One x One Degree

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 7,694.5 2,970.9 156

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species					Potentia	al Change	in Habitat Suitability	Capability	Migration Potential					
Ash	3				Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	1	Abu	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	1	Abundant	5	High	10	11	Increase	14	17	Very Good	6	8	Likely	0	0
Oak	8	Common	16	Medium	25	41	No Change	12	10	Good	7	5	Infill	8	10
Pine	5	Rare	20	Low	22	6	Decrease	12	11	Fair	8	10	Migrate	2	4
Other	23	Absent	17	FIA	3		New	6	7	Poor	10	11	-	10	14
-	41	_	58	-	60	58	Unknown	16	15	Very Poor	7	3			
							-	60	60	FIA Only	3	3			
										Unknown	13	12			
Potentia	Potential Changes in Climate Variables											52			

Potential Changes in Climate Variables

Temperatu	ıre (°F)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	71.4	72.9	74.4	74.3
Average	CCSM85	71.4	73.0	75.1	77.2
	GFDL45	71.4	74.3	75.6	76.4
	GFDL85	71.4	73.7	76.6	80.0
	HAD45	71.4	73.1	75.4	76.6
	HAD85	71.4	73.8	76.2	79.8
Crawina	CCSM45	80.1	81.4	82.5	02.7
Growing					82.7
Season	CCSM85	80.1	81.4	83.5	85.8
May—Sep		80.1	83.0	84.1	85.2
	GFDL85	80.1	82.5	85.3	88.9
	HAD45	80.1	82.6	84.4	85.6
	HAD85	80.1	82.9	86.1	89.4
Coldest	CCSM45	57.2	59.4	60.3	60.1
Month	CCSM85	57.2	59.0	59.9	61.3
Average	GFDL45	57.2	59.8	60.3	60.8
· ·	GFDL85	57.2	59.5	60.6	61.7
	HAD45	57.2	57.0	58.2	58.8
	HAD85	57.2	57.9	58.5	60.4
Warmest		82.1	83.4	84.1	84.2
Month	CCSM85	82.1	83.5	84.7	86.0
Average	GFDL45	82.1	84.3	85.3	85.9
	GFDL85	82.1	84.5	86.0	87.9
	HAD45	82.1	84.7	85.4	86.0
	HAD85	82.1	84.6	86.5	87.8

Precipitation (in)													
	Scenario	2009	2039	2069	2099								
Annual	CCSM45	51.2	55.0	56.8	58.0								
Total	CCSM85	51.2	54.0	55.5	54.6								
	GFDL45	51.2	59.1	61.1	63.2								
	GFDL85	51.2	55.5	64.1	60.1								
	HAD45	51.2	51.9	52.6	54.9								
	HAD85	51.2	49.9	50.6	49.9								
Growing	CCSM45	31.9	34.7	34.7	35.4								
Season	CCSM85	31.9	33.5	35.0	33.1 ◆◆◆◆								
May—Sep	GFDL45	31.9	36.9	37.6	38.1								
	GFDL85	31.9	35.6	39.9	37.2								
	HAD45	31.9	32.5	33.2	31.3 ◆◆◆◆								
	HAD85	31.9	30.2	27.9	27.2								

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

One x One Degree

Climate Change Atlas Tree Species

Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

USDA Forest Service

Current and Potential Future Habitat, Capability, and Migration

								iabitat, ca	Jability,	and mg					eters, Prasi
Common Name	Scientific Name	Range				FIAiv Chn		ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
laurel oak	Quercus laurifolia	NDH	Medium	75.6	965.2		U	Sm. dec.	Medium	Abundant	Good	Fair			1 1
slash pine	Pinus elliottii	NDH	High	43.8		19.6 Sm.		Sm. inc.	Medium	Abundant	Very Good	Very Good			1 2
pond cypress	Taxodium ascendens	NSH	Medium	33.3		25.1 Sm.		Sm. inc.	Medium	Abundant	Very Good	Very Good			1 3
longleaf pine	Pinus palustris	NSH	Medium	43.3		21.2 No c		No change	Medium	Abundant	Good	Good			1 4
live oak	Quercus virginiana	NDH	High	63.5		13.0 Sm.		Lg. inc.	Medium	Abundant	Very Good	Very Good			1 5
red maple	Acer rubrum	WDH	High	45.9	324.9			Sm. inc.	High	Common	Very Good	Very Good			1 6
sand pine	Pinus clausa	NDH	High	9.6	310.0	17.8 No c	change	No change	Low	Common	Poor	Poor			0 7
sweetgum	Liquidambar styraciflua	WDH	High	42.9	305.7	6.3 No c	change	No change	Medium	Common	Fair	Fair			1 8
bald cypress	Taxodium distichum	NSH	Medium	32.4	298.9	11.5 Sm.	inc.	Sm. inc.	Medium	Common	Good	Good			1 9
turkey oak	Quercus laevis	NSH	Medium	29.5	293.6	12.7 Sm.	dec.	Sm. dec.	High	Common	Fair	Fair			1 10
cabbage palmetto	Sabal palmetto	NDH	Medium	30.5	258.7	7.8 Lg. ii	inc.	Lg. inc.	Medium	Common	Very Good	Very Good			0 11
water oak	Quercus nigra	WDH	High	32.8	255.9	7.4 Sm.	inc.	Sm. inc.	Medium	Common	Good	Good			1 12
swamp tupelo	Nyssa biflora	NDH	Medium	42.6	234.1	6.6 Sm.	inc.	Sm. inc.	Low	Common	Fair	Fair			1 13
loblolly pine	Pinus taeda	WDH	High	9.2	130.1	10.9 No c	change	No change	Medium	Common	Fair	Fair	Infill +	Infill +	1 14
black cherry	Prunus serotina	WDL	Medium	18	86.5	5.1 Sm.	inc.	Sm. inc.	Low	Common	Fair	Fair			1 15
sweetbay	Magnolia virginiana	NSL	Medium	19.1	65.7	3.5 Lg. ii	inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 16
eastern cottonwood	Populus deltoides	NSH	Low	1.3	65.0	50.0 Sm.	dec.	Sm. dec.	Medium	Common	Poor	Poor			0 17
redbay	Persea borbonia	NSL	Low	24.7	56.6	1.8 No c	change	Sm. inc.	High	Common	Good	Very Good			1 18
American elm	Ulmus americana	WDH	Medium	29.6	56.4	3.1 Sm.	inc.	Lg. inc.	Medium	Common	Good	Very Good			1 19
pignut hickory	Carya glabra	WDL	Medium	10.4	54.4	5.2 Sm.	dec.	Sm. dec.	Medium	Common	Poor	Poor			0 20
loblolly-bay	Gordonia lasianthus	NSH	Medium	3	53.4	6.7 No c		No change	Medium	Common	Fair	Fair	Infill +	Infill +	2 21
pumpkin ash	Fraxinus profunda	NSH	FIA	18	47.7	4.4 Unki		Unknown	NA	Rare	FIA Only	FIA Only			0 22
bluejack oak	Quercus incana	NSL	Low	23.9	47.4	2.6 Sm.		No change	Medium	Rare	Very Poor	Poor			1 23
American hornbeam; mus		WSL	Low	14.4	42.8	3.1 Sm.		No change	Medium	Rare	Very Poor	Poor			1 24
southern magnolia	Magnolia grandiflora	NSL	Low	12.7	36.9	3.6 Sm.		Sm. inc.	Medium	Rare	Fair	Fair	Infill +	Infill +	1 25
sugarberry	Celtis laevigata	NDH	Medium	8.3	27.6	2.7 No c		Sm. inc.	Medium	Rare	Poor	Fair	Infill +	Infill +	1 26
post oak	Quercus stellata	WDH	High	7.5	21.1	4.2 No c	_	Sm. inc.	High	Rare	Fair	Good	Infill +	Infill ++	2 27
green ash	Fraxinus pennsylvanica	WSH	Low	5.7	18.4	3.4 No c	_	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 28
Carolina ash	Fraxinus caroliniana	NSL	FIA	9.7	13.1	2.4 Unki		Unknown	NA	Rare	FIA Only	FIA Only			0 29
common persimmon	Diospyros virginiana	NSL	Low	10.1	11.5	1.5 Lg. d		Lg. dec.	High	Rare	Poor	Poor			1 30
eastern hophornbeam; iro	., .	WSL	Low	4.8	9.4	1.7 Sm.		Sm. dec.	High	Rare	Poor	Poor		Infill +	1 31
blackgum	Nyssa sylvatica	WDL	Medium	2.6	5.4	2.1 Lg. ii		Lg. inc.	High	Rare	Good	Good	Infill ++	Infill ++	2 32
pond pine	Pinus serotina	NSH	Medium	1.3	3.0	2.3 Sm.		Lg. inc.	Low	Rare	Poor	Fair	Infill +	Infill +	2 33
Shumard oak	Quercus shumardii	NSL	Low	1.3	2.7	2.1 Sm.		Sm. dec.	High	Rare	Poor	Poor		111111111111111111111111111111111111111	0 34
waterlocust	Gleditsia aquatica	NSLX	FIA	4.4	2.7	1.8 Unki		Unknown	Medium	Rare	FIA Only	FIA Only			0 35
eastern redcedar	Juniperus virginiana	WDH	Medium	4.4	2.7	1.9 Sm.		Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 35
winged elm	Ulmus alata	WDL	Medium	6.2	2.2	0.6 Sm.			Medium	Rare	*	Poor		Infill +	2 37
- U				1.3				No change			Very Poor			11111111 +	0 38
water tupelo	Nyssa aquatica	NSH	Medium		1.4	1.1 No c		Very Lg. dec.	Low	Rare	Very Poor	Lost			
American basswood	Tilia americana	WSL	Medium	1.3	0.4	0.3 Lg. d		Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 39
flowering dogwood	Cornus florida	WDL	Medium	1.3	0.3	0.3 No c		No change	Medium	Rare	Poor	Poor			0 40
cherrybark oak; swamp re		NSL	Medium	3.6	0.1	0.1 Lg. d		Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 41
shortleaf pine	Pinus echinata	WDH	High	0	0			New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 42
spruce pine	Pinus glabra	NSL	Low	0	0			Unknown	Medium	Modeled	Unknown	Unknown			0 43
striped maple	Acer pensylvanicum	NSL	Medium	0	0			Unknown	Medium	Absent	Unknown	Unknown			0 44
serviceberry	Amelanchier spp.	NSL	Low	0	0				Medium		Unknown	New Habitat			3 45
river birch	Betula nigra	NSL	Low	0	0			New Habitat	Medium	Absent	New Habitat	New Habitat		Migrate +	3 46
cittamwood/gum bumelia	Sideroxylon lanuginosum :	ssp. NSL	Low	0	0	0 Unki	nown	New Habitat	High	Absent	Unknown	New Habitat			0 47

swamp chestnut oak

American mountain-ash

willow oak

black locust

Quercus michauxii

Robinia pseudoacacia

Quercus phellos

Sorbus americana

NSL

NSL

NDH

NSL

Low

Low

Low

Low

0

0

0

0

0

One x One Degree

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

Unknown

Unknown

Unknown

Unknown

Medium Absent

Medium Absent

Low

Medium Modeled

Absent

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

USDA Forest Service
Northern Research Station
Landscape Change Research Group
Iverson, Peters, Prasad, Matthews
SHIFTAS SHIFTAS SSO N

0 57

0 58

0 59

0 60

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
shagbark hickory	Carya ovata	WSL	Medium	0) () (0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 48
mockernut hickory	Carya alba	WDL	Medium	0	, c) (New Habitat	New Habitat	High	Absent	New Habitat	New Habitat		Migrate +	3 49
eastern redbud	Cercis canadensis	NSL	Low	0) (0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 50
American beech	Fagus grandifolia	WDH	High	0	, c) (New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 51
silverbell	Halesia spp.	NSL	Low	0) (New Habitat	Unknown	Medium	Absent	New Habitat	Unknown			0 52
cucumbertree	Magnolia acuminata	NSL	Low	0	, c) (0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 53
bigleaf magnolia	Magnolia macrophylla	NSL	Low	0) (0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 54
pin cherry	Prunus pensylvanica	NSL	Low	0	, c) (0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 55
southern red oak	Quercus falcata	WDL	Medium	0	C)	0 New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 56

0 Unknown

0 Unknown

0 Unknown

0 Unknown

