Davy Crockett

National Forests and Grasslands

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

 sq. km
 sq. mi
 FIA Plots

 Area of Region
 8,400.0
 3,243.3
 310

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species									l Change i	n Habitat S	uitability	Capability	to Cope o	Migration Potential				
Ash	2					Model			Scenario Scenario				Scenario Scenario			SHIFT SHIFT			
Hickory	6		Abu	ndance		Reliability	Adaptabili	ity		RCP45	RCP85			RCP45	RCP85		RCP45	RCP85	
Maple	3	А	bundant	4	Hi	gh 12	15		Increase	20	23		Very Good	9	10	Likely	3	3	
Oak	12	(Common	15	Mediu	ım 26	43	No	o Change	18	17		Good	11	11	Infill	10	11	
Pine	4		Rare	36	Lo	ow 28	8	[Decrease	17	15		Fair	5	6	Migrate	1	1	
Other	28	Absent 11		I	IA 0			New	5	5		Poor	15	16		14	15		
	55	66		66		66	66	Unknown		6	6		Very Poor	12	8				
									-	66	66		FIA Only	0	0				
													Unknown	6	6				
Potentia	al Chang	es in Clin	nate Var	iables										58	57				
Temperature (°F)						Precipitat	ion (in)												
	Scenario	2009	2039	2069	2099			Scenario	2009	2039	2069	2099							
Annual	CCSM45	66.1	67.8	69.2	69.5	→	Annual	CCSM45	47.9	47.1	53.8	51.3 🛶 🔶	•						
Average	CCSM85	66.1	68.3	70.7	73.0	*	Total	CCSM85	47.9	49.0	52.9	52.3 ++++	•						
	GFDL45	66.1	68.9	70.2	71.5			GFDL45	47.9	49.2	57.2	48.7 ++++++	•						
	GFDL85	66.1	68.7	71.7	75.0			GFDL85	47.9	48.7	51.6	50.7 ++++	,						
	HAD45	66.1	68.3	71.1	72.0	→		HAD45	47.9	48.3	46.4	50.1 ++++	•						
	HAD85	66.1	68.7	72.3	75.8			HAD85	47.9	49.9	43.6	46.1 ++++++							
Growing	CCSM45	79.1	80.6	81.5	82.0	•	Growing	CCSM45	19.4	20.0	22.1	20.6 ++++							
	CCSM85	79.1	81.3	83.4	86.2		-	CCSM85	19.4	19.2	19.8	18.5 🔶 🔶 🔶	•						
May—Sep	GFDL45	79.1	82.2	83.5	86.0		May—Sep		19.4	21.1	26.3	20.8 +++++	,						
, ,	GFDL85	79.1	82.3	85.5	89.7	A		GFDL85	19.4	21.4	23.0	23.1 ++++							
	HAD45	79.1	81.7	84.2	84.6			HAD45	19.4	18.6	18.0	19.4 🔸 🔶 🔶	•						

HAD85

19.4

19.1

89.3

50.1 **•••** 51.7 **•••**

50.2

49.2

49.4

52.3

85.1

87.5

89.4

91.9

87.6

90.0

86.3

50.0

50.4

50.3

48.6

48.8

50.4

84.8

86.0

87.7

89.0

87.5

89.1

82.1

49.1

49.2

50.2

47.6

47.0

48.9

84.5

85.4

87.8

87.5

86.4

87.0

NOTE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ending in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were obtained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios show estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES and the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations within the region may vary substantially based on latitude, elevation, land-use, or other factors.

Cite as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

HAD85

CCSM45

CCSM85

GFDL85

HAD45

HAD85

CCSM85

GFDL85

HAD45

HAD85

Coldest

Month

Month

Average GFDL45

Warmest CCSM45

Average GFDL45

79.1

46.6

46.6

46.6

46.6

46.6

46.6

83.5

83.5

83.5

83.5

83.5

83.5

Davy Crockett

National Forests and Grasslands

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

C		David		0/ C - U	FIA		Charles	Adam (Album d	Couchilds	Conchilor	CLUETAS		ters, Prasad, I
Common Name	Scientific Name	Range				FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
loblolly pine	Pinus taeda	WDH	High	94	4773.1	50.8 Sm. dec.	Sm. dec.		Abundant	Fair	Fair			0 1
sweetgum	Liquidambar styraciflua	WDH	High	90.5	960.7	10.6 No change	No change		Abundant	Good	Good			1 2
shortleaf pine	Pinus echinata	WDH	High	66.7	617.0	9.3 No change	No change		Abundant	Good	Good			1 3
post oak	Quercus stellata	WDH	High	73.8	502.2	6.8 Lg. inc.	Lg. inc.	High	Abundant	Very Good	Very Good			1 4
winged elm	Ulmus alata	WDL	Medium	84.5	446.7	5.3 Sm. inc.	Sm. inc.		Common	Good	Good			1 5
water oak	Quercus nigra	WDH	High	79.8	433.3	5.4 Lg. inc.	Lg. inc.			Very Good	Very Good			1 6
southern red oak	Quercus falcata	WDL	Medium	72.6	309.5	4.3 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 7
sugarberry	Celtis laevigata	NDH	Medium	32.1	176.7	5.5 Sm. inc.	Sm. inc.		Common	Good	Good			1 8
willow oak	Quercus phellos	NSL	Low	31	162.6	5.3 No change	Sm. inc.			Fair	Good			1 9
cherrybark oak; swamp red		NSL	Medium	47.6	151.1	3.2 No change	No change			Fair	Fair			1 10
blackgum	Nyssa sylvatica	WDL	Medium	47.6	107.7	2.3 Sm. inc.	Lg. inc.	High	Common	Very Good	Very Good			1 11
American hornbeam; muscl	e Carpinus caroliniana	WSL	Low	25	92.4	3.7 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 12
eastern redcedar	Juniperus virginiana	WDH	Medium	22.6	91.5	4.0 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 13
white oak	Quercus alba	WDH	Medium	28.6	67.5	2.4 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 14
green ash	Fraxinus pennsylvanica	WSH	Low	20.2	66.7	3.3 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 15
American elm	Ulmus americana	WDH	Medium	23.8	64.8	2.7 Lg. inc.	Lg. inc.	Medium	Common	Very Good	Very Good			1 16
black hickory	Carya texana	NDL	High	29.8	61.0	2.1 Sm. inc.	Lg. inc.	Medium	Common	Good	Very Good			1 17
eastern hophornbeam; iron	w Ostrya virginiana	WSL	Low	31	60.3	2.0 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 18
overcup oak	Quercus lyrata	NSL	Medium	7.1	58.7	8.2 Sm. dec.	Sm. dec.	Low	Common	Poor	Poor	Infill +	Infill +	0 19
white ash	Fraxinus americana	WDL	Medium	26.2	49.5	1.9 No change	No change	Low	Rare	Very Poor	Very Poor			0 20
red maple	Acer rubrum	WDH	High	26.2	45.1	1.7 Lg. inc.	Lg. inc.	High	Rare	Good	Good			1 21
slash pine	Pinus elliottii	NDH	High	6	44.0	7.4 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 22
blackjack oak	Quercus marilandica	NSL	Medium	14.3	40.3	2.8 Lg. inc.	Lg. inc.	High	Rare	Good	Good			1 23
water elm	Planera aquatica	NSL	Low	4.8	36.5	7.7 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 24
sassafras	Sassafras albidum	WSL	Low	23.8	30.8	1.3 Sm. dec.	No change	Medium	Rare	Very Poor	Poor			1 25
boxelder	Acer negundo	WSH	Low	4.8	27.4	5.8 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			1 26
cedar elm	Ulmus crassifolia	NDH	Medium	6	27.1	4.6 Lg. inc.	Lg. inc.	Low	Rare	Fair	Fair	Infill +	Infill +	1 27
mockernut hickory	Carya alba	WDL	Medium	29.8	24.4	0.8 Lg. inc.	Lg. inc.	High	Rare	Good	Good			1 28
common persimmon	, Diospyros virginiana	NSL	Low	16.7	24.1	1.5 Lg. dec.	Sm. dec.	High	Rare	Poor	Poor			1 29
florida maple	Acer barbatum	NSL	Low	6	22.0	3.7 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			1 30
American holly	llex opaca	NSL	Medium	22.6	21.8	1.0 Lg. inc.	Lg. inc.	Medium	Rare	Good	Good			1 31
river birch	Betula nigra	NSL	Low	8.3	20.9	2.5 No change	No change	Medium	Rare	Poor	Poor			1 32
black willow	Salix nigra	NSH	Low	3.6	19.0	5.3 No change	No change	Low	Rare	Very Poor	Very Poor			0 33
flowering dogwood	Cornus florida	WDL	Medium	26.2	15.8	0.6 No change	Sm. inc.	Medium	Rare	Poor	Fair			1 34
sycamore	Platanus occidentalis	NSL	Low	4.8	15.2	3.2 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			2 35
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp		Low	7.1	12.5	1.8 Lg. inc.	Lg. inc.	High	Rare	Good	Good	Infill ++	Infill ++	1 36
swamp chestnut oak	Quercus michauxii	NSL	Low	3.6	10.8	3.0 No change	No change	Medium		Poor	Poor	Infill +		2 37
red mulberry	Morus rubra	NSL	Low	7.1	10.5	1.5 No change	No change			Poor	Poor	Infill +	Infill +	1 38
longleaf pine	Pinus palustris	NSH	Medium	4.8	10.0	2.1 No change	No change			Poor	Poor	Infill +	Infill +	2 39
honeylocust	Gleditsia triacanthos	NSH	Low	8.3	9.8	1.2 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor		Infill +	1 40
eastern redbud	Cercis canadensis	NSL	Low	7.1	9.7	1.4 No change		•	Rare	Poor	Poor		Infill +	1 40
	Prunus serotina	WDL	Medium	7.1		Ũ	No change	Low	Rare				11111	0 42
black cherry		NDL		4.8	8.8 E 0	1.2 No change	No change			Very Poor	Very Poor Poor	Infill I		
laurel oak	Quercus laurifolia		Medium	4.8	5.0	1.1 No change	No change	Medium		Poor		Infill +		2 43
slippery elm	Ulmus rubra	WSL	Low	_	4.6	0.8 Lg. dec.	Very Lg. dec.		Rare	Very Poor	Lost		1	0 44
water hickory	Carya aquatica	NSL	Medium	3.6	3.6	1.0 Sm. dec.	No change	Medium	Rare	Very Poor	Poor		Infill +	2 45
shagbark hickory	Carya ovata	WSL	Medium	1.2	3.1	2.6 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 46
bluejack oak	Quercus incana	NSL	Low	2.4	2.9	1.2 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 47

Davy Crockett

National Forests and Grasslands

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

								,	. ,,	0			iverson, recers, riusuu, n			
Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N	
bitternut hickory	Carya cordiformis	WSL	Low	1.2	2.7	2.3	Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 48	
pecan	Carya illinoinensis	NSH	Low	2.4	2.1	. 0.9	No change	Lg. inc.	Low	Rare	Very Poor	Fair		Infill +	2 49	
American basswood	Tilia americana	WSL	Medium	2.4	1.7	0.7	Very Lg. dec.	Very Lg. dec.	Medium	Rare	Lost	Lost			0 50	
black walnut	Juglans nigra	WDH	Low	2.4	1.6	6 0.7	Very Lg. dec.	Very Lg. dec.	Medium	Rare	Lost	Lost			0 51	
sweetbay	Magnolia virginiana	NSL	Medium	2.4	1.4	0.6	5 Sm. inc.	Sm. inc.	Medium	Rare	Fair	Fair	Infill +		2 52	
black oak	Quercus velutina	WDH	High	1.2	. 1.4	1.2	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 53	
swamp tupelo	Nyssa biflora	NDH	Medium	1.2	. 1.4	1.2	No change	No change	Low	Rare	Very Poor	Very Poor			2 54	
bald cypress	Taxodium distichum	NSH	Medium	1.2	0.9	0.7	Very Lg. dec.	Very Lg. dec.	Medium	Rare	Lost	Lost			0 55	
ashe juniper	Juniperus ashei	NDH	High	C) () C	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat			0 56	
serviceberry	Amelanchier spp.	NSL	Low	C) () () Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 57	
shellbark hickory	Carya laciniosa	NSL	Low	C) () C	New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Likely +	Likely +	3 58	
American beech	Fagus grandifolia	WDH	High	C) () (New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Likely +	Likely +	3 59	
black ash	Fraxinus nigra	WSH	Medium	C) () () Unknown	Unknown	Low	Absent	Unknown	Unknown			0 60	
southern magnolia	Magnolia grandiflora	NSL	Low	C) () (New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Likely +	Likely +	3 61	
bigleaf magnolia	Magnolia macrophylla	NSL	Low	C) () () Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 62	
pin cherry	Prunus pensylvanica	NSL	Low	C) () () Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 63	
northern red oak	Quercus rubra	WDH	Medium	C) () C) Unknown	Unknown	High	Absent	Unknown	Unknown			0 64	
live oak	Quercus virginiana	NDH	High	C) () (New Habitat	New Habitat	Medium	Absent	New Habitat	New Habitat	Migrate ++	Migrate ++	3 65	
black locust	Robinia pseudoacacia	NDH	Low	C) () () Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 66	

