One x One Degree

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration **USDA Forest Service Northern Research Station** Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 8,219.4 3,173.5 50

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potential Change in Habitat Suitability			Capability	Migration Potential				
Ash	1		Model						Scenario Scenario			Scenario		SHIFT	SHIFT
Hickory	3	Abu	ndance	F	Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	2	Abundant	1	High	6	8	Increase	5	10	Very Good	1	0	Likely	2	2
Oak	6	Common	9	Medium	23	32	No Change	11	8	Good	4	9	Infill	10	13
Pine	0	Rare	19	Low	19	8	Decrease	13	11	Fair	5	7	Migrate	3	3
Other	17	Absent	17	FIA	0		New	8	8	Poor	11	7	•	15	18
•	29		46	_	48	48	Unknown	11	11	Very Poor	6	4			
							-	48	48	FIA Only	0	0			
										Unknown	11	11			
Potentia	Potential Changes in Climate Variables										20	20			

Potentiai Changes in Climate variables

Temperature (°F)												
	Scenario	2009	2039	2069	2099							
Annual	CCSM45	69.0	70.4	72.0	72.1							
Average	CCSM85	69.0	70.6	72.8	74.8							
	GFDL45	69.0	73.4	73.1	73.9							
	GFDL85	69.0	71.3	74.3	77.4							
	HAD45	69.0	70.9	73.2	74.2							
	HAD85	69.0	71.1	74.0	77.2							
Growing	CCSM45	80.0	81.1	82.2	82.6							
Season	CCSM85	80.0	81.2	83.3	85.5							
May—Sep	GFDL45	80.0	84.8	84.1	85.5							
	GFDL85	80.0	82.5	85.5	89.2							
	HAD45	80.0	82.3	84.3	85.0							
	HAD85	80.0	82.3	85.8	88.5							
Coldest	CCSM45	51.8	53.9	54.8	54.7							
Month	CCSM85	51.8	54.3	55.5	56.5							
Average	GFDL45	51.8	54.9	55.1	55.2							
	GFDL85	51.8	53.3	54.4	55.2							
	HAD45	51.8	52.2	53.6	54.4							
	HAD85	51.8	53.5	54.6	56.3							
Warmest	CCSM45	82.8	83.6	84.0	84.2							
Month	CCSM85	82.8	83.8	84.6	85.8							
Average	GFDL45	82.8	85.4	85.9	86.8							
	GFDL85	82.8	85.2	86.6	88.7							
	HAD45	82.8	85.2	86.2	86.5							
	HAD85	82.8	85.3	87.2	88.3							

Precipitation (in)													
	Scenario	2009	2039	2069	2099								
Annual	CCSM45	63.1	65.4	71.4	69.3								
Total	CCSM85	63.1	66.0	67.6	68.1								
	GFDL45	63.1	68.8	73.4	68.0								
	GFDL85	63.1	66.4	67.9	65.2								
	HAD45	63.1	59.3	62.6	66.7								
	HAD85	63.1	67.4	61.0	64.1								
Growing	CCSM45	31.6	33.2	34.6	34.2								
Season	CCSM85	31.6	32.6	33.7	32.1 ◆◆◆◆								
May—Sep	GFDL45	31.6	35.9	39.4	34.7								
	GFDL85	31.6	34.7	36.4	36.5								
	HAD45	31.6	30.8	31.2	33.7 ◆◆◆◆								
	HAD85	31.6	32.3	27.7	28.2								

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

One x One Degree

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Nove	Calantifia Nav	Da	NAD.	0/6-11	FIA	FIAir Charcias	Chacler	• • • • • • • • • • • • • • • • • • • •	About	Comphilds	Compliant	CHIETAE		ters, Prasad,
Common Name	Scientific Name	Range				FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
bald cypress	Taxodium distichum	NSH	Medium	57.7	751.5	25.9 Sm. dec.	Sm. dec.	Medium		Fair	Fair	Infill +	Infill +	0 1
water tupelo	Nyssa aquatica	NSH	Medium	28.1		20.1 Sm. dec.	Sm. dec.	Low	Common	Poor	Poor	Infill +	Infill +	0 2
red maple	Acer rubrum	WDH	High	57.8		18.7 Sm. inc.	No change	High	Common	Very Good	Good	Infill ++	Infill ++	1 3
green ash	Fraxinus pennsylvanica	WSH	Low	46.9		10.5 No change	No change		Common	Fair	Fair	Infill +	Infill +	1 4
sugarberry	Celtis laevigata	NDH	Medium	21.8	144.7	9.3 No change	Sm. inc.		Common	Fair	Good	Infill +	Infill ++	1 5
water oak	Quercus nigra	WDH	High	19.3	112.7	10.6 Sm. dec.	Sm. dec.	Medium		Poor	Poor	Infill +	Infill +	0 6
American elm	Ulmus americana	WDH	Medium	38.3	103.7	5.4 Sm. inc.	No change	Medium		Good	Fair	Infill ++	Infill +	1 7
black willow	Salix nigra	NSH	Low	14.2	85.0	11.8 Sm. inc.	Sm. inc.	Low	Common	Fair	Fair	Infill +	Infill +	1 8
boxelder	Acer negundo	WSH	Low	24.8	64.3	5.5 No change	No change	High	Common	Good	Good	Infill ++	Infill ++	1 9
sweetgum	Liquidambar styraciflua	WDH	High	29.6	57.9	5.5 Sm. inc.	Sm. inc.		Common	Good	Good	Infill ++	Infill ++	1 10
nuttall oak	Quercus texana	NSH	Medium	11.6	37.9	3.5 No change	Sm. inc.	High	Rare	Fair	Good			0 11
eastern cottonwood	Populus deltoides	NSH	Low	0.7	7.5	3.4 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 12
pecan	Carya illinoinensis	NSH	Low	7.8	7.2	4.8 No change	Lg. inc.	Low	Rare	Very Poor	Fair		Infill +	2 13
red mulberry	Morus rubra	NSL	Low	3.6	6.6	1.8 No change	No change	Medium	Rare	Poor	Poor			0 14
sycamore	Platanus occidentalis	NSL	Low	5.5	6.5	1.8 Sm. dec.	No change	Medium	Rare	Very Poor	Poor		Infill +	2 15
live oak	Quercus virginiana	NDH	High	8.8	6.1	4.3 Lg. inc.	Lg. inc.	Medium	Rare	Good	Good			2 16
slippery elm	Ulmus rubra	WSL	Low	2.4	3.2	1.3 No change	No change	Medium	Rare	Poor	Poor			0 17
laurel oak	Quercus laurifolia	NDH	Medium	6.7	2.7	1.8 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			2 18
cherrybark oak; swamp red	o Quercus pagoda	NSL	Medium	1.2	1.6	1.4 Sm. dec.	Sm. inc.	Medium	Rare	Very Poor	Fair		Infill +	2 19
pond cypress	Taxodium ascendens	NSH	Medium	2.3	1.6	2.5 No change	Lg. inc.	Medium	Rare	Poor	Good			2 20
winged elm	Ulmus alata	WDL	Medium	6	1.0	0.8 Very Lg. dec.	Very Lg. dec.	Medium	Rare	Lost	Lost			0 21
mockernut hickory	Carya alba	WDL	Medium	1.2	1.0	0.8 Very Lg. dec.	Very Lg. dec.	High	Rare	Lost	Lost			0 22
willow oak	Quercus phellos	NSL	Low	2.3	0.7	1.2 No change	Lg. inc.	Medium	Rare	Poor	Good			2 23
eastern hophornbeam; iron	w Ostrya virginiana	WSL	Low	7.6	0.7	0.7 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 24
black cherry	Prunus serotina	WDL	Medium	1.2	0.5	0.4 Lg. dec.	Lg. dec.	Low	Rare	Very Poor	Very Poor			0 25
common persimmon	Diospyros virginiana	NSL	Low	4.9	0.4	1.3 Sm. dec.	No change	High	Rare	Poor	Fair			0 26
water hickory	Carya aquatica	NSL	Medium	2.7	0.4	0.7 No change	Lg. inc.	Medium	Rare	Poor	Good			2 27
blackgum	Nyssa sylvatica	WDL	Medium	1.7	0.1	0.2 Lg. dec.	Lg. dec.	High	Rare	Poor	Poor			0 28
sassafras	Sassafras albidum	WSL	Low	4.9	0.1	0.2 No change	Lg. dec.	Medium	Rare	Poor	Very Poor			0 29
Atlantic white-cedar	Chamaecyparis thyoides	NSH	Low	0	0	0 New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat	Migrate +		3 30
eastern redcedar	Juniperus virginiana	WDH	Medium	0	0	0 Unknown	Unknown	Medium	Modeled	Unknown	Unknown	_		0 31
loblolly pine	Pinus taeda	WDH	High	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Likely +	Likely +	3 32
striped maple	Acer pensylvanicum	NSL	Medium	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 33
serviceberry	Amelanchier spp.	NSL	Low	0	0	0 Unknown	New Habitat	Medium	Absent	Unknown	New Habitat			3 34
pawpaw	Asimina triloba	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 35
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	0	0	0 New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 36
flowering dogwood	Cornus florida	WDL	Medium	0	0	0 Unknown	Unknown	_	Modeled	Unknown	Unknown		- J	0 37
loblolly-bay	Gordonia lasianthus	NSH	Medium	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 38
silverbell	Halesia spp.	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 39
sweetbay	Magnolia virginiana	NSL	Medium	0	0	0 New Habitat	Unknown	Medium		New Habitat	Unknown			3 40
bigleaf magnolia	Magnolia macrophylla	NSL	Low	0	0	0 Unknown	Unknown	Medium		Unknown	Unknown			0 41
swamp tupelo	Nyssa biflora	NDH	Medium	0	0	0 New Habitat			Absent	New Habitat		Likelv +	Likely +	3 42
pin cherry	Prunus pensylvanica	NSL	Low	0	0	0 Unknown	Unknown	Medium		Unknown	Unknown			0 43
overcup oak	Quercus lyrata	NSL	Medium	0	0	0 New Habitat			Absent	New Habitat			Migrate ++	
black oak	Quercus velutina	WDH	High	0	0	0 Unknown	Unknown	Medium		Unknown	Unknown			0 45
cabbage palmetto	Sabal palmetto	NDH	Medium	0	0	0 New Habitat		Medium		New Habitat				0 46
American basswood	Tilia americana	WSL	Medium	0	0	0 Unknown	Unknown	Medium		Unknown	Unknown			0 40
American passwood	rina differicaria	WJL	Wiedialli	U	U	O OHKHOWII	CHRITOWIT	Medialli	Ansent	CHKHOWH	CHRITOWIT			0 47

S29 E90

One x One Degree

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Common Name	Scientific Name	Range	MR	%Cell FI	lAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
cedar elm	Ulmus crassifolia	NDH	Medium	0	0	0	New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat	Migrate ++	Migrate ++	3 48

