	1	1.3	0.6 Sm.	dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 25
black hickory	Carya texana	NDL	High	2.4	1.2	0.4 No c	change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 26
durand oak	Quercus sinuata var. sinuata	NSL	FIA	1.5	1.1	0.6 Unki	known	Unknown	Medium	Rare	FIA Only	FIA Only			0 27
slippery elm	Ulmus rubra	WSL	Low	1.7	0.9	0.3 Sm.	dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 28
bear oak; scrub oak	Quercus ilicifolia	NSLX	FIA	0.8	0.4	0.4 Unki	known	Unknown	Medium	Rare	FIA Only	FIA Only			0 29
bur oak	Quercus macrocarpa	NDH	Medium	3.8	0.4	1.5 Sm.	dec.	Lg. dec.	High	Rare	Poor	Poor			0 30
flowering dogwood	Cornus florida	WDL	Medium	2.3	0.2	0.1 Lg. d	dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 31
bitternut hickory	Carya cordiformis	WSL	Low	0.8	0.1	0.1 Lg. d	dec.	Lg. dec.	High	Rare	Poor	Poor			0 32
honeylocust	Gleditsia triacanthos	NSH	Low	1.5	0.1	0.1 No c	change	Lg. inc.	High	Rare	Fair	Good	Infill +		2 33
American hornbeam; muscle	N Carpinus caroliniana	WSL	Low	0	0	0 Unki	known	Unknown	Medium	Absent	Unknown	Unknown			0 34
shellbark hickory	Carya laciniosa	NSL	Low	0	0	0 Unki	known	Unknown	Medium	Absent	Unknown	Unknown			0 35
eastern redbud	Cercis canadensis	NSL	Low	0	0	0 Unki	known	Unknown	Medium	Modeled	Unknown	Unknown			0 36
blackgum	Nyssa sylvatica	WDL	Medium	0	0	0 Unki	known	Unknown	High	Modeled	Unknown	Unknown			0 37
sassafras	Sassafras albidum	WSL	Low	0	0	0 Unki	known	Unknown	Medium	Absent	Unknown	Unknown			0 38

