S28 E80

One x One Degree

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 3,248.1 1,254.1 60

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species							Potential Change in Habitat Suitability			Capability to Cope or Persist				Migration Potential			
Ash	2			Ν	Vodel			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT			
Hickory	1	Abur	ndance	R	Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85			
Maple	1	Abundant	3	High	5	5	Increase	8	9	Very Good	2	2	Likely	0	0			
Oak	3	Common	8	Medium	20	21	No Change	7	7	Good	7	8	Infill	5	8			
Pine	3	Rare	16	Low	6	5	Decrease	12	11	Fair	4	4	Migrate	0	0			
Other	17	Absent	3	FIA	0		New	1	1	Poor	6	6		5	8			
-	27		30	_	31	31	Unknown	3	3	Very Poor	7	5						
							-	31	31	FIA Only	0	0						

Potential Changes in Climate Variables

-		• •			
Temperatu	. ,				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	72.1	73.4	74.8	74.8 🛶 🛶 🛶
Average	CCSM85	72.1	73.5	75.6	77.7 🛶 🛶
	GFDL45	72.1	75.8	76.1	77.0
	GFDL85	72.1	74.3	77.2	80.3
	HAD45	72.1	73.5	75.5	76.5
	HAD85	72.1	74.1	76.2	79.4
Growing	CCSM45	80.0	81.1	82.2	82.4
Season	CCSM85	80.0	81.2	83.3	85.5
May—Sep		80.0	83.7	83.9	84.9
	GFDL85	80.0	82.3	85.0	88.4
	HAD45	80.0	82.0	83.5	84.6
	HAD85	80.0	82.3	84.9	87.8
Coldest	CCSM45	58.9	60.8	61.7	61.5
Month	CCSM85	58.9	60.1	61.0	62.4
Average	GFDL45	58.9	61.5	61.9	62.4
	GFDL85	58.9	61.1	62.3	63.3
	HAD45	58.9	58.8	60.0	60.5
	HAD85	58.9	59.4	60.2	61.9
Warmest	CCSM45	82.1	83.1	83.8	83.8 🛶 🔶
Month	CCSM85	82.1	83.3	84.5	85.8
Average	GFDL45	82.1	84.2	85.1	85.8
	GFDL85	82.1	84.3	85.9	87.7
	HAD45	82.1	84.1	84.8	85.3
	HAD85	82.1	84.1	85.5	86.8

Precipitati	ion (in)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	50.5	53.3	53.0	55.6
Total	CCSM85	50.5	52.5	52.0	50.7 ++++
	GFDL45	50.5	59.5	60.1	62.4
	GFDL85	50.5	54.7	63.9	59.7 +++++
	HAD45	50.5	49.9	48.3	50.6 ++++
	HAD85	50.5	46.9	48.6	45.6 🛶 🛶
Growing	CCSM45	30.1	32.2	30.4	33.0 ++++
Season	CCSM85	30.1	31.9	30.9	28.4 +++++
May—Sep	GFDL45	30.1	34.7	34.4	34.2
	GFDL85	30.1	32.4	36.2	34.0 ++++
	HAD45	30.1	29.9	28.0	26.9 ++++
	HAD85	30.1	27.2	25.1	23.6 +++++

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Unknown

3

29

3

28

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

S28 E80

One x One Degree

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

Versol									iverson	, Peters,				
Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
cabbage palmetto	Sabal palmetto	NDH	Medium	71.1	1461.2	24.7 No change	No change	Medium	Abundant	Good	Good			0 1
slash pine	Pinus elliottii	NDH	High	51.9	1382.7	25.0 No change	No change	Medium	Abundant	Good	Good			1 2
pond cypress	Taxodium ascendens	NSH	Medium	23.7	630.6	19.6 Sm. inc.	Sm. inc.	Medium	Abundant	Very Good	Very Good			1 3
longleaf pine	Pinus palustris	NSH	Medium	19.8	438.2	19.3 Lg. dec.	Lg. dec.	Medium	Common	Poor	Poor			04
red maple	Acer rubrum	WDH	High	40	428.5	12.4 Sm. dec.	Sm. dec.	High	Common	Fair	Fair			15
live oak	Quercus virginiana	NDH	High	65.7	363.4	11.0 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			16
pond pine	Pinus serotina	NSH	Medium	11.2	239.1	15.9 Lg. dec.	Lg. dec.	Low	Common	Very Poor	Very Poor			07
sweetgum	Liquidambar styraciflua	WDH	High	35.4	174.6	6.0 Lg. dec.	Lg. dec.	Medium	Common	Poor	Poor			08
laurel oak	Quercus laurifolia	NDH	Medium	42	160.7	6.1 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			19
American elm	Ulmus americana	WDH	Medium	41.7	84.1	3.9 No change	No change	Medium	Common	Fair	Fair			1 10
redbay	Persea borbonia	NSL	Low	37.5	77.4	2.4 No change	No change	High	Common	Good	Good			1 11
sugarberry	Celtis laevigata	NDH	Medium	16.8	48.3	3.5 No change	Lg. inc.	Medium	Rare	Poor	Good		Infill ++	1 12
swamp tupelo	Nyssa biflora	NDH	Medium	9.9	32.5	2.3 Sm. inc.	Sm. inc.	Low	Rare	Poor	Poor			1 13
green ash	Fraxinus pennsylvanica	WSH	Low	4.1	28.0	3.2 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 14
bald cypress	Taxodium distichum	NSH	Medium	14.7	17.1	2.5 Lg. inc.	Lg. inc.	Medium	Rare	Good	Good	Infill ++	Infill ++	1 15
American basswood	Tilia americana	WSL	Medium	2.3	15.1	3.6 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 16
American hornbeam; mus	cle\ Carpinus caroliniana	WSL	Low	6.8	13.9	1.1 Sm. dec.	No change	Medium	Rare	Very Poor	Poor		Infill +	2 17
sweetbay	Magnolia virginiana	NSL	Medium	9.5	11.8	1.1 Sm. inc.	Sm. inc.	Medium	Rare	Fair	Fair	Infill +	Infill +	1 18
water oak	Quercus nigra	WDH	High	14.2	9.1	0.9 Lg. inc.	Lg. inc.	Medium	Rare	Good	Good	Infill ++	Infill ++	2 19
eastern redcedar	Juniperus virginiana	WDH	Medium	3	8.3	2.7 Sm. dec.	Very Lg. dec.	Medium	Rare	Very Poor	Lost			0 20
pignut hickory	Carya glabra	WDL	Medium	2.8	6.9	2.1 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 21
hackberry	Celtis occidentalis	WDH	Medium	2.7	2.6	0.8 Very Lg. dec.	Very Lg. dec.	High	Rare	Lost	Lost			0 22
blackgum	Nyssa sylvatica	WDL	Medium	1.8	2.1	0.4 No change	No change	High	Rare	Fair	Fair		Infill +	2 23
common persimmon	Diospyros virginiana	NSL	Low	2.7	1.3	0.4 Lg. dec.	Lg. dec.	High	Rare	Poor	Poor			0 24
white ash	Fraxinus americana	WDL	Medium	9	0.9	0.9 Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 25
southern magnolia	Magnolia grandiflora	NSL	Low	9	0.9	0.9 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 26
loblolly-bay	Gordonia lasianthus	NSH	Medium	2.4	0.7	0.2 Lg. inc.	Lg. inc.	Medium	Rare	Good	Good	Infill ++	Infill ++	1 27
striped maple	Acer pensylvanicum	NSL	Medium	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 28
flowering dogwood	Cornus florida	WDL	Medium	0	0	0 Unknown	Unknown	Medium	Modeled	Unknown	Unknown			0 29
water tupelo	Nyssa aquatica	NSH	Medium	0	0	0 New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat			3 30
American mountain-ash	Sorbus americana	NSL	Low	0	0	0 Unknown	Unknown	Low	Absent	Unknown	Unknown			0 31

