One x One Degree

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

 sq. km
 sq. mi
 FIA Plots

 Area of Region
 10,599
 4,092.2
 73

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitability	Capability	to Cope o	r Persist	Migratio	n Potent	tial
Ash	2				Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	1	Abur	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	1	Abundant	0	High	3	11	Increase	0	0	Very Good	0	0	Likely	0	0
Oak	5	Common	4	Medium	12	12	No Change	3	3	Good	0	0	Infill	1	1
Pine	0	Rare	17	Low	13	5	Decrease	18	18	Fair	3	3	Migrate	0	0
Other	12	Absent	7	FIA	0		New	1	1	Poor	9	9	·	1	1
•	21	_	28	•	28	28	Unknown	6	6	Very Poor	9	9			
							-	28	28	FIA Only	0	0			
										Unknown	6	6			
Potentia	I Change	es in Climate Var	iahles							•	27	27			

Potential Changes in Climate Variables

Temperatu	ıre (°F)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	70.8	72.2	73.6	74.0
Average	CCSM85	70.8	72.4	74.6	76.8
	GFDL45	70.8	76.1	75.1	76.5
	GFDL85	70.8	73.4	76.6	80.0
	HAD45	70.8	72.8	75.1	76.1
	HAD85	70.8	73.2	76.0	79.2
Growing	CCSM45	81.8	83.1	84.0	84.5
Season		81.8	83.3	85.2	87.6
May—Sep		81.8	88.2	86.7	88.7
way sep	GFDL85	81.8	85.1	88.5	92.5
	HAD45	81.8	83.8	85.5	86.4
	HAD85	81.8	84.0	86.9	89.8
	11/1005	01.0	04.0	00.5	05.0
Coldest	CCSM45	53.1	55.3	56.2	56.4
Month	CCSM85	53.1	55.2	56.3	57.7
Average	GFDL45	53.1	56.5	56.6	56.8
	GFDL85	53.1	54.2	55.5	56.2
	HAD45	53.1	54.1	55.6	56.3
	HAD85	53.1	56.4	57.7	59.3
Warmest	CCSM45	85.1	86.2	86.7	86.9
Month	CCSM85	85.1	86.6	87.3	88.4
Average	GFDL45	85.1	88.8	89.6	90.5
, cruge	GFDL85	85.1	89.1	90.6	93.0
	HAD45	85.1	87.2	87.9	88.5
	HAD85	85.1	87.5	89.0	90.1

Precipitation (in)											
	Scenario	2009	2039	2069	2099						
Annual	CCSM45	33.1	36.1	37.9	35.1						
Total	CCSM85	33.1	37.2	36.7	34.2						
	GFDL45	33.1	33.0	38.9	29.2						
	GFDL85	33.1	32.4	33.1	31.7						
	HAD45	33.1	34.3	33.0	33.5 ◆◆◆◆						
	HAD85	33.1	35.4	33.2	33.7 ◆◆◆						
Growing	CCSM45	16.6	18.8	19.5	17.8						
Season	CCSM85	16.6	20.0	18.5	16.5						
May—Sep	GFDL45	16.6	17.0	22.3	15.4						
	GFDL85	16.6	17.3	17.7	17.2 ◆◆◆◆						
	HAD45	16.6	16.1	15.9	16.7						
	HAD85	16.6	18.0	16.5	16.3						

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

One x One Degree

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45 SHIFT85	SSO N
live oak	Quercus virginiana	NDH	High	63.1	409.4	26.3 Sm. dec.	Sm. dec.	Medium	Common	Poor	Poor		0 1
post oak	Quercus stellata	WDH	High	20.3	165.4	17.7 Lg. dec.	Lg. dec.	High	Common	Fair	Fair		1 2
sugarberry	Celtis laevigata	NDH	Medium	46.9	98.8	14.1 Sm. dec.	Sm. dec.	Medium	Common	Poor	Poor		0 3
hackberry	Celtis occidentalis	WDH	Medium	23.5	60.3	12.2 Lg. dec.	Lg. dec.	High	Common	Fair	Fair		1 4
cedar elm	Ulmus crassifolia	NDH	Medium	22.4	43.8	11.0 Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor		0 5
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	28.9	21.8	3.7 Lg. dec.	Sm. dec.	High	Rare	Poor	Poor		1 6
water oak	Quercus nigra	WDH	High	2.6	12.6	37.0 Sm. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor		2 7
pecan	Carya illinoinensis	NSH	Low	5.7	7.4	13.5 No change	No change	Low	Rare	Very Poor	Very Poor		0 8
Osage-orange	Maclura pomifera	NDH	Medium	5.7	3.8	7.7 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor		0 9
black willow	Salix nigra	NSH	Low	9.5	2.7	2.6 Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor		0 10
boxelder	Acer negundo	WSH	Low	5.7	2.6	4.3 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor		0 11
green ash	Fraxinus pennsylvanica	WSH	Low	3.8	2.5	10.4 Sm. dec.	No change	Medium	Rare	Very Poor	Poor	Infill +	1 12
blackjack oak	Quercus marilandica	NSL	Medium	7.9	1.9	0.9 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor		1 13
white ash	Fraxinus americana	WDL	Medium	2	1.8	4.0 Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor		0 14
American elm	Ulmus americana	WDH	Medium	3.8	1.5	6.2 No change	Sm. dec.	Medium	Rare	Poor	Very Poor	Infill +	2 15
red mulberry	Morus rubra	NSL	Low	3.7	1.3	1.4 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor		0 16
sycamore	Platanus occidentalis	NSL	Low	2	0.9	2.0 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor		0 17
white oak	Quercus alba	WDH	Medium	3.8	0.7	3.0 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor		0 18
slippery elm	Ulmus rubra	WSL	Low	3.8	0.6	2.7 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor		0 19
honeylocust	Gleditsia triacanthos	NSH	Low	2	0.6	1.4 No change	No change	High	Rare	Fair	Fair		0 20
eastern hophornbeam; iron	w Ostrya virginiana	WSL	Low	0.4	0.5	0.2 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor		0 21
pond cypress	Taxodium ascendens	NSH	Medium	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat		3 22
shagbark hickory	Carya ovata	WSL	Medium	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown		0 23
mockernut hickory	Carya alba	WDL	Medium	0	0	0 Unknown	Unknown	High	Absent	Unknown	Unknown		0 24
eastern redbud	Cercis canadensis	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown		0 25
common persimmon	Diospyros virginiana	NSL	Low	0	0	0 Unknown	Unknown	High	Absent	Unknown	Unknown		0 26
bigleaf magnolia	Magnolia macrophylla	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown		0 27
swamp tupelo	Nyssa biflora	NDH	Medium	0	0	0 Unknown	Unknown	Low	Absent	Unknown	Unknown		0 28

