One x One Degree

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 10,748 4,149.7 113

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitability	Capability	to Cope o	r Persist	Migratio	n Potent	tial
Ash	2				Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	3	Abu	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	1	Abundant	2	High	6	8	Increase	3	3	Very Good	0	0	Likely	1	1
Oak	5	Common	4	Medium	12	16	No Change	5	6	Good	4	5	Infill	1	0
Pine	0	Rare	17	Low	10	5	Decrease	13	12	Fair	3	3	Migrate	4	4
Other	12	Absent	6	FIA	2		New	5	5	Poor	6	5	·	6	5
-	23	_	29	•	30	29	Unknown	4	4	Very Poor	8	8			
							-	30	30	FIA Only	2	2			
										Unknown	2	2			
Potentia	Potential Changes in Climate Variables											25			

Potential Changes in Climate Variables

Temperature (°F)										
	Scenario	2009	2039	2069	2099					
Annual	CCSM45	68.4	69.9	71.1	71.7					
Average	CCSM85	68.4	70.3	72.3	74.7					
	GFDL45	68.4	73.7	72.8	74.4					
	GFDL85	68.4	71.2	74.4	78.1					
	HAD45	68.4	70.5	72.9	73.7					
	HAD85	68.4	71.1	74.1	77.2					
Growing		80.6	81.9	82.9	83.6					
Season	CCSM85	80.6	82.4	84.4	87.1					
May—Sep	GFDL45	80.6	87.2	85.8	88.3					
	GFDL85	80.6	84.3	87.9	92.3					
	HAD45	80.6	82.8	84.7	85.4					
	HAD85	80.6	83.3	86.5	89.4					
			=							
Coldest	CCSM45	49.4	51.8	52.3	52.7					
Month	CCSM85	49.4	51.5	52.5	53.8					
Average	GFDL45	49.4	53.0	52.9	53.0					
	GFDL85	49.4	50.4	51.5	52.0					
	HAD45	49.4	50.1	51.5	52.0					
	HAD85	49.4	52.7	54.0	55.5					
Warmest	CCSM45	84.6	85.7	86.4	86.6					
Month	CCSM85	84.6	86.4	87.1	88.4					
Average	GFDL45	84.6	89.2	89.7	90.9					
Average	GFDL45	84.6	89.3	90.8	93.8					
					-					
	HAD45	84.6	87.1	87.9	88.4					
	HAD85	84.6	87.6	89.3	90.4					

Precipitation (in)												
	Scenario	2009	2039	2069	2099							
Annual	CCSM45	31.5	34.2	36.1	31.5							
Total	CCSM85	31.5	33.3	35.0	34.3							
	GFDL45	31.5	29.7	35.2	27.6							
	GFDL85	31.5	29.7	30.9	29.1							
	HAD45	31.5	32.7	31.0	33.2							
	HAD85	31.5	31.8	29.6	31.8							
Growing	CCSM45	15.3	17.6	17.7	15.8							
Season	CCSM85	15.3	17.1	16.6	15.8							
May—Sep	GFDL45	15.3	14.3	18.4	13.7							
	GFDL85	15.3	14.9	15.4	14.4							
	HAD45	15.3	14.9	14.8	16.5							
	HAD85	15.3	15.3	14.1	15.2 ◆◆◆◆							

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

One x One Degree

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
ashe juniper	Juniperus ashei	NDH	High	47.1	1415.0	44.0 No change	No change	Medium	Abundant	Good	Good			0 1
live oak	Quercus virginiana	NDH	High	60.6	840.5	23.4 No change	No change	Medium	Abundant	Good	Good			1 2
blackjack oak	Quercus marilandica	NSL	Medium	18.1	142.3	24.2 Lg. dec.	Lg. dec.	High	Common	Fair	Fair			1 3
post oak	Quercus stellata	WDH	High	12.8	121.8	13.2 Sm. dec.	Sm. dec.	High	Common	Fair	Fair			1 4
cedar elm	Ulmus crassifolia	NDH	Medium	41.9	82.8	7.9 Lg. inc.	Lg. inc.	Low	Common	Good	Good			1 5
sugarberry	Celtis laevigata	NDH	Medium	26.9	67.0	8.4 Sm. dec.	Sm. dec.	Medium	Common	Poor	Poor			0 6
hackberry	Celtis occidentalis	WDH	Medium	36.5	47.0	9.6 Sm. dec.	No change	High	Rare	Poor	Fair			1 7
black cherry	Prunus serotina	WDL	Medium	9.4	25.5	1.9 Lg. dec.	Lg. dec.	Low	Rare	Very Poor	Very Poor			0 8
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	13	18.2	3.7 Lg. inc.	Lg. inc.	High	Rare	Good	Good			1 9
black willow	Salix nigra	NSH	Low	4.7	10.5	6.4 Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 10
Texas ash	Fraxinus texensis	NDH	FIA	1.3	6.6	2.7 Unknown	Unknown	NA	Rare	FIA Only	FIA Only			0 11
black hickory	Carya texana	NDL	High	1.9	5.8	3.6 No change	No change	Medium	Rare	Poor	Poor			0 12
pecan	Carya illinoinensis	NSH	Low	3.7	5.6	23.9 No change	No change	Low	Rare	Very Poor	Very Poor			2 13
pignut hickory	Carya glabra	WDL	Medium	0.5	5.1	2.7 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 14
boxelder	Acer negundo	WSH	Low	0.5	4.6	2.4 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 15
white ash	Fraxinus americana	WDL	Medium	0.2	1.5	0.3 Lg. dec.	Lg. dec.	Low	Rare	Very Poor	Very Poor			0 16
sycamore	Platanus occidentalis	NSL	Low	0.2	1.1	0.2 Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 17
American elm	Ulmus americana	WDH	Medium	0.2	0.9	0.2 No change	No change	Medium	Rare	Poor	Poor			0 18
eastern redcedar	Juniperus virginiana	WDH	Medium	3.7	0.9	3.9 Sm. inc.	Lg. inc.	Medium	Rare	Fair	Good	Infill +		2 19
southern red oak	Quercus falcata	WDL	Medium	3.7	0.5	1.9 Lg. dec.	Sm. dec.	High	Rare	Poor	Poor			0 20
black walnut	Juglans nigra	WDH	Low	7.4	0.4	0.8 Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 21
durand oak	Quercus sinuata var. sinuata	NSL	FIA	0.4	0.3	0.2 Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 22
red mulberry	Morus rubra	NSL	Low	3.7	0.3	1.2 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 23
loblolly pine	Pinus taeda	WDH	High	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 24
mockernut hickory	Carya alba	WDL	Medium	0	0	0 New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 25
eastern redbud	Cercis canadensis	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 26
green ash	Fraxinus pennsylvanica	WSH	Low	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Likely +	Likely +	3 27
bur oak	Quercus macrocarpa	NDH	Medium	0	0	0 Unknown	Unknown	High	Modeled	Unknown	Unknown			0 28
water oak	Quercus nigra	WDH	High	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 29
bluejack oak	Quercus incana	NSL	Low	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 30

