Section 315E

EcoMap 2007

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

	sq. km	sq. mi	FIA Plots
Area of Region	77,922	30.086	136

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species					Potential Change in Habitat Suitability							uitability	Capability	Migration Potential				
Ash	2						Model				Scenario	Scenario			Scenario	Scenario		SHIFT	SHIFT
Hickory	1		Abu	indance			Reliability	Adaptabili	ty		RCP45	RCP85			RCP45	RCP85		RCP45	RCP85
Maple	0		Abundant	0		High	5	13		Increase	0	0		Very Good	0	0	Likely	4	4
Oak	3		Common	2		Medium	20	28	Nc	Change	6	7		Good	0	0	Infill	7	6
Pine	0		Rare	16		Low	21	5	[Decrease	11	10		Fair	3	3	Migrate	2	2
Other	12		Absent	27		FIA	1			New	10	10		Poor	6	7	-	13	12
	18		_	45			47	46	U	Inknown	20	20		Very Poor	8	7			
											47	47		FIA Only	1	1			
														Unknown	19	19			
Potentia	al Chan	ges in Cli	mate Vai	riables											37	37			
Temperatu	re (°F)							Precipitati	ion (in)										
	Scenario	2009	2039	2069	2099				Scenario	2009	2039	2069	2099						
Annual	CCSM45	71.9	73.3	74.7	75.4			Annual	CCSM45	24.4	27.2	27.1	24.8						
Average	CCSM85	71.9	73.7	75.9	78.3			Total	CCSM85	24.4	26.6	26.9	25.6	•					
	GFDL45	71.9	77.3	76.4	77.9				GFDL45	24.4	23.1	26.7	20.0 ++++	•					
	GFDL85	71.9	74.7	78.0	81.6	-			GFDL85	24.4	23.1	23.0	21.4						
	HAD45	71.9	73.9	76.3	77.2				HAD45	24.4	25.7	24.4	26.5						
	HAD85	71.9	74.5	77.2	80.5				HAD85	24.4	25.6	25.7	26.1	•					
Growing	CCSM45	83.1	84.3	85.5	86.1	• • • •		Growing	CCSM45	13.3	14.8	14.6	13.7	•					
	CCSM85	83.1	84.8	86.8					CCSM85	13.3	15.3	14.4	13.7	•					
May—Sep	GFDL45	83.1	89.7	88.4		-		May—Sep	GFDL45	13.3	12.6	15.6	11.1 +++						
	GFDL85	83.1	86.5	90.2					GFDL85	13.3	12.9	12.7	11.9	•					
	HAD45	83.1	85.1	87.0					HAD45	13.3	13.0	12.6	14.1 +++	•					

HAD85

13.3

14.1

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

13.2 13.2 ++++

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

HAD85

CCSM45

CCSM85

GFDL85

HAD45

HAD85

CCSM85

GFDL85

HAD45

HAD85

Coldest

Month

Month

Average GFDL45

Warmest CCSM45

Average GFDL45

83.1

53.8

53.8

53.8

53.8

53.8

53.8

86.4

86.4

86.4

86.4

86.4

86.4

85.5

56.0

55.9

57.1

55.1

54.9

57.1

87.6

88.2

90.4

90.6

88.7

89.1

88.4

56.8

57.0

57.3

56.2

56.1

58.4

88.2

88.9

91.2

92.1

89.5

90.7

91.5

57.2

58.4

57.3

56.9

56.8

60.0

88.5

90.1

92.2

94.6

90.1

92.0

Section 315E

EcoMap 2007

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
live oak	Quercus virginiana	NDH	High	17.6	159.6	_	Sm. dec.	Medium	Common	Poor	Poor	Infill +	Infill +	0 1
cedar elm	Ulmus crassifolia	NDH	Medium	9.8	53.3	22.1 Sm. dec.	Sm. dec.	Low	Common	Poor	Poor	Infill +	Infill +	0 2
ashe juniper	Juniperus ashei	NDH	High	1.3	43.7	13.4 No change	No change	Medium	Rare	Poor	Poor			0 3
sugarberry	Celtis laevigata	NDH	Medium	12.7	26.3	13.7 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 4
post oak	Quercus stellata	WDH	High	4.7	19.2	7.6 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 5
blackjack oak	Quercus marilandica	NSL	Medium	2.4	16.6	14.5 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor	Infill +	Infill +	2 6
hackberry	Celtis occidentalis	WDH	Medium	7.9	14.6	9.5 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor	Infill +	Infill +	2 7
pecan	Carya illinoinensis	NSH	Low	0.3	11.5	22.7 Lg. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			2 8
green ash	Fraxinus pennsylvanica	WSH	Low	1.3	5.0	11.0 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			2 9
bald cypress	Taxodium distichum	NSH	Medium	0.1	4.9	37.8 Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			2 10
red mulberry	Morus rubra	NSL	Low	1.5	2.0	5.0 Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 11
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	o. NSL	Low	4.2	1.6	2.8 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 12
black walnut	Juglans nigra	WDH	Low	0.1	0.7	5.2 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 13
black willow	Salix nigra	NSH	Low	1.4	0.5	4.6 No change	No change	Low	Rare	Very Poor	Very Poor			2 14
Osage-orange	Maclura pomifera	NDH	Medium	0.2	0.5	6.2 No change	No change	High	Rare	Fair	Fair	Infill +		2 15
winged elm	Ulmus alata	WDL	Medium	0.6	0.4	11.0 Sm. dec.	No change	Medium	Rare	Very Poor	Poor			0 16
slippery elm	Ulmus rubra	WSL	Low	0.6	0.1	2.7 No change	No change	Medium	Rare	Poor	Poor			0 17
Texas ash	Fraxinus texensis	NDH	FIA	0.6	0.1	2.4 Unknown	Unknown	NA	Rare	FIA Only	FIA Only			0 18
eastern redcedar	Juniperus virginiana	WDH	Medium	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Likely +	Likely +	3 19
loblolly pine	Pinus taeda	WDH	High	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 20
pond cypress	Taxodium ascendens	NSH	Medium	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			2 21
boxelder	Acer negundo	WSH	Low	0	0	0 New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Likely +	Likely +	3 22
striped maple	Acer pensylvanicum	NSL	Medium	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 23
serviceberry	Amelanchier spp.	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 24
pawpaw	Asimina triloba	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 25
water hickory	Carya aquatica	NSL	Medium	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			3 26
bitternut hickory	Carya cordiformis	WSL	Low	0	0	0 Unknown	Unknown	High	Absent	Unknown	Unknown			0 27
mockernut hickory	Carya alba	WDL	Medium	0	0	0 Unknown	Unknown	High	Modeled	Unknown	Unknown			0 28
eastern redbud	Cercis canadensis	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 29
flowering dogwood	Cornus florida	WDL	Medium	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 30
common persimmon	Diospyros virginiana	NSL	Low	0	0	0 Unknown	Unknown	High	Absent	Unknown	Unknown			0 31
white ash	Fraxinus americana	WDL	Medium	0	0	0 Unknown	Unknown	Low	Absent	Unknown	Unknown			0 32
honeylocust	Gleditsia triacanthos	NSH	Low	0	0	0 New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Likely +	Likely +	3 33
silverbell	Halesia spp.	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 34
bigleaf magnolia	Magnolia macrophylla	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 35
redbay	Persea borbonia	NSL	Low	0	0	0 Unknown	Unknown	High	Absent	Unknown	Unknown			0 36
pin cherry	Prunus pensylvanica	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 37
cherrybark oak; swamp red	o Quercus pagoda	NSL	Medium	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 38
overcup oak	Quercus lyrata	NSL	Medium	0	0	0 New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat			3 39
bur oak	Quercus macrocarpa	NDH	Medium	0	0	0 Unknown	Unknown	High	Modeled	Unknown	Unknown			0 40
Shumard oak	Quercus shumardii	NSL	Low	0	0	0 Unknown	Unknown	High	Absent	Unknown	Unknown			0 41
black oak	Quercus velutina	WDH	High	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 42
bluejack oak	Quercus incana	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 43
black locust	Robinia pseudoacacia	NDH	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 44
cabbage palmetto	Sabal palmetto	NDH	Medium	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			0 45
American basswood	Tilia americana	WSL	Medium	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 46
American elm	Ulmus americana	WDH	Medium	0	0	0 New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Likely +	Likely +	3 47
												,		

