EcoMap 2007

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 53,827 20,783 1,876

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potentia	al Change	in Habitat Suitability	Capability	to Cope o	r Persist	Migratio	n Poten	tial
Ash	4			1	Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	7	Abu	ndance	F	Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	4	Abundant	4	High	15	26	Increase	35	38	Very Good	12	16	Likely	0	0
Oak	22	Common	21	Medium	38	55	No Change	29	26	Good	16	15	Infill	19	23
Pine	5	Rare	65	Low	37	12	Decrease	21	21	Fair	15	16	Migrate	0	0
Other	48	Absent	5	FIA	5		New	1	1	Poor	24	22	•	19	23
•	90	_	95	_	95	93	Unknown	9	9	Very Poor	17	16			
							_	95	95	FIA Only	4	4			
										Unknown	4	4			
Potentia	ol Change	es in Climate Var	iables							•	92	03			

Potenti	ai Change	es in Clim	ate var	iabies				
Temperatu	ıre (°F)					Precipitati	on (in)	
	Scenario	2009	2039	2069	2099		Scenario	2
Annual	CCSM45	66.5	68.2	69.8	70.0	Annual	CCSM45	5
Average	CCSM85	66.5	68.5	70.9	73.2	Total	CCSM85	5
	GFDL45	66.5	69.2	70.6	71.7		GFDL45	5
	GFDL85	66.5	69.0	72.0	75.2		GFDL85	5
	HAD45	66.5	68.8	71.5	72.5		HAD45	5
	HAD85	66.5	69.1	72.7	76.2		HAD85	5
Growing	CCSM45	79.1	80.6	81.7	82.1	Growing	CCSM45	2
Season	CCSM85	79.1	80.9	83.1	85.9	Season	CCSM85	2
May—Sep	GFDL45	79.1	82.2	83.4	85.6	May—Sep	GFDL45	2
	GFDL85	79.1	82.1	85.3	89.3		GFDL85	2
	HAD45	79.1	81.9	84.4	84.8		HAD45	2
	HAD85	79.1	82.1	86.5	89.4		HAD85	2
Coldest	CCSM45	47.4	50.0	50.9	50.9			
Month	CCSM85	47.4	50.1	51.3	52.6	NOTE: For	the six clin	nate
Average	GFDL45	47.4	50.8	50.9	50.9	ending in 2	2009 is bas	ed o
	GFDL85	47.4	48.4	49.4	50.0	obtained f	rom the NA	ASA I
	HAD45	47.4	48.2	49.9	50.7	show estin	nates of ea	ch c
	HAD85	47.4	49.8	51.2	53.1	and the er		
						within the	region ma	y var
Warmest		83.1	84.2	84.6	84.8			
Month	CCSM85	83.1	84.7	85.4	86.9	Cite as: Ive		
Average	GFDL45	83.1	86.9	86.9	88.4	Climate Ch		
	GFDL85	83.1	86.7	88.1	90.7	United Sta	tes. Forest	s. 10

Precipitation (in)													
	Scenario	2009	2039	2069	2099								
Annual	CCSM45	55.9	56.9	63.6	61.4								
Total	CCSM85	55.9	58.3	62.2	63.0								
	GFDL45	55.9	59.0	68.8	59.6								
	GFDL85	55.9	58.4	60.8	60.9								
	HAD45	55.9	55.3	54.5	58.9								
	HAD85	55.9	58.4	51.1	54.4								
Caracian	CCCNAAF	22.4	22.2	25.4	22.7								
Growing	CCSM45	22.4	23.2	25.1	23.7								
Season	CCSM85	22.4	22.0	22.9	21.9								
May—Sep	GFDL45	22.4	24.9	31.5	25.3								
	GFDL85	22.4	25.1	27.1	27.8								
	HAD45	22.4	21.6	21.3	22.5 ◆◆◆◆								
	HAD85	22.4	21.9	18.4	18.8								

te variables, four 30-year periods are used to indicate six potential future trajectories. The period on modeled observations from the PRISM Climate Group and the three future periods were NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES rios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations ary substantially based on latitude, elevation, land-use, or other factors.

isad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under ally Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern 10(11): 989. https://doi.org/10.3390/f10110989.

HAD45

HAD85

83.1

83.1

86.8

EcoMap 2007

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
loblolly pine	Pinus taeda	WDH	High	95.3	4532.6	41.3 No change	Sm. dec.	Medium	Abundant	Good	Fair			1 1
sweetgum	Liquidambar styraciflua	WDH	High	93.2	854.6	7.8 Sm. inc.	Sm. inc.	Medium	Abundant	Very Good	Very Good			1 2
slash pine	Pinus elliottii	NDH	High	26.3	569.5	20.6 No change	No change	Medium	Abundant	Good	Good			1 3
water oak	Quercus nigra	WDH	High	81.6	554.4	5.7 Lg. inc.	Lg. inc.	Medium	Abundant	Very Good	Very Good			1 4
longleaf pine	Pinus palustris	NSH	Medium	26.6	307.9	11.1 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 5
southern red oak	Quercus falcata	WDL	Medium	64.5	270.8	3.7 Sm. inc.	Lg. inc.	High	Common	Very Good	Very Good			1 6
blackgum	Nyssa sylvatica	WDL	Medium	73	239.6	3.0 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 7
post oak	Quercus stellata	WDH	High	46.5	208.9	3.5 Lg. inc.	Lg. inc.	High	Common	Very Good	Very Good			1 8
white oak	Quercus alba	WDH	Medium	51.7	203.4	3.5 No change	No change	High	Common	Good	Good			1 9
shortleaf pine	Pinus echinata	WDH	High	39.1	199.4	4.2 Sm. inc.	Lg. inc.	Medium	Common	Good	Very Good			1 10
red maple	Acer rubrum	WDH	High	62	145.3	2.0 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 11
willow oak	Quercus phellos	NSL	Low	30.7	136.8	3.7 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 12
American hornbeam; muscle	N Carpinus caroliniana	WSL	Low	43.2	134.2	2.8 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 13
laurel oak	Quercus laurifolia	NDH	Medium	28.4	129.7	4.2 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 14
winged elm	Ulmus alata	WDL	Medium	47.3	127.6	2.2 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 15
cherrybark oak; swamp red c	Quercus pagoda	NSL	Medium	34.3	114.0	2.7 Sm. inc.	Lg. inc.	Medium	Common	Good	Very Good			1 16
green ash	Fraxinus pennsylvanica	WSH	Low	30.8	94.4	2.7 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 17
American beech	Fagus grandifolia	WDH	High	23.4	93.7	3.5 Sm. inc.	No change	Medium	Common	Good	Fair	Infill ++	Infill +	1 18
bald cypress	Taxodium distichum	NSH	Medium	12	90.5	5.3 Sm. inc.	Lg. inc.	Medium	Common	Good	Very Good	Infill ++	Infill ++	1 19
American holly	llex opaca	NSL	Medium	42.4	79.6	1.8 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 20
sweetbay	Magnolia virginiana	NSL	Medium	21	67.2	3.0 Sm. inc.	Lg. inc.	Medium	Common	Good	Very Good			1 21
sugarberry	Celtis laevigata	NDH	Medium	15.2	66.3	3.4 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 22
American elm	Ulmus americana	WDH	Medium	26.7	55.2	1.8 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 23
eastern hophornbeam; ironv	v Ostrya virginiana	WSL	Low	32.6	55.1	1.5 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 24
overcup oak	Quercus lyrata	NSL	Medium	12.4	50.6	3.6 Sm. inc.	Lg. inc.	Low	Common	Fair	Good			1 25
mockernut hickory	Carya alba	WDL	Medium	29.9	49.3	1.5 Lg. inc.	Lg. inc.	High	Rare	Good	Good			1 26
swamp chestnut oak	Quercus michauxii	NSL	Low	16.8	39.1	2.1 Sm. inc.	Sm. inc.	Medium	Rare	Fair	Fair			1 27
flowering dogwood	Cornus florida	WDL	Medium	31.9	36.4	1.0 Sm. inc.	Sm. inc.	Medium	Rare	Fair	Fair			1 28
southern magnolia	Magnolia grandiflora	NSL	Low	17.1	34.9	2.0 Sm. inc.	Sm. inc.	Medium	Rare	Fair	Fair			1 29
black willow	Salix nigra	NSH	Low	3.9	31.6	6.3 No change	Sm. inc.	Low	Rare	Very Poor	Poor		Infill +	2 30
pecan	Carya illinoinensis	NSH	Low	3.4	31.4	8.8 No change	No change	Low	Rare	Very Poor	Very Poor			2 31
white ash	Fraxinus americana	WDL	Medium	20.4	30.7	1.2 Sm. inc.	Sm. inc.	Low	Rare	Poor	Poor			1 32
water tupelo	Nyssa aquatica	NSH	Medium	5	30.7	4.8 No change	No change	Low	Rare	Very Poor	Very Poor			2 33
water hickory	Carya aquatica	NSL	Medium	8.8	28.3	2.3 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	1 34
sassafras	Sassafras albidum	WSL	Low	23	26.0	1.0 Sm. dec.	Sm. inc.	Medium	Rare	Very Poor	Fair			1 35
black cherry	Prunus serotina	WDL	Medium	28.2	23.8	0.8 Sm. inc.	Lg. inc.	Low	Rare	Poor	Fair			1 36
redbay	Persea borbonia	NSL	Low	14.5	21.0	1.5 No change	No change	High	Rare	Fair	Fair			1 37
blackjack oak	Quercus marilandica	NSL	Medium	13.7	20.8	1.4 Lg. inc.	Lg. inc.	High	Rare	Good	Good	Infill ++	Infill ++	1 38
honeylocust	Gleditsia triacanthos	NSH	Low	5.6	20.0	2.6 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	1 39
water elm	Planera aquatica	NSL	Low	3.2	19.7	3.9 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	1 40
sycamore	Platanus occidentalis	NSL	Low	5.5	17.8	3.1 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 41
black hickory	Carya texana	NDL	High	11.6	17.7	1.3 Sm. inc.	Lg. inc.	Medium	Rare	Fair	Good	Infill +	Infill ++	1 42
slippery elm	Ulmus rubra	WSL	Low	6.6	14.6	1.9 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	1 43
Nuttall oak	Quercus texana	NSH	Medium	3.8	14.5	2.4 No change	No change	High	Rare	Fair	Fair			0 44
florida maple	Acer barbatum	NSL	Low	7.6	12.8	1.5 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor	Infill +	Infill +	1 45
common persimmon	Diospyros virginiana	NSL	Low	11.4	12.3	0.9 Lg. dec.	No change	High	Rare	Poor	Fair			1 46
swamp tupelo	Nyssa biflora	NDH	Medium	3.7	11.7	3.0 No change	No change	Low	Rare	Very Poor	Very Poor			2 47

EcoMap 2007

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngC	145	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
eastern redcedar	Juniperus virginiana	WDH	Medium	8	11.4	1.2 Sm. inc	c.	Lg. inc.	Medium	Rare	Fair	Good	Infill +	Infill ++	1 48
pignut hickory	Carya glabra	WDL	Medium	5.3	11.3	1.9 No cha	ange	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 49
river birch	Betula nigra	NSL	Low	3.3	10.5	2.6 No cha	ange	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 50
bitternut hickory	Carya cordiformis	WSL	Low	4.5	8.0	1.3 Sm. de	ec.	Sm. dec.	High	Rare	Poor	Poor		Infill +	2 51
cedar elm	Ulmus crassifolia	NDH	Medium	2.5	7.4	1.6 Lg. inc.		Lg. inc.	Low	Rare	Fair	Fair	Infill +	Infill +	2 52
black oak	Quercus velutina	WDH	High	5.2	6.8	1.2 Sm. de	ec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 53
eastern cottonwood	Populus deltoides	NSH	Low	1.2	6.8	4.6 Sm. de	ec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			2 54
boxelder	Acer negundo	WSH	Low	2.7	6.7	1.7 No cha	ange	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 55
Shumard oak	Quercus shumardii	NSL	Low	2.4	5.5	1.8 Sm. de	ec.	Sm. dec.	High	Rare	Poor	Poor		Infill +	2 56
red mulberry	Morus rubra	NSL	Low	6.1	5.1	0.8 Sm. de	ec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 57
black walnut	Juglans nigra	WDH	Low	2	4.6	1.9 Sm. de	ec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 58
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	2.7	4.6	1.2 Lg. inc.		Lg. inc.	High	Rare	Good	Good	Infill ++	Infill ++	2 59
eastern redbud	Cercis canadensis	NSL	Low	3.4	4.1	0.8 Sm. de	ec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 60
yellow-poplar	Liriodendron tulipifera	WDH	High	1.8	3.7	1.8 No cha	ange	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 61
Osage-orange	Maclura pomifera	NDH	Medium	1	3.4	1.3 No cha	ange	No change	High	Rare	Fair	Fair		Infill +	2 62
sourwood	Oxydendrum arboreum	NDL	High	2.6	3.0	0.8 Sm. de	ec.	Sm. dec.	High	Rare	Poor	Poor			0 63
waterlocust	Gleditsia aquatica	NSLX	FIA	0.3	2.6	2.8 Unkno	wn	Unknown	Medium	Rare	FIA Only	FIA Only			0 64
bluejack oak	Quercus incana	NSL	Low	1.7	2.6	1.5 No cha	ange	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 65
black locust	Robinia pseudoacacia	NDH	Low	0.3	2.0	0.8 Sm. de	ec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 66
American basswood	Tilia americana	WSL	Medium	1.7	2.0	0.9 Sm. de	ec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 67
shagbark hickory	Carya ovata	WSL	Medium	1.8	1.4	0.9 Sm. de	ec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 68
live oak	Quercus virginiana	NDH	High	0.2	1.3	7.1 Lg. inc.		Lg. inc.	Medium	Rare	Good	Good			2 69
pond cypress	Taxodium ascendens	NSH	Medium	0.2	1.2	6.2 Sm. de	ec.	Lg. inc.	Medium	Rare	Very Poor	Good			2 70
ogeechee tupelo	Nyssa ogeche	NSLX	FIA	1	0.9	1.0 Unkno	wn	Unknown	Low	Rare	FIA Only	FIA Only			0 71
Carolina ash	Fraxinus caroliniana	NSL	FIA	0.3	0.6	0.4 Unkno	wn	Unknown	NA	Rare	FIA Only	FIA Only			0 72
wild plum	Prunus americana	NSLX	FIA	1.2	0.6	0.3 Unkno	wn	Unknown	Medium	Rare	FIA Only	FIA Only			0 73
black ash	Fraxinus nigra	WSH	Medium	0.4	0.6	1.6 No cha	ange	No change	Low	Rare	Very Poor	Very Poor			0 74
swamp white oak	Quercus bicolor	NSL	Low	0.7	0.5	0.7 Sm. de	ec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 75
pin cherry	Prunus pensylvanica	NSL	Low	1.2	0.4	0.4 No cha	ange	No change	Medium	Rare	Poor	Poor			0 76
serviceberry	Amelanchier spp.	NSL	Low	0.4	0.3	0.4 No cha	ange	No change	Medium	Rare	Poor	Poor			0 77
bigleaf magnolia	Magnolia macrophylla	NSL	Low	0.6	0.3	0.5 No cha	ange	No change	Medium	Rare	Poor	Poor			0 78
pond pine	Pinus serotina	NSH	Medium	0.2	0.3	1.3 Sm. de	ec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 79
hackberry	Celtis occidentalis	WDH	Medium	0.2	0.2	1.0 Very L	g. dec.	Sm. dec.	High	Rare	Lost	Poor		Infill +	2 80
northern red oak	Quercus rubra	WDH	Medium	0.2	0.2	0.9 Lg. dec	с.	Lg. dec.	High	Rare	Poor	Poor			0 81
white mulberry	Morus alba	NSL	FIA	0.2	0.1	0.7 Unkno	wn	Unknown	NA	Rare	NNIS	NNIS			0 82
pawpaw	Asimina triloba	NSL	Low	0.2	0.1	0.5 No cha	ange	Sm. dec.	Medium	Rare	Poor	Very Poor			0 83
chinkapin oak	Quercus muehlenbergii	NSL	Medium	0.2	0.1	0.5 No cha	ange	Sm. dec.	Medium	Rare	Poor	Very Poor			0 84
scarlet oak	Quercus coccinea	WDL	Medium	0.2	0.1	0.5 No cha	ange	No change	Medium	Rare	Poor	Poor			0 85
turkey oak	Quercus laevis	NSH	Medium	0.2	0.1	0.5 No cha	ange	Lg. inc.	High	Rare	Fair	Good	Infill +		2 86
silverbell	Halesia spp.	NSL	Low	0.2	0.1	0.4 No cha	ange	No change	Medium	Rare	Poor	Poor			0 87
striped maple	Acer pensylvanicum	NSL	Medium	0.2	0.1	0.3 Sm. inc	c.	Sm. inc.	Medium	Rare	Fair	Fair			0 88
bur oak	Quercus macrocarpa	NDH	Medium	0.2	0.1	0.3 Lg. dec	С.	Lg. dec.	High	Rare	Poor	Poor			0 89
chestnut oak	Quercus prinus	NDH	High	0.2	0.0	0.2 Lg. dec	c.	Lg. dec.	High	Rare	Poor	Poor			0 90
Atlantic white-cedar	Chamaecyparis thyoides	NSH	Low	C	0	0 New H		New Habitat	Low	Absent	New Habitat	New Habitat			3 91
Virginia pine	Pinus virginiana	NDH	High	C	0	0 Unkno	wn	Unknown	Medium	Absent	Unknown	Unknown			0 92
silver maple	Acer saccharinum	NSH	Low	C	0	0 Unkno	wn	Unknown	High	Absent	Unknown	Unknown			0 93
shellbark hickory	Carya laciniosa	NSL	Low	C	0	0 Unkno	wn	Unknown	Medium	Absent	Unknown	Unknown			0 94

Section 232F

EcoMap 2007

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Common Name	Scientific Name	Range MR	%	Cell FIA	sum Fl	Aiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45 SHIFT85 SSO N
cucumbertree	Magnolia acuminata	NSL Low		0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown	0 95

