One x One Degree

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

 sq. km
 sq. mi
 FIA Plots

 Area of Region
 7,056.3
 2,724.5
 11

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitability	Capability	to Cope o	r Persist	Migratio	n Poten	tial
Ash	0			1	Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	0	Abu	ndance	F	Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	0	Abundant	0	High	2	2	Increase	0	0	Very Good	0	0	Likely	0	0
Oak	2	Common	1	Medium	6	9	No Change	2	2	Good	0	0	Infill	2	2
Pine	0	Rare	2	Low	5	2	Decrease	1	1	Fair	1	1	Migrate	3	3
Other	1	Absent	10	FIA	0		New	5	5	Poor	2	2		5	5
•	3	_	13	-	13	13	Unknown	5	5	Very Poor	0	0			
							-	13	13	FIA Only	0	0			
										Unknown	5	5			
Potentia	ol Change	ac in Climata Var	iahlac								•				

Potential Changes in Climate Variables

Temperati	ure (°F)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	72.2	73.6	75.1	75.5
Average	CCSM85	72.2	73.9	76.0	78.3
	GFDL45	72.2	77.8	76.6	77.9
	GFDL85	72.2	74.8	78.1	81.4
	HAD45	72.2	74.2	76.4	77.5
	HAD85	72.2	74.6	77.2	80.4
Growing	CCSM45	82.4	83.7	84.7	85.1
Season	CCSM85	82.4	83.9	85.9	88.2
May—Sep		82.4	89.0	87.4	89.1
,	GFDL85	82.4	85.6	89.0	92.8
	HAD45	82.4	84.2	86.0	86.9
	HAD85	82.4	84.5	87.1	90.0
Coldest	CCSM45	55.4	57.4	58.3	58.6
Month	CCSM85	55.4	57.5	58.5	60.0
Average	GFDL45	55.4	58.5	58.7	58.9
	GFDL85	55.4	56.8	58.0	58.8
	HAD45	55.4	56.5	58.0	58.8
	HAD85	55.4	58.7	60.0	61.7
Warmest	CCSM45	85.2	86.4	86.9	87.1
Month	CCSM85	85.2	86.8	87.5	88.6
Average	GFDL45	85.2	88.7	89.6	90.4
_	GFDL85	85.2	88.9	90.4	92.7
	HAD45	85.2	87.2	87.8	88.5
	HAD85	85.2	87.4	88.8	90.1

Precipitation (in)												
	Scenario	2009	2039	2069	2099							
Annual	CCSM45	29.2	32.4	32.6	30.7							
Total	CCSM85	29.2	32.2	31.8	28.7							
	GFDL45	29.2	29.3	33.2	25.3							
	GFDL85	29.2	28.5	28.4	27.3							
	HAD45	29.2	30.7	29.2	29.8							
	HAD85	29.2	31.6	31.4	30.8							
Growing	CCSM45	15.8	17.6	17.4	16.3							
Season	CCSM85	15.8	18.6	17.1	14.9							
May—Sep	GFDL45	15.8	16.4	20.2	14.1							
	GFDL85	15.8	16.4	16.0	15.7 ◆◆◆◆							
	HAD45	15.8	15.3	14.7	15.6 ◆◆◆◆							
	HAD85	15.8	17.7	16.2	15.4							

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

One x One Degree

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv (ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
live oak	Quercus virginiana	NDH	High	23.7	181.9	65.5	No change	No change	Medium	Common	Fair	Fair	Infill +	Infill +	1 1
sugarberry	Celtis laevigata	NDH	Medium	1.8	8.2	2.3 [No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 2
post oak	Quercus stellata	WDH	High	5.1	0.7	1.7 l	Lg. dec.	Lg. dec.	High	Rare	Poor	Poor			0 3
pond cypress	Taxodium ascendens	NSH	Medium	0	0	1 0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			0 4
pawpaw	Asimina triloba	NSL	Low	0	0	0 (Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 5
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	0	0	1 0	New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Migrate ++	Migrate ++	3 6
pecan	Carya illinoinensis	NSH	Low	0	0	1 0	New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 7
flowering dogwood	Cornus florida	WDL	Medium	0	0	0 (Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 8
silverbell	Halesia spp.	NSL	Low	0	0	0 (Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 9
American holly	llex opaca	NSL	Medium	0	0	0 (Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 10
bigleaf magnolia	Magnolia macrophylla	NSL	Low	0	0	0 (Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 11
cabbage palmetto	Sabal palmetto	NDH	Medium	0	0	1 0	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			0 12
cedar elm	Ulmus crassifolia	NDH	Medium	0	0	1 0	New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat	Migrate ++	Migrate ++	3 13

