One x One Degree

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. mi sq. km FIA Plots Area of Region 6,329.5 2,443.8 223

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitability	Capability	to Cope o	Migration Potential			
Ash	3		Model						Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	4	Abu	ndance	F	Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	1	Abundant	7	High	15	17	Increase	16	21	Very Good	12	13	Likely	3	3
Oak	11	Common	13	Medium	32	48	No Change	17	17	Good	6	7	Infill	8	12
Pine	6	Rare	29	Low	27	9	Decrease	14	9	Fair	7	8	Migrate	1	4
Other	24	Absent	20	FIA	2		New	10	12	Poor	11	11	•	12	19
•	49	_	69	_	76	74	Unknown	19	17	Very Poor	9	6			
							-	76	76	FIA Only	2	2			
										Unknown	17	15			
Potentia	Potential Changes in Climate Variables											62			

Temperatu	ıre (°F)					Precipitati	ion (in)				
	Scenario	2009	2039	2069	2099		Scenario	2009	2039	2069	2099
Annual	CCSM45	66.6	68.1	69.8	69.9	Annual	CCSM45	64.5	67.4	69.1	70.8
J	CCSM85	66.6	68.2	70.6	72.8	Total	CCSM85	64.5	68.1	70.5	74.5
	GFDL45	66.6	69.2	71.0	71.8		GFDL45	64.5	72.1	75.9	76.8
	GFDL85	66.6	69.0	72.0	75.5		GFDL85	64.5	71.7	76.2	74.3
	HAD45	66.6	68.5	71.0	72.3		HAD45	64.5	61.3	67.4	70.4
	HAD85	66.6	68.8	72.0	75.5		HAD85	64.5	68.9	61.4	65.4
Growing	CCSM45	78.5	79.7	81.1	81.4	Growing	CCSM45	30.2	32.7	32.8	33.6
Season	CCSM85	78.5	79.7	82.0	84.6	Season	CCSM85	30.2	31.2	32.9	33.9
May—Sep	GFDL45	78.5	81.0	82.7	84.0	May—Sep	GFDL45	30.2	36.5	38.5	37.1
	GFDL85	78.5	80.9	83.9	87.8		GFDL85	30.2	36.9	40.5	40.0
	HAD45	78.5	81.2	83.1	84.4		HAD45	30.2	29.0	30.5	31.5
	HAD85	78.5	81.1	85.3	88.3		HAD85	30.2	31.0	24.9	26.5
Coldest	CCSM45	48.6	50.8	51.5	51.3						
Month	CCSM85	48.6	50.6	51.8	52.9	NOTE: For	the six clim	ate varial	oles, four 3	0-year pe	eriods are used to i
Average	GFDL45	48.6	51.6	51.9	52.2	ending in 2	2009 is base	ed on mod	leled obser	vations f	rom the PRISM Cli
	GFDL85	48.6	50.5	51.6	52.2	obtained f	rom the NA	SA NEX-D	CP30 datas	et. Futur	e climate projection
	HAD45	48.6	48.6	50.1	50.8	show estir	nates of ea	ch climate	variable w	ithin the	region. The three
	HAD85	48.6	49.8	50.9	52.6	and the er	mission scer	narios are	the 4.5 and	d 8.5 RCP	. The average valu
						within the	region may	vary subs	stantially b	ased on la	atitude, elevation,
Warmest	CCSM45	81.7	82.9	83.4	83.7						
Month	CCSM85	81.7	82.7	83.9	85.4	Cite as: Ive	erson, L.R.;	Prasad, A.	M.; Peters,	, M.P.; M	atthews, S.N. 2019
Average	GFDL45	81.7	84.1	84.8	85.5	Climate Ch	nange: A Sp	atially Spe	cific Synth	esis of 12	5 Species for Habi
	GFDL85	81.7	83.6	85.0	87.1	United Sta	ites. Forests	s. 10(11): 9	989. https:/	//doi.org/	10.3390/f1011098

85.8

87.2

84.6

84.8

periods are used to indicate six potential future trajectories. The period ns from the PRISM Climate Group and the three future periods were ture climate projections from three models under two emission scenarios the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES CP. The average value for the region is reported, even though locations on latitude, elevation, land-use, or other factors.

Matthews, S.N. 2019. Facilitating Adaptive Forest Management under 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

HAD45

HAD85

81.7

81.7

One x One Degree

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
slash pine	Pinus elliottii	NDH	High	68.5	2511.8		No change		Abundant	Good	Good	31116143	31111103	1 1
longleaf pine	Pinus palustris	NSH	Medium	83.9		22.1 No change	No change			Good	Good			1 2
loblolly pine	Pinus taeda	WDH	High	39.2	1353.9		Sm. inc.	Medium		Very Good	Very Good			1 3
sand pine	Pinus clausa	NDH	High	43.1	1306.5		No change	Low	Abundant	Fair	Fair			0 4
laurel oak	Quercus laurifolia	NDH	Medium	64.3	849.9	9.0 Sm. inc.	Sm. inc.		Abundant	Very Good	Very Good			1 5
turkey oak	Quercus laevis	NSH	Medium	59.3	615.9	8.6 No change	No change	High	Abundant	Very Good	Very Good			1 6
sweetbay	Magnolia virginiana	NSL	Medium	44	526.7	7.4 Sm. inc.	Sm. inc.	_	Abundant	Very Good	Very Good			1 7
swamp tupelo	Nyssa biflora	NDH	Medium	37.9	357.3	6.3 Lg. inc.	Lg. inc.	Low	Common	Good	Good			1 8
water oak	Quercus nigra	WDH	High	50.3	315.4	3.7 Lg. inc.	Lg. inc.		Common	Very Good	Very Good			1 9
live oak	Quercus virginiana	NDH	High	37.2	298.7	6.2 Lg. inc.	Lg. inc.	Medium		Very Good	Very Good			1 10
southern red oak	Quercus falcata	WDL	Medium	22.9	167.6	5.0 No change	Sm. inc.	High	Common	Good	Very Good			1 11
pond cypress	Taxodium ascendens	NSH	Medium	4	166.7	10.0 No change	Sm. inc.	Medium	Common	Fair	Good	Infill +	Infill ++	2 12
Atlantic white-cedar	Chamaecyparis thyoides	NSH	Low	11.1	135.1	8.8 Sm. inc.	Sm. inc.	Low	Common	Fair	Fair			1 13
water tupelo	Nyssa aquatica	NSH	Medium	6	110.6	9.0 No change	No change	Low	Common	Poor	Poor	Infill +	Infill +	0 14
yellow-poplar	Liriodendron tulipifera	WDH	High	21.7	106.0	3.1 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 15
red maple	Acer rubrum	WDH	High	34.3	100.9	1.8 Lg. inc.	Lg. inc.	High	Common	Very Good	Very Good			1 16
sweetgum	Liquidambar styraciflua	WDH	High	20.8	94.6	3.0 Lg. inc.	Lg. inc.	Medium		Very Good	Very Good			1 17
post oak	Quercus stellata	WDH	High	15.1	74.6	3.5 Lg. inc.	Lg. inc.	High	Common	Very Good	Very Good	Infill ++	Infill ++	1 18
blackgum	Nyssa sylvatica	WDL	Medium	26.1	65.0		Lg. inc.	High	Common	Very Good	Very Good			1 19
southern magnolia	Magnolia grandiflora	NSL	Low	22.4	56.1	2.0 Lg. inc.	Lg. inc.	Medium		Very Good	Very Good			1 20
bluejack oak	Quercus incana	NSL	Low	25.1	48.8	1.9 No change	No change	Medium		Poor	Poor			1 21
flowering dogwood	Cornus florida	WDL	Medium	18.7	42.1	1.4 Sm. dec.	No change	Medium		Very Poor	Poor			1 22
black walnut	Juglans nigra	WDH	Low	1.6	39.5		Sm. dec.	Medium		Very Poor	Very Poor			0 23
redbay	Persea borbonia	NSL	Low	9.2	38.5	2.7 No change	No change	High	Rare	Fair	Fair			1 24
green ash	Fraxinus pennsylvanica	WSH	Low	4.5	34.9	3.3 No change	No change	Medium		Poor	Poor	Infill +	Infill +	1 25
American holly	llex opaca	NSL	Medium	25.9	34.7	1.1 No change	Sm. inc.	Medium	Rare	Poor	Fair			1 26
bald cypress	Taxodium distichum	NSH	Medium	5.5	25.3	3.1 Lg. inc.	Lg. inc.	Medium	Rare	Good	Good	Infill ++	Infill ++	2 27
pond pine	Pinus serotina	NSH	Medium	1.7	25.2	4.1 No change	No change	Low	Rare	Very Poor	Very Poor			2 28
common persimmon	Diospyros virginiana	NSL	Low	17.7	23.5	1.0 Lg. dec.	Lg. dec.	High	Rare	Poor	Poor			1 29
spruce pine	Pinus glabra	NSL	Low	5.7	18.5	2.9 Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 30
white oak	Quercus alba	WDH	Medium	7.3	18.5	1.8 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor		Infill +	2 31
sourwood	Oxydendrum arboreum	NDL	High	7.3	12.4	1.4 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			1 32
eastern redcedar	Juniperus virginiana	WDH	Medium	4.8	12.0	1.4 Sm. dec.	No change	Medium		Very Poor	Poor		Infill +	2 33
black cherry	Prunus serotina	WDL	Medium	4.8	10.2	1.4 Lg. inc.	Lg. inc.	Low	Rare	Fair	Fair			1 34
American hornbeam; mus		WSL	Low	7.2	9.5	1.1 No change	Sm. inc.	Medium	Rare	Poor	Fair			1 35
pignut hickory	Carya glabra	WDL	Medium	5	7.1	0.9 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 36
mockernut hickory	Carya alba	WDL	Medium	4.7	7.0	1.5 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	1 37
Carolina ash	Fraxinus caroliniana	NSL	FIA	3.1	3.4	1.1 Unknown	Unknown	NA	Rare	FIA Only	FIA Only			0 38
eastern hophornbeam; ir		WSL	Low	2.2	3.1	0.9 Sm. dec.	No change	High	Rare	Poor	Fair		Infill +	2 39
blackjack oak	Quercus marilandica	NSL	Medium	4.7	3.0	0.6 No change	Lg. inc.	High	Rare	Fair	Good	Infill +	Infill ++	2 40
overcup oak	Quercus lyrata	NSL	Medium	0.7	2.7	0.8 Sm. dec.	No change	Low	Rare	Very Poor	Very Poor			0 41
sassafras	Sassafras albidum	WSL	Low	1.6	2.1	1.3 Lg. dec.	No change	Medium	Rare	Very Poor	Poor		Infill +	2 42
pecan	Carya illinoinensis	NSH	Low	1.6	2.0	1.2 Very Lg. dec.	J	Low	Rare	Lost	Lost			0 43
sand hickory	Carya pallida	NSL	FIA	1.6	1.6	1.0 Unknown	Unknown	NA	Rare	FIA Only	FIA Only			0 44
sycamore	Platanus occidentalis	NSL	Low	1.6	1.5	0.9 Very Lg. dec.		Medium		Lost	Lost			0 45
loblolly-bay	Gordonia lasianthus	NSH	Medium	1.6	0.7	0.5 Lg. inc.	Lg. inc.	Medium		Good	Good			2 46
white ash	Fraxinus americana	WDL	Medium	1.6	0.7	0.4 Lg. dec.	Lg. dec.	Low	Rare	Very Poor	Very Poor			0 47
	7 Taxinas anteneuna	1101	Micalani	1.0	0.7	J. 1 Lb. ucc.	<u>-6. acc.</u>	2011	. tur c	VC1 y 1 001	1001			3 47

One x One Degree

Climate Change Atlas Tree Species

S

Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

USDA Forest Service

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv Chng	Cl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
serviceberry	Amelanchier spp.	NSL	Low	1.6	0.6	0.4 No ch	hange	No change	Medium	Rare	Poor	Poor			0 48
swamp chestnut oak	Quercus michauxii	NSL	Low	1.6	0.3	0.2 Lg. de	ec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 49
shortleaf pine	Pinus echinata	WDH	High	0	C	0 New	Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Likely +	Likely +	3 50
Table Mountain pine	Pinus pungens	NSL	Low	0	(0 New	Habitat	New Habitat	High	Absent	New Habitat	New Habitat			3 51
Virginia pine	Pinus virginiana	NDH	High	0	(0 Unkn	nown	New Habitat	Medium	Absent	Unknown	New Habitat			3 52
florida maple	Acer barbatum	NSL	Low	0	C	0 Unkn	nown	Unknown	High	Modeled	Unknown	Unknown			0 53
silver maple	Acer saccharinum	NSH	Low	0		0 New	Habitat	Unknown	High	Absent	New Habitat	Unknown			3 54
river birch	Betula nigra	NSL	Low	0	(0 New	Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate ++	Migrate ++	3 55
water hickory	Carya aquatica	NSL	Medium	0	(0 Unkn	nown	Unknown	Medium	Modeled	Unknown	Unknown			0 56
bitternut hickory	Carya cordiformis	WSL	Low	0	C	0 Unkn	nown	Unknown	High	Modeled	Unknown	Unknown			0 57
shagbark hickory	Carya ovata	WSL	Medium	0		0 New	Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 58
sugarberry	Celtis laevigata	NDH	Medium	0	(0 New	Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Likely +	Likely +	3 59
eastern redbud	Cercis canadensis	NSL	Low	0		0 Unkn	nown	Unknown	Medium	Absent	Unknown	Unknown			0 60
American beech	Fagus grandifolia	WDH	High	0	(0 New	Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat		Migrate +	3 61
silverbell	Halesia spp.	NSL	Low	0	(0 New	Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 62
bigleaf magnolia	Magnolia macrophylla	NSL	Low	0	C	0 Unkn	nown	Unknown	Medium	Absent	Unknown	Unknown			0 63
red mulberry	Morus rubra	NSL	Low	0	C	0 Unkn	nown	Unknown	Medium	Modeled	Unknown	Unknown			0 64
water elm	Planera aquatica	NSL	Low	0	(0 Unkn	nown	Unknown	Medium	Modeled	Unknown	Unknown			0 65
quaking aspen	Populus tremuloides	WDH	High	0	(0 Unkn	nown	Unknown	Medium	Absent	Unknown	Unknown			0 66
scarlet oak	Quercus coccinea	WDL	Medium	0	C	0 Unkn	nown	Unknown	Medium	Absent	Unknown	Unknown			0 67
cherrybark oak; swamp red o	Quercus pagoda	NSL	Medium	0	C	0 Unkn	nown	Unknown	Medium	Modeled	Unknown	Unknown			0 68
chinkapin oak	Quercus muehlenbergii	NSL	Medium	0	C	0 Unkn	nown	Unknown	Medium	Absent	Unknown	Unknown			0 69
black oak	Quercus velutina	WDH	High	0	C	0 Unkn	nown	Unknown	Medium	Modeled	Unknown	Unknown			0 70
black locust	Robinia pseudoacacia	NDH	Low	0	C	0 Unkn	nown	Unknown	Medium	Absent	Unknown	Unknown			0 71
cabbage palmetto	Sabal palmetto	NDH	Medium	0	(0 New	Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			0 72
American basswood	Tilia americana	WSL	Medium	0	(0 Unkn	nown	Unknown	Medium	Absent	Unknown	Unknown			0 73
winged elm	Ulmus alata	WDL	Medium	0	C	0 Unkn	nown	New Habitat	Medium	Absent	Unknown	New Habitat		Migrate ++	3 74
American elm	Ulmus americana	WDH	Medium	0	C	0 New	Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Likely +	Likely +	3 75
slippery elm	Ulmus rubra	WSL	Low	0	(0 Unkn	nown	New Habitat	Medium	Absent	Unknown	New Habitat		Migrate +	3 76

