Section 315G

EcoMap 2007

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

	sq. km	sq. mi	FIA Plots
Area of Region	21,749	8,397.5	350

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitability	Capability	to Cope or	Persist	Migratio	n Poten	tial
Ash	3			N	/lodel			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	1	Abu	ndance	R	eliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	0	Abundant	4	High	4	10	Increase	4	4	Very Good	3	3	Likely	0	0
Oak	8	Common	6	Medium	12	18	No Change	7	8	Good	2	2	Infill	8	8
Pine	0	Rare	20	Low	15	5	Decrease	16	15	Fair	2	3	Migrate	0	0
Other	18	Absent	3	FIA	3		New	0	0	Poor	15	13		8	8
-	30	_	33	_	34	33	Unknown	7	7	Very Poor	5	6			
							-	34	34	FIA Only	3	3			

Potential Changes in Climate Variables

Temperatu	ıre (°F)					
	Scenario	2009	2039	2069	2099	
Annual	CCSM45	64.2	65.6	67.2	67.9	
Average	CCSM85	64.2	66.3	68.1	70.7	
	GFDL45	64.2	68.1	68.6	70.3	
	GFDL85	64.2	67.2	70.2	74.1	
	HAD45	64.2	66.4	68.9	69.8	
	HAD85	64.2	66.8	70.7	73.7	
Growing	CCSM45	78.8	80.0	81.7	82.4	
Season	CCSM85	78.8	81.0	82.7	85.9 🛶 🔶	
May—Sep	GFDL45	78.8	83.8	84.1	86.9	
	GFDL85	78.8	83.0	86.5	91.5	
	HAD45	78.8	80.8	82.9	83.5 🛶 🔶	
	HAD85	78.8	81.4	85.5	88.1	
Coldest	CCSM45	42.4	44.7	45.3	46.0	
Month	CCSM85	42.4	44.5	45.3	46.8	
Average	GFDL45	42.4	45.7	45.6	45.9	
	GFDL85	42.4	43.2	44.5	44.7	
	HAD45	42.4	43.0	45.0	45.3	
	HAD85	42.4	45.8	47.5	49.0	
Warmest	CCSM45	84.5	85.5	86.7	86.9	
Month	CCSM85	84.5	86.5	87.2	89.0 🛶 🔶	
Average	GFDL45	84.5	89.8	90.0	92.1	
	GFDL85	84.5	90.1	91.9	96.0 ++++	
	HAD45	84.5	86.5	87.6	87.9 🛶 🔶	
	HAD85	84.5	87.4	89.5	90.5	

Precipitati	ion (in)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	30.3	31.6	30.7	29.8 ++++
Total	CCSM85	30.3	29.4	32.3	31.6 +++++
	GFDL45	30.3	30.5	35.5	29.0 +++++
	GFDL85	30.3	30.1	32.4	30.4 ++++
	HAD45	30.3	31.2	30.3	32.1 ++++
	HAD85	30.3	30.8	27.6	30.8 +++++
Growing	CCSM45	15.1	16.3	14.5	14.8 +++++
Season	CCSM85	15.1	15.3	15.5	14.4 ++++
May—Sep	GFDL45	15.1	15.5	18.1	14.6 ++++++
	GFDL85	15.1	15.7	16.4	15.1 ++++
	HAD45	15.1	15.1	15.0	16.0 ++++
	HAD85	15.1	14.8	12.4	14.5 ++++++++++++++++++++++++++++++++++++

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Unknown

4

34

4

34

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

Section 315G

EcoMap 2007

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

						centiar r acard	,	cupubli	icy, and iv	0				iverso	л, г
Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO 1	N
post oak	Quercus stellata	WDH	High	61.9	1933.8	33.2 Sm. dec.	Sm. dec.	High	Abundant	Good	Good			1	1
ashe juniper	Juniperus ashei	NDH	High	37	953.0	23.9 Sm. inc.	Sm. inc.	Medium	Abundant	Very Good	Very Good			0	2
live oak	Quercus virginiana	NDH	High	38	879.7	17.5 Sm. inc.	Sm. inc.	Medium	Abundant	Very Good	Very Good			1	3
cedar elm	Ulmus crassifolia	NDH	Medium	47.7	548.1	14.1 Sm. inc.	Sm. inc.	Low	Abundant	Good	Good			1	4
blackjack oak	Quercus marilandica	NSL	Medium	29.2	301.1	12.0 Sm. dec.	Sm. dec.	High	Common	Fair	Fair			1	5
sugarberry	Celtis laevigata	NDH	Medium	20.4	90.6	3.6 Sm. dec.	No change	Medium	Common	Poor	Fair			1	6
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	22.5	88.8	4.9 Lg. inc.	Sm. inc.	High	Common	Very Good	Very Good			1	7
Texas ash	Fraxinus texensis	NDH	FIA	15.7	86.4	8.9 Unknown	Unknown	NA	Common	FIA Only	FIA Only			0	8
pecan	Carya illinoinensis	NSH	Low	11.1	61.3	8.4 Sm. dec.	No change	Low	Common	Poor	Poor	Infill +	Infill +	0	9
American elm	Ulmus americana	WDH	Medium	9.2	55.2	4.2 No change	No change	Medium	Common	Fair	Fair	Infill +	Infill +	1 :	10
hackberry	Celtis occidentalis	WDH	Medium	10.7	50.0	2.5 Lg. dec.	Lg. dec.	High	Rare	Poor	Poor	Infill +	Infill +	1 :	11
black willow	Salix nigra	NSH	Low	8.3	23.4	11.3 Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0	12
eastern redcedar	Juniperus virginiana	WDH	Medium	6.2	11.4	2.1 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 :	13
black oak	Quercus velutina	WDH	High	0.5	10.9	6.8 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0	14
black walnut	Juglans nigra	WDH	Low	0.3	10.1	4.8 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 3	15
green ash	Fraxinus pennsylvanica	WSH	Low	2.7	6.9	3.1 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2	16
durand oak	Quercus sinuata var. sinuata	NSL	FIA	1.7	5.9	1.4 Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 3	17
common persimmon	Diospyros virginiana	NSL	Low	0.2	3.8	4.0 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor	Infill +	Infill +	2 :	18
eastern cottonwood	Populus deltoides	NSH	Low	0.5	3.1	6.4 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 :	19
wild plum	Prunus americana	NSLX	FIA	1	2.7	2.9 Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 2	20
white ash	Fraxinus americana	WDL	Medium	1.4	2.7	1.9 Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 2	21
Osage-orange	Maclura pomifera	NDH	Medium	1.3	2.2	1.5 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 3	22
winged elm	Ulmus alata	WDL	Medium	1.1	2.0	1.6 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 2	23
Shumard oak	Quercus shumardii	NSL	Low	0.3	1.8	0.9 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 3	24
honeylocust	Gleditsia triacanthos	NSH	Low	0.9	1.3	1.2 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 2	25
eastern redbud	Cercis canadensis	NSL	Low	0.5	0.8	1.8 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 3	26
bur oak	Quercus macrocarpa	NDH	Medium	0.5	0.6	1.4 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 2	27
red mulberry	Morus rubra	NSL	Low	1.2	0.4	0.6 No change	Sm. dec.	Medium	Rare	Poor	Very Poor			0 3	28
slippery elm	Ulmus rubra	WSL	Low	0.2	0.3	0.3 No change	No change	Medium	Rare	Poor	Poor			0 2	29
southern red oak	Quercus falcata	WDL	Medium	0.1	0.2	0.0 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 3	30
Atlantic white-cedar	Chamaecyparis thyoides	NSH	Low	0	0	0 Unknown	Unknown	Low	Modeled	Unknown	Unknown			0 3	31
pawpaw	Asimina triloba	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 3	32
shellbark hickory	Carya laciniosa	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 3	33
flowering dogwood	Cornus florida	WDL	Medium	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 3	34

