One x One Degree

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 10,850 4,189.2 164

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species								Potential Change in Habitat Suitability			Capability to Cope or Persist			
Ash	4		Model						Scenario Scenario			Scenario		SHIFT	SHIFT
Hickory	2	Abu	Abundance		Reliability Adaptability			RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	1	Abundant	2	High	10	10	Increase	13	14	Very Good	3	5	Likely	0	0
Oak	6	Common	14	Medium	27	35	No Change	10	11	Good	11	8	Infill	8	10
Pine	5	Rare	21	Low	16	8	Decrease	12	10	Fair	5	7	Migrate	0	3
Other	19	Absent	13	FIA	2		New	4	5	Poor	6	7	·	8	13
•	37		50	-	55	53	Unknown	16	15	Very Poor	9	6			
							-	55	55	FIA Only	2	2			
										Unknown	14	13			
Potentia	al Chang	es in Climate Var	iahles							•	ΕO	40			

Potential Changes in Climate variables

Temperatu	ıre (°F)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	72.0	73.5	74.9	74.9
Average	CCSM85	72.0	73.6	75.7	77.9
	GFDL45	72.0	75.5	76.2	77.0
	GFDL85	72.0	74.3	77.2	80.5
	HAD45	72.0	73.5	75.7	76.8
	HAD85	72.0	74.2	76.4	79.8
Growing	CCSM45	80.5	81.7	82.8	83.0
Season	CCSM85	80.5	81.7	83.9	86.3
May—Sep	GFDL45	80.5	83.9	84.4	85.5
	GFDL85	80.5	82.8	85.6	89.1
	HAD45	80.5	82.6	84.3	85.5
	HAD85	80.5	83.0	85.8	88.9
Coldest	CCSM45	58.2	60.3	61.2	61.0
Month	CCSM85	58.2	59.7	60.6	62.0
Average	GFDL45	58.2	60.9	61.3	61.8
	GFDL85	58.2	60.5	61.7	62.8
	HAD45	58.2	58.1	59.3	59.9
	HAD85	58.2	58.8	59.5	61.4
Warmest	CCSM45	82.5	83.7	84.5	84.5
Month	CCSM85	82.5	83.8	85.1	86.5
Average	GFDL45	82.5	84.8	85.6	86.3
	GFDL85	82.5	84.9	86.4	88.3
	HAD45	82.5	84.8	85.5	86.1
	HAD85	82.5	84.7	86.4	87.7

Precipitati	on (in)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	49.9	53.1	53.7	55.5
Total	CCSM85	49.9	52.4	52.7	51.9
	GFDL45	49.9	58.7	60.1	62.1
	GFDL85	49.9	54.1	63.4	59.7
	HAD45	49.9	49.6	49.0	51.5
	HAD85	49.9	47.1	48.1	46.2
Growing	CCSM45	31.2	33.7	32.7	34.3
Season	CCSM85	31.2	33.0	32.9	30.9 ◆◆◆◆
May—Sep	GFDL45	31.2	36.3	36.7	36.8
	GFDL85	31.2	34.4	38.9	36.5
	HAD45	31.2	31.2	30.4	29.1 •••
	HAD85	31.2	28.6	26.3	25.3

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

One x One Degree

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

		_		~ ~ "			riabitat, ca	• • • • • • • • • • • • • • • • • • • •	•					Peters, Pr
Common Name	Scientific Name	Range				FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
slash pine	Pinus elliottii	NDH	High	53.4		24.6 No change	No change		Abundant	Good	Good			1 1
pond cypress	Taxodium ascendens	NSH	Medium	38.6		25.6 Sm. inc.	Sm. inc.	Medium	Abundant	Very Good	Very Good			1 2
cabbage palmetto	Sabal palmetto	NDH	Medium	30.7		16.7 Sm. inc.	Lg. inc.		Common	Good	Very Good			0 3
red maple	Acer rubrum	WDH	High	50		12.2 No change	No change	High	Common	Good	Good			1 4
longleaf pine	Pinus palustris	NSH	Medium	34.3		22.0 Sm. inc.	No change	Medium	Common	Good	Fair			1 5
sand pine	Pinus clausa	NDH	High	18.8	367.5	29.5 Sm. dec.	Sm. dec.	Low	Common	Poor	Poor			0 6
live oak	Quercus virginiana	NDH	High	41.2	322.2	11.3 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 7
swamp tupelo	Nyssa biflora	NDH	Medium	46.7	258.8	7.4 Sm. inc.	Sm. inc.	Low	Common	Fair	Fair			1 8
laurel oak	Quercus laurifolia	NDH	Medium	52.4	243.3	7.3 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 9
loblolly-bay	Gordonia lasianthus	NSH	Medium	35.4	203.0	8.3 No change	No change	Medium	Common	Fair	Fair			1 10
bald cypress	Taxodium distichum	NSH	Medium	18.5	177.8	7.2 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 11
sweetgum	Liquidambar styraciflua	WDH	High	13.3	143.2	5.5 No change	No change	Medium	Common	Fair	Fair	Infill +	Infill +	1 12
sweetbay	Magnolia virginiana	NSL	Medium	36.5	109.1	6.5 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 13
redbay	Persea borbonia	NSL	Low	35.9	84.8	2.5 No change	Sm. inc.	High	Common	Good	Very Good			1 14
pond pine	Pinus serotina	NSH	Medium	13.5	57.4	12.5 Sm. inc.	Sm. inc.	Low	Common	Fair	Fair			1 15
water oak	Quercus nigra	WDH	High	16	53.9	2.8 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good	Infill ++	Infill ++	1 16
pumpkin ash	Fraxinus profunda	NSH	FIA	3.4	33.4	8.9 Unknown	Unknown	NA	Rare	FIA Only	FIA Only			0 17
loblolly pine	Pinus taeda	WDH	High	5.3	32.7	5.8 No change	Sm. inc.	Medium		Poor	Fair	Infill +	Infill +	2 18
turkey oak	Quercus laevis	NSH	Medium	8.4	29.8	5.0 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	1 19
green ash	Fraxinus pennsylvanica	WSH	Low	3.2	27.2	3.2 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 20
American elm	Ulmus americana	WDH	Medium	16.4	24.3	1.6 Lg. inc.	Lg. inc.	Medium	Rare	Good	Good	Infill ++		1 21
common persimmon	Diospyros virginiana	NSL	Low	8.8	17.5	1.2 Lg. dec.	Lg. dec.	High	Rare	Poor	Poor			1 22
pignut hickory	Carya glabra	WDL	Medium	5.5	16.8	7.2 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			2 23
Carolina ash	Fraxinus caroliniana	NSL	FIA	10.8	13.2	3.5 Unknown	Unknown	NA	Rare	FIA Only	FIA Only			0 24
American hornbeam; mus		WSL	Low	3.8	11.9	1.5 Sm. dec.	No change	Medium		Very Poor	Poor		Infill +	1 25
black cherry	Prunus serotina	WDL	Medium	6.5	11.5	3.4 No change	No change	Low	Rare	Very Poor	Very Poor			0 26
southern magnolia	Magnolia grandiflora	NSL	Low	2.5	7.5	2.7 No change	No change	Medium		Poor	Poor	Infill +	Infill +	2 27
bluejack oak	Quercus incana	NSL	Low	3.9	5.7	2.1 Sm. dec.	No change	Medium		Very Poor	Poor		Infill +	2 28
water hickory	Carya aquatica	NSL	Medium	1.6	4.6	2.4 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 29
American holly	llex opaca	NSL	Medium	1.6	2.5	1.1 Sm. dec.	Sm. dec.	Medium		Very Poor	Very Poor			0 30
blackgum	Nyssa sylvatica	WDL	Medium	4.7	2.5	1.6 Lg. inc.	Lg. inc.	High	Rare	Good	Good	Infill ++	Infill ++	2 31
eastern redcedar	Juniperus virginiana	WDL	Medium	4.6	1.5	1.0 Sm. dec.	Very Lg. dec.	Medium		Very Poor	Lost	11111111 77	11111111 77	0 32
		WDL		0.9				Low		Very Poor				0 32
white ash	Fraxinus americana		Medium	0.9	1.4 0.9	1.6 Sm. dec.	Sm. dec.		Rare	•	Very Poor			0 33
red mulberry	Morus rubra	NSL	Low			1.0 Very Lg. dec.	, ,	Medium		Lost	Lost			
black willow	Salix nigra	NSH	Low	2.3	0.8	2.2 Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 35
sugarberry	Celtis laevigata	NDH	Medium	0.9	0.5	0.5 Lg. inc.	Lg. inc.	Medium		Good	Good			2 36
blackjack oak	Quercus marilandica	NSL	Medium	0.6	0.4	0.3 Lg. dec.	Lg. dec.	High	Rare	Poor	Poor			0 37
shortleaf pine	Pinus echinata	WDH	High	0	0	0 New Habitat	New Habitat	Medium		New Habitat	New Habitat		Migrate +	
striped maple	Acer pensylvanicum	NSL	Medium	0	0	0 Unknown	Unknown	Medium		Unknown	Unknown			0 39
serviceberry	Amelanchier spp.	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 40
river birch	Betula nigra	NSL	Low	0	0	0 Unknown	Unknown	Medium	Modeled	Unknown	Unknown			0 41
shagbark hickory	Carya ovata	WSL	Medium	0	0	0 Unknown	Unknown	Medium		Unknown	Unknown			0 42
mockernut hickory	Carya alba	WDL	Medium	0	0	0 Unknown	Unknown	High	Modeled	Unknown	Unknown			0 43
silverbell	Halesia spp.	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 44
cucumbertree	Magnolia acuminata	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 45
bigleaf magnolia	Magnolia macrophylla	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 46
water tupelo	Nyssa aquatica	NSH	Medium	0	0	0 New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat			3 47

One x One Degree

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell FIA	Asum I	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45 SHIFT85	SSO N
sourwood	Oxydendrum arboreum	NDL	High	0	0	0 Unknown	Unknown	High	Absent	Unknown	Unknown		0 48
southern red oak	Quercus falcata	WDL	Medium	0	0	0 New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Migrate +	3 49
cherrybark oak; swamp red	do Quercus pagoda	NSL	Medium	0	0	0 Unknown	Unknown	Medium	Modeled	Unknown	Unknown		0 50
willow oak	Quercus phellos	NSL	Low	0	0	0 Unknown	Unknown	Medium	Modeled	Unknown	Unknown		0 51
post oak	Quercus stellata	WDH	High	0	0	0 New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Migrate +	3 52
black locust	Robinia pseudoacacia	NDH	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown		0 53
American mountain-ash	Sorbus americana	NSL	Low	0	0	0 Unknown	New Habitat	Low	Absent	Unknown	New Habitat		0 54
winged elm	Ulmus alata	WDI	Medium	0	0	0 Unknown	Unknown	Medium	Modeled	Unknown	Unknown		0.55

