S30 E96

One x One Degree

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi **FIA Plots** Area of Region 10,642 4,108.9 123

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitability	Capability	to Cope o	r Persist	Migratio	n Poten	tial
Ash	2			N	/lodel			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	7	Abur	ndance	R	eliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	1	Abundant	1	High	8	15	Increase	3	5	Very Good	0	0	Likely	1	1
Oak	12	Common	10	Medium	19	31	No Change	12	12	Good	5	7	Infill	6	7
Pine	1	Rare	35	Low	22	4	Decrease	30	28	Fair	9	9	Migrate	0	0
Other	23	Absent	4	FIA	1		New	1	1	Poor	11	9	-	7	8
	46		50	_	50	50	Unknown	4	4	Very Poor	20	20			
							-	50	50	FIA Only	1	1			
										Unknown	3	3			
Potential Changes in Climate Variables										49	49				
						Procinitation (in)								

Temperature (°F)											
	Scenario	2009	2039	2069	2099						
Annual	CCSM45	68.0	69.7	70.8	71.3						
Average	CCSM85	68.0	70.0	72.2	74.3						
	GFDL45	68.0	73.0	72.1	73.5						
	GFDL85	68.0	70.6	73.6	77.0						
	HAD45	68.0	70.1	72.6	73.6						
	HAD85	68.0	70.5	73.9	77.1						
Growing	CCSM45	80.6	82.2	82.8	83.5						
Season	CCSM85	80.6	82.6	84.4	87.0						
May—Sep	GFDL45	80.6	86.8	85.2	87.6						
	GFDL85	80.6	83.9	87.3	91.4						
	HAD45	80.6	82.9	85.0	85.7						
	HAD85	80.6	83.3	87.1	89.8						
Coldest	CCSM45	48.5	50.9	51.4	51.7						
Month	CCSM85	48.5	50.9	51.9	53.1						
Average	GFDL45	48.5	52.1	52.2	52.3 🛹 🕂						
	GFDL85	48.5	49.5	50.6	51.1						
	HAD45	48.5	49.0	50.7	51.3						
	HAD85	48.5	51.1	52.5	54.2						
Warmest	CCSM45	84.9	86.0	86.5	86.8						
Month	CCSM85	84.9	86.7	87.3	88.7						
Average	GFDL45	84.9	89.0	89.3	90.8						
	GFDL85	84.9	89.1	90.7	93.5						
	HAD45	84.9	87.4	88.4	88.7						
	HAD85	84.9	88.0	89.9	90.8						

Precipitation (in)												
	Scenario	2009	2039	2069	2099							
Annual	CCSM45	39.0	38.0	43.7	40.2 🛶 🔶							
Total	CCSM85	39.0	39.6	42.7	41.7 ++++							
	GFDL45	39.0	39.5	45.8	37.3 🔶 🔨							
	GFDL85	39.0	38.6	40.6	38.9 🛶 🛶							
	HAD45	39.0	40.5	38.4	40.3							
	HAD85	39.0	41.2	36.0	38.2 ++++++							
Growing	CCSM45	16.2	16.8	18.5	16.9							
Season	CCSM85	16.2	16.4	17.0	15.4 🛶 🛶							
May—Sep	GFDL45	16.2	17.5	22.1	16.4							
	GFDL85	16.2	17.5	18.5	18.1							
	HAD45	16.2	16.4	15.6	16.9 🔶 🔶 🔶							
	HAD85	16.2	16.8	14.5	14.8 🔶 🛶							

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

S30 E96

One x One Degree

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
post oak	Quercus stellata	WDH	High	85.5	833.0		Sm. dec.	High	Abundant	Good	Good	5111145	51111105	1 1
water oak	Quercus nigra	WDH	High	61.9	289.0	9.0 No change	No change	Medium		Fair	Fair			1 2
winged elm	Ulmus alata	WDL	Medium	46.2	240.8	U	Sm. dec.	Medium		Poor	Poor			0 3
cedar elm	Ulmus crassifolia	NDH	Medium	63.9	230.9		No change	Low	Common	Poor	Poor			0 4
eastern redcedar	Juniperus virginiana	WDH	Medium	61.3	179.5	9.0 No change	Sm. inc.	Medium		Fair	Good			1 5
pecan	Carya illinoinensis	NSH	Low	20.1	87.1	8.2 No change	No change	Low	Common	Poor	Poor			0 6
American elm	Ulmus americana	WDH	Medium	34.2	84.0	9.5 No change	No change	Medium		Fair	Fair			1 7
sugarberry	Celtis laevigata	NDH	Medium	47.8	77.2	4.3 Sm. inc.	Sm. inc.	Medium		Good	Good			1 8
blackjack oak	Quercus marilandica	NSL	Medium	46.7	76.0	5.0 No change	No change	High	Common	Good	Good			1 9
Osage-orange	Maclura pomifera	NDH	Medium	23.8	69.8	3.8 Lg. dec.	Sm. dec.	High	Common	Fair	Fair			1 10
green ash	Fraxinus pennsylvanica	WSH	Low	34.1	55.3	5.1 No change	No change	Medium	Common	Fair	Fair			1 11
white ash	Fraxinus americana	WDL	Medium	21.6	44.7	4.8 Lg. dec.	Lg. dec.	Low	Rare	Very Poor	Very Poor			0 12
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp		Low	21.6	39.0	2.5 Sm. dec.	No change	High	Rare	Poor	Fair			1 13
black hickory	Carya texana	NDL	High	21.5	30.1	2.8 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 14
honeylocust	Gleditsia triacanthos	NSH	Low	11.5	27.9	3.5 Lg. dec.	Lg. dec.	High	Rare	Poor	Poor		Infill +	1 15
mockernut hickory	Carya alba	WDL	Medium	13.5	21.7	4.1 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	1 16
willow oak	Quercus phellos	NSL	Low	12.8	19.4	5.8 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 17
common persimmon	Diospyros virginiana	NSL	Low	0.6	18.7	1.8 Lg. dec.	Lg. dec.	High	Rare	Poor	Poor			0 18
loblolly pine	Pinus taeda	WDH	High	10.2	17.2	5.8 Lg. inc.	Lg. inc.	Medium		Good	Good	Infill ++	Infill ++	1 19
live oak	Quercus virginiana	NDH	High	18.7	12.9	5.2 Lg. inc.	Lg. inc.	Medium		Good	Good		Infill ++	1 20
water hickory	Carya aquatica	NSL	Medium	5.5	10.8	2.4 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 21
black walnut	Juglans nigra	WDH	Low	4.8	10.8	5.1 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 22
water elm	Planera aquatica	NSL	Low	0.5	9.7	5.2 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 23
black willow	Salix nigra	NSH	Low	1.9	7.6	4.0 Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 24
slippery elm	Ulmus rubra	WSL	Low	11.4	7.0	2.3 Lg. dec.	Lg. dec.	Medium		Very Poor	Very Poor			0 25
eastern cottonwood	Populus deltoides	NSH	Low	6.2	6.8		Sm. dec.	Medium		Very Poor	Very Poor			0 26
southern red oak	Quercus falcata	WDL	Medium	3.6	6.2	1.6 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 27
American holly	llex opaca	NSL	Medium	1.1	4.7	1.3 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 28
red mulberry	Morus rubra	NSL	Low	14.9	4.6	2.2 Lg. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 29
laurel oak	Quercus laurifolia	NDH	Medium	0.3	4.5	1.6 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 30
eastern redbud	Cercis canadensis	NSL	Low	2.8	3.3	1.1 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 31
hackberry	Celtis occidentalis	WDH	Medium	6.1	3.0	5.2 Sm. dec.	No change	High	Rare	Poor	Fair		Infill +	1 32
Shumard oak	Quercus shumardii	NSL	Low	4.2	2.7	2.2 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 33
sweetgum	Liquidambar styraciflua	WDH	High	1.6	2.6	1.3 No change	No change	Medium		Poor	Poor	Infill +	Infill +	2 34
bluejack oak	Quercus incana	NSL	Low	0.5	1.9	1.0 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 35
river birch	Betula nigra	NSL	Low	0.9	1.7	1.8 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 36
shagbark hickory	Carya ovata	WSL	Medium	0.5	1.4	0.7 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 37
boxelder	Acer negundo	WSH	Low	9.4	1.4	1.5 No change	No change	High	Rare	Fair	Fair			0 38
durand oak	Quercus sinuata var. sinuata		FIA	4.9	1.0	1.3 Unknown	Unknown	Medium		FIA Only	FIA Only			0 39
sassafras	Sassafras albidum	WSL	Low	2	0.5	0.3 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 40
black oak	Quercus velutina	WDH	High	2.3	0.5	1.2 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 41
bitternut hickory	Carya cordiformis	WSL	Low	6.7	0.4	0.9 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 42
bur oak	Quercus macrocarpa	NDH	Medium	0.1	0.4	0.0 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 43
flowering dogwood	Cornus florida	WDL	Medium	5.3	0.3	0.2 Lg. dec.	Lg. dec.	Medium		Very Poor	Very Poor			0 44
pignut hickory	Carya glabra	WDL	Medium	3.8	0.2	•	Sm. dec.	Medium		Very Poor	Very Poor			0 45
blackgum	Nyssa sylvatica	WDL	Medium	3.8	0.2	1.0 No change	Sm. inc.	High	Rare	Fair	Good	Infill +		2 46
shortleaf pine	Pinus echinata	WDL	High	0	0.2	0 New Habitat		-			New Habitat		Likely +	3 47
shortical pine	i mus cerminata	W DH	ing.i	0	0			wiculuit	Absent			LINCITY F	Encery -	5 +/

One x One Degree

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell F	IAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45 SHIFT85 SSO N
shellbark hickory	Carya laciniosa	NSL	Low	0	0	C) Unknown	Unknown	Medium	Absent	Unknown	Unknown	0 48
redbay	Persea borbonia	NSL	Low	0	0	C) Unknown	Unknown	High	Absent	Unknown	Unknown	0 49
black locust	Robinia pseudoacacia	NDH	Low	0	0	C) Unknown	Unknown	Medium	Absent	Unknown	Unknown	0 50

