EcoMap 2007

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 25,779 9,953.4 454

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species								in Habitat Suitability	Capability	Migration Potential				
Ash	4				Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	2	Abu	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	2	Abundant	1	High	12	18	Increase	12	13	Very Good	3	5	Likely	2	3
Oak	9	Common	16	Medium	37	45	No Change	13	13	Good	11	9	Infill	13	15
Pine	6	Rare	29	Low	27	13	Decrease	19	18	Fair	5	7	Migrate	1	5
Other	23	Absent	30	FIA	2		New	13	17	Poor	10	10	•	16	23
•	46	_	76	_	78	76	Unknown	21	17	Very Poor	13	11			
							-	78	78	FIA Only	2	2			
										Unknown	19	15			
Potentia	Potential Changes in Climate Variables											EO			

Potential Changes in Climate variables

Temperatu	ıre (°F)				
	Scenario	2009	2039	2069	2099
Annual	CCSM45	72.1	73.5	74.8	74.8
Average	CCSM85	72.1	73.5	75.6	77.7
	GFDL45	72.1	75.7	76.1	77.0
	GFDL85	72.1	74.3	77.2	80.4
	HAD45	72.1	73.5	75.6	76.7
	HAD85	72.1	74.1	76.3	79.6
Growing	CCSM45	80.1	81.2	82.4	82.6
Season	CCSM85	80.1	81.3	83.4	85.7
May—Sep	GFDL45	80.1	83.7	84.0	85.1
	GFDL85	80.1	82.4	85.1	88.6
	HAD45	80.1	82.1	83.7	84.9
	HAD85	80.1	82.5	85.2	88.2
Coldest	CCSM45	58.9	60.8	61.7	61.5
Month	CCSM85	58.9	60.2	61.1	62.5
Average	GFDL45	58.9	61.4	61.8	62.4
	GFDL85	58.9	61.1	62.3	63.4
	HAD45	58.9	58.9	60.1	60.6
	HAD85	58.9	59.5	60.3	62.1
Warmest	CCSM45	82.2	83.3	84.1	84.0
Month	CCSM85	82.2	83.4	84.6	86.0
Average	GFDL45	82.2	84.4	85.2	85.9
	GFDL85	82.2	84.5	86.0	87.8
	HAD45	82.2	84.3	85.0	85.6
	HAD85	82.2	84.4	85.9	87.2

Precipitation (in)													
	Scenario	2009	2039	2069	2099								
Annual	CCSM45	50.6	53.0	52.7	55.7								
Total	CCSM85	50.6	52.6	52.2	50.6 ◆◆◆◆								
	GFDL45	50.6	58.8	60.0	62.1								
	GFDL85	50.6	54.8	63.4	59.0								
	HAD45	50.6	50.6	49.7	50.9 ◆◆◆◆								
	HAD85	50.6	47.1	48.6	46.1								
Growing	CCSM45	30.8	32.6	31.2	33.6								
Season	CCSM85	30.8	32.4	31.9	29.3								
May—Sep	GFDL45	30.8	35.0	35.1	34.7								
	GFDL85	30.8	33.2	36.7	34.1								
	HAD45	30.8	30.6	29.4	27.6								
	HAD85	30.8	28.0	25.9	24.4								

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

EcoMap 2007

Climate Change Atlas Tree Species

thinate change Atlas Tree species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
slash pine	Pinus elliottii	NDH	High	66.1	2255.9	36.5	No change	Sm. dec.	Medium	Abundant	Good	Fair			1 1
cabbage palmetto	Sabal palmetto	NDH	Medium	47	498.8	17.1	Sm. inc.	Lg. inc.	Medium	Common	Good	Very Good			0 2
pond cypress	Taxodium ascendens	NSH	Medium	30	458.3	18.6	Sm. inc.	Lg. inc.	Medium	Common	Good	Very Good			1 3
longleaf pine	Pinus palustris	NSH	Medium	20.7	299.2	16.5	Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 4
live oak	Quercus virginiana	NDH	High	45.1	299.1	7.8	Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 5
red maple	Acer rubrum	WDH	High	28.7	297.6	7.3	No change	No change	High	Common	Good	Good			1 6
laurel oak	Quercus laurifolia	NDH	Medium	45	262.3	5.7	Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 7
sand pine	Pinus clausa	NDH	High	7.2	257.3	13.5	No change	No change	Low	Common	Poor	Poor	Infill +	Infill +	0 8
loblolly pine	Pinus taeda	WDH	High	10.5	254.2	9.4	No change	No change	Medium	Common	Fair	Fair	Infill +	Infill +	2 9
loblolly-bay	Gordonia lasianthus	NSH	Medium	17.3	181.1	5.6	No change	No change	Medium	Common	Fair	Fair	Infill +	Infill +	1 10
swamp tupelo	Nyssa biflora	NDH	Medium	26.3	160.2	5.2	Sm. inc.	Sm. inc.	Low	Common	Fair	Fair			1 11
sweetgum	Liquidambar styraciflua	WDH	High	16.2	131.0	4.7	No change	No change	Medium	Common	Fair	Fair	Infill +	Infill +	1 12
water oak	Quercus nigra	WDH	High	15.2	122.1	4.6	Sm. inc.	Sm. inc.	Medium	Common	Good	Good	Infill ++	Infill ++	1 13
redbay	Persea borbonia	NSL	Low	29.2	101.2	3.4	No change	No change	High	Common	Good	Good			1 14
bald cypress	Taxodium distichum	NSH	Medium	13.4	97.6	9.0	Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good	Infill ++	Infill ++	1 15
sweetbay	Magnolia virginiana	NSL	Medium	16.1	74.3	3.7	Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 16
pond pine	Pinus serotina	NSH	Medium	7.4	61.9	8.5	No change	No change	Low	Common	Poor	Poor	Infill +	Infill +	0 17
pignut hickory	Carya glabra	WDL	Medium	1.9	33.5	3.1	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			2 18
turkey oak	Quercus laevis	NSH	Medium	2.9	32.4	3.8	No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 19
black cherry	Prunus serotina	WDL	Medium	2.2	31.4	1.9	No change	No change	Low	Rare	Very Poor	Very Poor			2 20
green ash	Fraxinus pennsylvanica	WSH	Low	3.1	28.8	5.7	No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 21
American elm	Ulmus americana	WDH	Medium	14.2	27.5	1.9	Lg. inc.	Lg. inc.	Medium	Rare	Good	Good	Infill ++	Infill ++	1 22
pumpkin ash	Fraxinus profunda	NSH	FIA	2.1	23.2	4.3	Unknown	Unknown	NA	Rare	FIA Only	FIA Only			0 23
American hornbeam; muscl	e\ Carpinus caroliniana	WSL	Low	4.4	15.9	1.9	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 24
Carolina ash	Fraxinus caroliniana	NSL	FIA	4.6	14.1	5.4	Unknown	Unknown	NA	Rare	FIA Only	FIA Only			0 25
sugarberry	Celtis laevigata	NDH	Medium	3.5	13.8	3.6	No change	Lg. inc.	Medium	Rare	Poor	Good	Infill +	Infill ++	2 26
eastern redcedar	Juniperus virginiana	WDH	Medium	2.6	11.5	3.5	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 27
common persimmon	Diospyros virginiana	NSL	Low	4.1	11.2	2.4	Lg. dec.	Lg. dec.	High	Rare	Poor	Poor			0 28
southern magnolia	Magnolia grandiflora	NSL	Low	2.9	10.6	1.9	No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 29
blackgum	Nyssa sylvatica	WDL	Medium	3.2	7.8	0.7	Lg. inc.	Lg. inc.	High	Rare	Good	Good	Infill ++	Infill ++	2 30
bluejack oak	Quercus incana	NSL	Low	0.8	7.3	1.2	Sm. dec.	No change	Medium	Rare	Very Poor	Poor		Infill +	2 31
eastern hophornbeam; iron	w Ostrya virginiana	WSL	Low	1.9	5.0	1.4	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 32
hackberry	Celtis occidentalis	WDH	Medium	0.9	4.0	2.4	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 33
white ash	Fraxinus americana	WDL	Medium	1.5	2.4	0.9	Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 34
water hickory	Carya aquatica	NSL	Medium	0.5	2.2	1.6	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 35
American basswood	Tilia americana	WSL	Medium	0.3	1.9	3.6	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 36
overcup oak	Quercus lyrata	NSL	Medium	0.2	1.8	2.5	Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 37
yellow-poplar	Liriodendron tulipifera	WDH	High	0.4	1.5	0.7	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 38
florida maple	Acer barbatum	NSL	Low	0.1	1.4	1.0	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 39
flowering dogwood	Cornus florida	WDL	Medium	0.1	1.2	1.2	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 40
swamp chestnut oak	Quercus michauxii	NSL	Low	0.4	1.0	0.9	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 41
American holly	Ilex opaca	NSL	Medium	0.6	0.6	0.3	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			2 42
spruce pine	Pinus glabra	NSL	Low	0.1	0.6	0.6	Lg. dec.	Very Lg. dec.	Medium	Rare	Very Poor	Lost			0 43
blackjack oak	Quercus marilandica	NSL	Medium	0.2	0.5	0.7	Very Lg. dec.	No change	High	Rare	Lost	Fair		Infill +	2 44
red mulberry	Morus rubra	NSL	Low	0.4	0.4			Very Lg. dec.	Medium	Rare	Lost	Lost			0 45
southern red oak	Quercus falcata	WDL	Medium	0.3	0.2	0.5	Sm. inc.	Lg. inc.	High	Rare	Good	Good			2 46
balsam fir	Abies balsamea	NDH	High	0	0	0	Unknown	Unknown	Low	Modeled	Unknown	Unknown			0 47

EcoMap 2007

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
shortleaf pine	Pinus echinata	WDH	High	C) () (New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate +	Migrate +	3 48
striped maple	Acer pensylvanicum	NSL	Medium	C) () () Unknown	New Habitat	Medium	Absent	Unknown	New Habitat			0 49
serviceberry	Amelanchier spp.	NSL	Low	C) () (Unknown	New Habitat	Medium	Absent	Unknown	New Habitat			3 50
pawpaw	Asimina triloba	NSL	Low	C) () () Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 51
river birch	Betula nigra	NSL	Low	C) () (Unknown	New Habitat	Medium	Absent	Unknown	New Habitat		Migrate +	3 52
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp.	NSL	Low	C) () (New Habitat	New Habitat	High	Absent	New Habitat	New Habitat			0 53
pecan	Carya illinoinensis	NSH	Low	C) () (New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat		Migrate +	3 54
shellbark hickory	Carya laciniosa	NSL	Low	C) () () Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 55
shagbark hickory	Carya ovata	WSL	Medium	C) () (Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 56
black hickory	Carya texana	NDL	High	C) () (New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			0 57
mockernut hickory	Carya alba	WDL	Medium	C) () (Unknown	New Habitat	High	Absent	Unknown	New Habitat		Likely +	3 58
eastern redbud	Cercis canadensis	NSL	Low	C) () () Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 59
black ash	Fraxinus nigra	WSH	Medium	C) () (Unknown	Unknown	Low	Absent	Unknown	Unknown			0 60
silverbell	Halesia spp.	NSL	Low	C) () () Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 61
Osage-orange	Maclura pomifera	NDH	Medium	C) () (Unknown	Unknown	High	Modeled	Unknown	Unknown			0 62
cucumbertree	Magnolia acuminata	NSL	Low	C) () () Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 63
bigleaf magnolia	Magnolia macrophylla	NSL	Low	C) () (Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 64
water tupelo	Nyssa aquatica	NSH	Medium	C) () (New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat			3 65
water elm	Planera aquatica	NSL	Low	C) () (Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 66
white oak	Quercus alba	WDH	Medium	C) () (New Habitat	New Habitat	High	Absent	New Habitat	New Habitat			3 67
cherrybark oak; swamp red o	Quercus pagoda	NSL	Medium	C) () (Unknown	New Habitat	Medium	Absent	Unknown	New Habitat			3 68
bur oak	Quercus macrocarpa	NDH	Medium	C) () () Unknown	Unknown	High	Absent	Unknown	Unknown			0 69
chinkapin oak	Quercus muehlenbergii	NSL	Medium	C) () (Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 70
willow oak	Quercus phellos	NSL	Low	C) () (New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat		Migrate +	3 71
Shumard oak	Quercus shumardii	NSL	Low	C) () (Unknown	Unknown	High	Absent	Unknown	Unknown			0 72
post oak	Quercus stellata	WDH	High	C) () (New Habitat	New Habitat	High	Absent	New Habitat	New Habitat	Likely +	Likely +	3 73
black locust	Robinia pseudoacacia	NDH	Low	C) () (New Habitat	Unknown	Medium	Absent	New Habitat	Unknown			3 74
black willow	Salix nigra	NSH	Low	C) () (New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat		Migrate +	3 75
American mountain-ash	Sorbus americana	NSL	Low	C) () (New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat			0 76
winged elm	Ulmus alata	WDL	Medium	C) () (New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Likely +	Likely +	3 77
cedar elm	Ulmus crassifolia	NDH	Medium	C) () (New Habitat	New Habitat	Low	Absent	New Habitat	New Habitat			3 78

