#### **National Park**

## Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

**USDA Forest Service Northern Research Station** Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 8,600.0 3,320.5 260

#### **Species Information**

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

| Genus    | Species  |                   |        |        |             |              |           |          | Potential Change in Habitat Suitability |           |          | Capability to Cope or Persist |         |       |       |
|----------|----------|-------------------|--------|--------|-------------|--------------|-----------|----------|-----------------------------------------|-----------|----------|-------------------------------|---------|-------|-------|
| Ash      | 2        |                   |        |        | Model       |              |           | Scenario | Scenario                                |           | Scenario | Scenario                      |         | SHIFT | SHIFT |
| Hickory  | 6        | Abu               | ndance |        | Reliability | Adaptability |           | RCP45    | RCP85                                   |           | RCP45    | RCP85                         |         | RCP45 | RCP85 |
| Maple    | 5        | Abundant          | 4      | High   | 18          | 23           | Increase  | 25       | 30                                      | Very Good | 13       | 16                            | Likely  | 2     | 2     |
| Oak      | 17       | Common            | 32     | Medium | 32          | 51           | No Change | 15       | 11                                      | Good      | 11       | 14                            | Infill  | 6     | 6     |
| Pine     | 4        | Rare              | 34     | Low    | 36          | 13           | Decrease  | 26       | 25                                      | Fair      | 17       | 13                            | Migrate | 2     | 7     |
| Other    | 36       | Absent            | 18     | FIA    | 4           |              | New       | 12       | 13                                      | Poor      | 11       | 9                             | ·       | 10    | 15    |
| •        | 70       |                   | 88     | •      | 90          | 87           | Unknown   | 12       | 11                                      | Very Poor | 13       | 13                            |         |       |       |
|          |          |                   |        |        |             |              | -         | 90       | 90                                      | FIA Only  | 2        | 2                             |         |       |       |
|          |          |                   |        |        |             |              |           |          |                                         | Unknown   | 8        | 7                             |         |       |       |
| Potentia | I Change | es in Climate Var | iahles |        |             |              |           |          |                                         | •         | 75       | 7/                            |         |       |       |

### Potential Changes in Climate variables

| Temperature (°F) |          |      |      |      |      |  |  |  |  |  |  |
|------------------|----------|------|------|------|------|--|--|--|--|--|--|
|                  | Scenario | 2009 | 2039 | 2069 | 2099 |  |  |  |  |  |  |
| Annual           | CCSM45   | 59.8 | 61.5 | 63.7 | 64.0 |  |  |  |  |  |  |
| Average          | CCSM85   | 59.8 | 61.9 | 64.6 | 67.4 |  |  |  |  |  |  |
|                  | GFDL45   | 59.8 | 62.7 | 64.6 | 65.4 |  |  |  |  |  |  |
|                  | GFDL85   | 59.8 | 62.4 | 65.6 | 69.0 |  |  |  |  |  |  |
|                  | HAD45    | 59.8 | 62.3 | 65.4 | 66.7 |  |  |  |  |  |  |
|                  | HAD85    | 59.8 | 62.7 | 67.2 | 71.0 |  |  |  |  |  |  |
| Growing          | CCSM45   | 74.5 | 76.1 | 77.9 | 78.5 |  |  |  |  |  |  |
| Season           | CCSM85   | 74.5 | 76.5 | 79.2 | 82.9 |  |  |  |  |  |  |
| May—Sep          | GFDL45   | 74.5 | 77.8 | 79.9 | 81.3 |  |  |  |  |  |  |
|                  | GFDL85   | 74.5 | 77.5 | 81.2 | 85.3 |  |  |  |  |  |  |
|                  | HAD45    | 74.5 | 77.9 | 80.9 | 82.3 |  |  |  |  |  |  |
|                  | HAD85    | 74.5 | 78.2 | 84.8 | 88.2 |  |  |  |  |  |  |
| Coldest          | CCSM45   | 37.2 | 39.4 | 40.7 | 40.9 |  |  |  |  |  |  |
| Month            | CCSM85   | 37.2 | 40.4 | 41.5 | 43.0 |  |  |  |  |  |  |
| Average          | GFDL45   | 37.2 | 40.8 | 40.9 | 41.2 |  |  |  |  |  |  |
|                  | GFDL85   | 37.2 | 38.9 | 40.2 | 40.6 |  |  |  |  |  |  |
|                  | HAD45    | 37.2 | 37.9 | 40.0 | 40.4 |  |  |  |  |  |  |
|                  | HAD85    | 37.2 | 38.9 | 40.6 | 42.3 |  |  |  |  |  |  |
| Warmest          | CCSM45   | 79.6 | 80.9 | 81.9 | 82.1 |  |  |  |  |  |  |
| Month            | CCSM85   | 79.6 | 81.4 | 82.7 | 84.6 |  |  |  |  |  |  |
| Average          | GFDL45   | 79.6 | 83.4 | 84.2 | 85.1 |  |  |  |  |  |  |
|                  | GFDL85   | 79.6 | 82.8 | 84.7 | 87.0 |  |  |  |  |  |  |
|                  | HAD45    | 79.6 | 84.2 | 86.7 | 87.1 |  |  |  |  |  |  |
|                  | HAD85    | 79.6 | 85.3 | 89.8 | 91.0 |  |  |  |  |  |  |

| Precipitation (in) |          |      |      |      |            |  |  |  |  |  |  |  |  |
|--------------------|----------|------|------|------|------------|--|--|--|--|--|--|--|--|
|                    | Scenario | 2009 | 2039 | 2069 | 2099       |  |  |  |  |  |  |  |  |
| Annual             | CCSM45   | 55.8 | 57.5 | 62.7 | 61.0       |  |  |  |  |  |  |  |  |
| Total              | CCSM85   | 55.8 | 59.9 | 61.4 | 65.4       |  |  |  |  |  |  |  |  |
|                    | GFDL45   | 55.8 | 63.3 | 67.2 | 69.3       |  |  |  |  |  |  |  |  |
|                    | GFDL85   | 55.8 | 64.0 | 67.6 | 71.4       |  |  |  |  |  |  |  |  |
|                    | HAD45    | 55.8 | 52.3 | 58.5 | 58.8       |  |  |  |  |  |  |  |  |
|                    | HAD85    | 55.8 | 55.7 | 51.0 | 56.1       |  |  |  |  |  |  |  |  |
|                    |          |      |      |      |            |  |  |  |  |  |  |  |  |
| Growing            | CCSM45   | 22.0 | 21.1 | 21.6 | 22.0       |  |  |  |  |  |  |  |  |
| Season             | CCSM85   | 22.0 | 21.6 | 20.3 | 22.1 • • • |  |  |  |  |  |  |  |  |
| May—Sep            | GFDL45   | 22.0 | 25.2 | 26.5 | 27.3       |  |  |  |  |  |  |  |  |
|                    | GFDL85   | 22.0 | 26.5 | 27.7 | 28.9       |  |  |  |  |  |  |  |  |
|                    | HAD45    | 22.0 | 19.5 | 20.7 | 19.4 ◆◆◆◆  |  |  |  |  |  |  |  |  |
|                    | HAD85    | 22.0 | 20.9 | 15.7 | 16.8       |  |  |  |  |  |  |  |  |

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.



# **Shiloh**

#### **National Park**

### Climate Change Atlas Tree Species

# Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

| Common Name                 | Scientific Name         | Range | MR     | %Cell | FIAsum | FIAiv ChngCl45 | ChngCl85  | Adap   | Abund    | Capabil45 | Capabil85 | SHIFT45  | SHIFT85  | SSO N |
|-----------------------------|-------------------------|-------|--------|-------|--------|----------------|-----------|--------|----------|-----------|-----------|----------|----------|-------|
| loblolly pine               | Pinus taeda             | WDH   | High   | 67.4  | 1499.2 | 23.8 Sm. inc.  | Sm. inc.  | Medium | Abundant | Very Good | Very Good |          |          | 1 1   |
| sweetgum                    | Liquidambar styraciflua | WDH   | High   | 91.9  | 932.9  | 10.6 Sm. inc.  | Sm. inc.  | Medium | Abundant | Very Good | Very Good |          |          | 1 2   |
| white oak                   | Quercus alba            | WDH   | Medium | 77.9  | 683.2  | 9.3 Sm. dec.   | Sm. dec.  | High   | Abundant | Good      | Good      |          |          | 1 3   |
| shortleaf pine              | Pinus echinata          | WDH   | High   | 58.1  | 580.9  | 10.8 Sm. inc.  | Sm. inc.  | Medium | Abundant | Very Good | Very Good |          |          | 1 4   |
| yellow-poplar               | Liriodendron tulipifera | WDH   | High   | 76.7  | 483.9  | 6.6 Lg. dec.   | Lg. dec.  | High   | Common   | Fair      | Fair      |          |          | 1 5   |
| red maple                   | Acer rubrum             | WDH   | High   | 79.1  | 447.2  | 6.0 No change  | No change | High   | Common   | Good      | Good      |          |          | 1 6   |
| southern red oak            | Quercus falcata         | WDL   | Medium | 73.3  | 375.0  | 5.4 Sm. inc.   | Lg. inc.  | High   | Common   | Very Good | Very Good |          |          | 1 7   |
| pignut hickory              | Carya glabra            | WDL   | Medium | 65.1  | 330.8  | 5.4 Lg. dec.   | Lg. dec.  | Medium | Common   | Poor      | Poor      |          |          | 0 8   |
| post oak                    | Quercus stellata        | WDH   | High   | 67.4  | 312.6  | 4.9 Lg. inc.   | Lg. inc.  | High   | Common   | Very Good | Very Good |          |          | 1 9   |
| eastern redcedar            | Juniperus virginiana    | WDH   | Medium | 62.8  | 290.7  | 4.9 Sm. inc.   | Lg. inc.  | Medium | Common   | Good      | Very Good |          |          | 1 10  |
| chestnut oak                | Quercus prinus          | NDH   | High   | 20.9  | 240.1  | 11.5 Lg. dec.  | Lg. dec.  | High   | Common   | Fair      | Fair      |          |          | 1 11  |
| black cherry                | Prunus serotina         | WDL   | Medium | 77.9  | 221.1  | 3.0 No change  | No change | Low    | Common   | Poor      | Poor      |          |          | 0 12  |
| blackgum                    | Nyssa sylvatica         | WDL   | Medium | 75.6  | 198.6  | 2.8 Sm. inc.   | Lg. inc.  | High   | Common   | Very Good | Very Good |          |          | 1 13  |
| winged elm                  | Ulmus alata             | WDL   | Medium | 62.8  | 193.3  | 3.4 Lg. inc.   | Lg. inc.  | Medium | Common   | Very Good | Very Good |          |          | 1 14  |
| black oak                   | Quercus velutina        | WDH   | High   | 59.3  | 191.6  | 3.5 No change  | No change | Medium | Common   | Fair      | Fair      |          |          | 1 15  |
| American beech              | Fagus grandifolia       | WDH   | High   | 39.5  | 161.8  | 4.1 No change  | Sm. inc.  | Medium | Common   | Fair      | Good      |          |          | 1 16  |
| green ash                   | Fraxinus pennsylvanica  | WSH   | Low    | 47.7  | 159.8  | 3.9 Sm. inc.   | Sm. inc.  | Medium | Common   | Good      | Good      |          |          | 1 17  |
| sourwood                    | Oxydendrum arboreum     | NDL   | High   | 43    | 131.3  | 3.1 Lg. dec.   | Lg. dec.  | High   | Common   | Fair      | Fair      |          |          | 1 18  |
| mockernut hickory           | Carya alba              | WDL   | Medium | 53.5  | 128.7  | 2.6 Lg. inc.   | Lg. inc.  | High   | Common   | Very Good | Very Good |          |          | 1 19  |
| sugarberry                  | Celtis laevigata        | NDH   | Medium | 20.9  | 111.1  | 5.3 Lg. inc.   | Lg. inc.  | Medium | Common   | Very Good | Very Good |          |          | 1 20  |
| cherrybark oak; swamp red o | Quercus pagoda          | NSL   | Medium | 29.1  | 103.0  | 4.1 Sm. inc.   | Lg. inc.  | Medium | Common   | Good      | Very Good |          |          | 1 21  |
| sugar maple                 | Acer saccharum          | WDH   | High   | 22.1  | 101.4  | 4.6 Lg. dec.   | Lg. dec.  | High   | Common   | Fair      | Fair      |          |          | 1 22  |
| scarlet oak                 | Quercus coccinea        | WDL   | Medium | 31.4  | 99.3   | 3.2 Lg. dec.   | Lg. dec.  | Medium | Common   | Poor      | Poor      |          |          | 0 23  |
| flowering dogwood           | Cornus florida          | WDL   | Medium | 61.6  | 98.3   | 1.6 No change  | No change | Medium | Common   | Fair      | Fair      |          |          | 1 24  |
| eastern hophornbeam; ironw  | v Ostrya virginiana     | WSL   | Low    | 36    | 95.5   | 2.7 Sm. inc.   | Sm. inc.  | High   | Common   | Very Good | Very Good |          |          | 1 25  |
| sycamore                    | Platanus occidentalis   | NSL   | Low    | 25.6  | 94.4   | 4.3 No change  | Sm. inc.  | Medium | Common   | Fair      | Good      |          |          | 1 26  |
| shagbark hickory            | Carya ovata             | WSL   | Medium | 26.7  | 84.4   | 3.2 Lg. dec.   | Lg. dec.  | Medium | Common   | Poor      | Poor      |          |          | 0 27  |
| northern red oak            | Quercus rubra           | WDH   | Medium | 34.9  | 83.5   | 2.4 Sm. dec.   | Sm. dec.  | High   | Common   | Fair      | Fair      |          |          | 1 28  |
| boxelder                    | Acer negundo            | WSH   | Low    | 12.8  | 80.4   | 6.3 Sm. dec.   | No change | High   | Common   | Fair      | Good      |          |          | 1 29  |
| black willow                | Salix nigra             | NSH   | Low    | 15.1  | 76.8   | 6.7 Sm. inc.   | Lg. inc.  | Low    | Common   | Fair      | Good      |          |          | 1 30  |
| American hornbeam; muscle   | Carpinus caroliniana    | WSL   | Low    | 33.7  | 74.0   | 2.2 Lg. inc.   | Lg. inc.  | Medium | Common   | Very Good | Very Good |          |          | 1 31  |
| willow oak                  | Quercus phellos         | NSL   | Low    | 17.4  | 70.1   | 4.0 Lg. inc.   | Lg. inc.  | Medium | Common   | Very Good | Very Good |          |          | 1 32  |
| American elm                | Ulmus americana         | WDH   | Medium | 24.4  | 69.1   | 2.8 Lg. inc.   | Lg. inc.  | Medium | Common   | Very Good | Very Good |          |          | 1 33  |
| sassafras                   | Sassafras albidum       | WSL   | Low    | 32.6  | 55.0   | 1.7 Sm. inc.   | Lg. inc.  | Medium | Common   | Good      | Very Good |          |          | 1 34  |
| slippery elm                | Ulmus rubra             | WSL   | Low    | 31.4  | 54.7   | 2.0 No change  | Sm. inc.  | Medium | Common   | Fair      | Good      |          |          | 1 35  |
| common persimmon            | Diospyros virginiana    | NSL   | Low    | 39.5  | 50.3   | 1.4 Lg. dec.   | Sm. dec.  | High   | Common   | Fair      | Fair      |          |          | 1 36  |
| white ash                   | Fraxinus americana      | WDL   | Medium | 26.7  | 47.0   | 2.0 Sm. inc.   | Lg. inc.  | Low    | Rare     | Poor      | Fair      |          |          | 1 37  |
| water oak                   | Quercus nigra           | WDH   | High   | 24.4  | 45.5   | 2.2 Lg. inc.   | Lg. inc.  | Medium | Rare     | Good      | Good      |          |          | 1 38  |
| Virginia pine               | Pinus virginiana        | NDH   | High   | 9.3   | 44.0   | 4.7 No change  | No change | Medium | Rare     | Poor      | Poor      | Infill + | Infill + | 1 39  |
| blackjack oak               | Quercus marilandica     | NSL   | Medium | 18.6  | 41.0   | 2.2 Lg. inc.   | Lg. inc.  | High   | Rare     | Good      | Good      |          |          | 1 40  |
| river birch                 | Betula nigra            | NSL   | Low    | 5.8   | 33.4   | 5.8 No change  | Sm. inc.  | Medium | Rare     | Poor      | Fair      |          |          | 1 41  |
| bitternut hickory           | Carya cordiformis       | WSL   | Low    | 4.7   | 31.5   | 6.8 Lg. dec.   | Lg. dec.  | High   | Rare     | Poor      | Poor      |          |          | 1 42  |
| eastern redbud              | Cercis canadensis       | NSL   | Low    | 15.1  | 25.0   | 1.7 Lg. dec.   | Lg. dec.  | Medium | Rare     | Very Poor | Very Poor |          |          | 0 43  |
| chinkapin oak               | Quercus muehlenbergii   | NSL   | Medium | 11.6  | 21.1   | 1.8 Lg. dec.   | Lg. dec.  | Medium | Rare     | Very Poor | Very Poor |          |          | 0 44  |
| black locust                | Robinia pseudoacacia    | NDH   | Low    | 4.7   | 20.7   | 4.5 Lg. dec.   | Lg. dec.  | Medium | Rare     | Very Poor | Very Poor |          |          | 0 45  |
| shellbark hickory           | Carya laciniosa         | NSL   | Low    | 7     | 14.9   | 2.1 Sm. dec.   | Sm. dec.  | Medium | Rare     | Very Poor | Very Poor |          |          | 0 46  |
| water tupelo                | Nyssa aquatica          | NSH   | Medium | 5.8   | 14.9   | 2.6 Lg. dec.   | Lg. dec.  | Low    | Rare     | Very Poor | Very Poor |          |          | 0 47  |
|                             |                         |       |        |       |        |                |           |        |          |           |           |          |          |       |



# **Shiloh**

#### **National Park**

### Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

| Common Name            | Scientific Name              | Range | MR     | %Cell | FIAsum | FIAiv ChngCl45    | ChngCl85      | Adap   | Abund   | Capabil45          | Capabil85   | SHIFT45   | SHIFT85    | SSO N  |
|------------------------|------------------------------|-------|--------|-------|--------|-------------------|---------------|--------|---------|--------------------|-------------|-----------|------------|--------|
| honeylocust            | Gleditsia triacanthos        | NSH   | Low    | 4.7   | 12.2   | 2.6 No change     | No change     | High   | Rare    | Fair               | Fair        | Infill +  | Infill +   | 1 48   |
| silver maple           | Acer saccharinum             | NSH   | Low    | 4.7   | 12.2   | 2.6 Sm. dec.      | Lg. dec.      | High   | Rare    | Poor               | Poor        |           |            | 0 49   |
| black walnut           | Juglans nigra                | WDH   | Low    | 7     | 12.1   | 1.7 No change     | Sm. dec.      | Medium | Rare    | Poor               | Very Poor   | Infill +  |            | 1 50   |
| eastern cottonwood     | Populus deltoides            | NSH   | Low    | 2.3   | 11.9   | 5.1 Sm. dec.      | Sm. dec.      | Medium | Rare    | Very Poor          | Very Poor   |           |            | 0 51   |
| Shumard oak            | Quercus shumardii            | NSL   | Low    | 10.5  | 10.5   | 1.7 No change     | Sm. inc.      | High   | Rare    | Fair               | Good        | Infill +  | Infill ++  | 1 52   |
| bald cypress           | Taxodium distichum           | NSH   | Medium | 3.5   | 9.1    | 2.6 Very Lg. dec. | Very Lg. dec. | Medium | Rare    | Lost               | Lost        |           |            | 0 53   |
| American holly         | llex opaca                   | NSL   | Medium | 7     | 9.0    | 1.3 No change     | No change     | Medium | Rare    | Poor               | Poor        |           |            | 1 54   |
| florida maple          | Acer barbatum                | NSL   | Low    | 2.3   | 7.5    | 3.2 No change     | No change     | High   | Rare    | Fair               | Fair        |           | Infill +   | 2 55   |
| pin oak                | Quercus palustris            | NSH   | Low    | 1.2   | 6.8    | 5.9 Sm. dec.      | Sm. dec.      | Low    | Rare    | Very Poor          | Very Poor   |           |            | 0 56   |
| red mulberry           | Morus rubra                  | NSL   | Low    | 5.8   | 6.8    | 1.2 Sm. dec.      | No change     | Medium | Rare    | Very Poor          | Poor        |           |            | 1 57   |
| sweetbay               | Magnolia virginiana          | NSL   | Medium | 1.2   | 6.6    | 5.7 Lg. inc.      | Lg. inc.      | Medium | Rare    | Good               | Good        | Infill ++ | Infill ++  | 2 58   |
| overcup oak            | Quercus lyrata               | NSL   | Medium | 3.5   | 6.1    | 1.7 No change     | No change     | Low    | Rare    | Very Poor          | Very Poor   |           |            | 2 59   |
| swamp chestnut oak     | Quercus michauxii            | NSL   | Low    | 2.3   | 4.5    | 1.9 Sm. dec.      | Sm. dec.      | Medium | Rare    | Very Poor          | Very Poor   |           |            | 2 60   |
| serviceberry           | Amelanchier spp.             | NSL   | Low    | 8.1   | 4.2    | 0.5 Lg. dec.      | Lg. dec.      | Medium | Rare    | Very Poor          | Very Poor   |           |            | 0 61   |
| American basswood      | Tilia americana              | WSL   | Medium | 1.2   | 2.9    | 2.5 Lg. dec.      | Lg. dec.      | Medium | Rare    | Very Poor          | Very Poor   |           |            | 0 62   |
| swamp white oak        | Quercus bicolor              | NSL   | Low    | 1.2   | 2.9    | 2.5 Sm. dec.      | Sm. dec.      | Medium | Rare    | Very Poor          | Very Poor   |           |            | 0 63   |
| hackberry              | Celtis occidentalis          | WDH   | Medium | 2.3   | 2.8    | 1.2 Sm. inc.      | Sm. inc.      | High   | Rare    | Good               | Good        | Infill ++ | Infill ++  | 2 64   |
| rock elm               | Ulmus thomasii               | NSLX  | FIA    | 2.3   | 2.2    | 1.0 Unknown       | Unknown       | Low    | Rare    | FIA Only           | FIA Only    |           |            | 0 65   |
| sand hickory           | Carya pallida                | NSL   | FIA    | 2.3   | 2.2    | 0.9 Unknown       | Unknown       | NA     | Rare    | FIA Only           | FIA Only    |           |            | 0 66   |
| swamp tupelo           | Nyssa biflora                | NDH   | Medium | 1.2   | 1.1    | 1.0 Lg. inc.      | Lg. inc.      | Low    | Rare    | Fair               | Fair        |           |            | 0 67   |
| ailanthus              | Ailanthus altissima          | NSL   | FIA    | 2.3   | 1.1    | 0.5 Unknown       | Unknown       | NA     | Rare    | NNIS               | NNIS        |           |            | 0 68   |
| white mulberry         | Morus alba                   | NSL   | FIA    | 1.2   | 0.6    | 0.6 Unknown       | Unknown       | NA     | Rare    | NNIS               | NNIS        |           |            | 0 69   |
| slash pine             | Pinus elliottii              | NDH   | High   | 1.2   | 0.5    | 0.4 Lg. inc.      | Lg. inc.      | Medium | Rare    | Good               | Good        |           |            | 2 70   |
| ashe juniper           | Juniperus ashei              | NDH   | High   | 0     | 0      | 0 New Habitat     | New Habitat   | Medium | Absent  | <b>New Habitat</b> | New Habitat |           |            | 0 71   |
| longleaf pine          | Pinus palustris              | NSH   | Medium | 0     | 0      | 0 New Habitat     | New Habitat   | Medium | Absent  | New Habitat        | New Habitat | Migrate + | Migrate +  | 3 72   |
| striped maple          | Acer pensylvanicum           | NSL   | Medium | 0     | 0      | 0 Unknown         | New Habitat   | Medium | Absent  | Unknown            | New Habitat |           |            | 3 73   |
| Ohio buckeye           | Aesculus glabra              | NSL   | Low    | 0     | 0      | 0 Unknown         | Unknown       | Medium | Absent  | Unknown            | Unknown     |           |            | 0 74   |
| yellow buckeye         | Aesculus flava               | NSL   | Low    | 0     | 0      | 0 Unknown         | Unknown       | Low    | Absent  | Unknown            | Unknown     |           |            | 0 75   |
| pawpaw                 | Asimina triloba              | NSL   | Low    | 0     | 0      | 0 Unknown         | Unknown       | Medium | Absent  | Unknown            | Unknown     |           |            | 0 76   |
| sweet birch            | Betula lenta                 | NDH   | High   | 0     | 0      | 0 Unknown         | Unknown       | Low    | Absent  | Unknown            | Unknown     |           |            | 0 77   |
| cittamwood/gum bumelia | Sideroxylon lanuginosum ssp. | . NSL | Low    | 0     | 0      | 0 New Habitat     | New Habitat   | High   | Absent  | New Habitat        | New Habitat |           | Migrate ++ | + 3 78 |
| pecan                  | Carya illinoinensis          | NSH   | Low    | 0     | 0      | 0 New Habitat     | New Habitat   | Low    | Absent  | New Habitat        | New Habitat | Likely +  | Likely +   | 3 79   |
| black hickory          | Carya texana                 | NDL   | High   | 0     | 0      | 0 New Habitat     | New Habitat   | Medium | Absent  | New Habitat        | New Habitat | Migrate + | Migrate +  | 3 80   |
| black ash              | Fraxinus nigra               | WSH   | Medium | 0     | 0      | 0 New Habitat     | New Habitat   | Low    | Absent  | New Habitat        | New Habitat |           |            | 3 81   |
| silverbell             | Halesia spp.                 | NSL   | Low    | 0     | 0      | 0 Unknown         | Unknown       | Medium | Absent  | Unknown            | Unknown     |           |            | 0 82   |
| Osage-orange           | Maclura pomifera             | NDH   | Medium | 0     | 0      | 0 New Habitat     | New Habitat   | High   | Absent  | New Habitat        | New Habitat |           | Migrate ++ | + 3 83 |
| cucumbertree           | Magnolia acuminata           | NSL   | Low    | 0     | 0      | 0 Unknown         | Unknown       | Medium | Modeled | Unknown            | Unknown     |           |            | 0 84   |
| southern magnolia      | Magnolia grandiflora         | NSL   | Low    | 0     | 0      | 0 New Habitat     | New Habitat   | Medium | Absent  | New Habitat        | New Habitat |           |            | 3 85   |
| water elm              | Planera aquatica             | NSL   | Low    | 0     | 0      | 0 Unknown         | Unknown       | Medium | Modeled | Unknown            | Unknown     |           |            | 0 86   |
| laurel oak             | Quercus laurifolia           | NDH   | Medium | 0     | 0      | 0 New Habitat     | New Habitat   | Medium | Absent  | New Habitat        | New Habitat | Likely +  | Likely +   | 3 87   |
| live oak               | Quercus virginiana           | NDH   | High   | 0     | 0      | 0 New Habitat     | New Habitat   | Medium | Absent  | New Habitat        | New Habitat |           | Migrate ++ | + 3 88 |
| bluejack oak           | Quercus incana               | NSL   | Low    | 0     | 0      | 0 New Habitat     | New Habitat   | Medium | Absent  | New Habitat        | New Habitat |           | Migrate +  | 3 89   |
| cedar elm              | Ulmus crassifolia            | NDH   | Medium | 0     | 0      | 0 New Habitat     | New Habitat   | Low    | Absent  | New Habitat        | New Habitat |           | Migrate ++ | + 3 90 |

