HUC 6 Watershed

Climate Change Atlas Tree Species Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

sq. km sq. mi FIA Plots Area of Region 43,326 16,728 148

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species						Potential Change in Habitat Suitability			Capability	Migration Potential				
Ash	2		Model			Scenario Scenario			Scenario	Scenario		SHIFT	SHIFT		
Hickory	1	Abu	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	0	Abundant	1	High	3	6	Increase	2	2	Very Good	0	0	Likely	0	0
Oak	4	Common	2	Medium	9	14	No Change	8	7	Good	2	2	Infill	5	5
Pine	0	Rare	16	Low	14	7	Decrease	7	8	Fair	4	4	Migrate	0	0
Other	12	Absent	9	FIA	2		New	0	0	Poor	2	2	<u>-</u>	5	5
=	19	_	28	•	28	27	Unknown	11	11	Very Poor	8	8			
							-	28	28	FIA Only	2	2			
										Unknown	9	9			
Potential Changes in Climate Variables											27	27			

Potential Changes in Climate Variables

Temperatu	ıre (°F)					Prec
	Scenario	2009	2039	2069	2099	
Annual	CCSM45	63.3	64.4	65.6	66.2	An
Average	CCSM85	63.3	64.9	66.6	68.6	To
	GFDL45	63.3	66.8	67.1	68.4	
	GFDL85	63.3	65.7	68.4	71.5	
	HAD45	63.3	65.0	67.0	67.7	
	HAD85	63.3	65.5	67.8	70.5	
Growing	CCSM45	73.1	74.1	75.1	75.6 → → →	Gro
Season	CCSM85	73.1	74.6	76.2	78.4	Sea
May—Sep	GFDL45	73.1	77.3	77.6	79.5	May
	GFDL85	73.1	76.1	79.2	82.9	
	HAD45	73.1	74.9	76.5	77.0	
	HAD85	73.1	75.3	77.8	80.3	
Coldest	CCSM45	47.9	49.9	50.3	50.8	
Month	CCSM85	47.9	49.6	50.5	51.6	NOT
Average	GFDL45	47.9	50.7	50.8	50.8	endi
	GFDL85	47.9	48.8	49.7	50.2	obta
	HAD45	47.9	48.7	49.7	50.1	shov
	HAD85	47.9	50.6	51.7	52.9	and
						with
Warmest	CCSM45	76.1	77.1	77.7	77.8	
Month	CCSM85	76.1	77.7	78.2	79.3	Cite
Average	GFDL45	76.1	79.7	80.4	81.3	Clim
	GFDL85	76.1	80.0	81.2	83.5	Unit
	HAD45	76.1	78.1	78.8	79.2	

Precipitation (in)													
	Scenario	2009	2039	2069	2099								
Annual	CCSM45	20.5	23.4	23.1	20.6								
Total	CCSM85	20.5	22.1	22.7	22.3								
	GFDL45	20.5	18.7	22.0	16.4								
	GFDL85	20.5	18.7	19.0	17.6								
	HAD45	20.5	21.7	20.3	22.6								
	HAD85	20.5	20.8	21.0	22.2								
Growing	CCSM45	10.9	12.7	12.2	11.3								
Season	CCSM85	10.9	12.6	11.8	11.9								
May—Sep	GFDL45	10.9	9.7	12.2	8.7								
	GFDL85	10.9	10.0	10.2	9.2								
	HAD45	10.9	10.7	10.6	12.0								
	HAD85	10.9	11.0	10.6	11.2								

TE: For the six climate variables, four 30-year periods are used to indicate six potential future trajectories. The period ding in 2009 is based on modeled observations from the PRISM Climate Group and the three future periods were ained from the NASA NEX-DCP30 dataset. Future climate projections from three models under two emission scenarios ow estimates of each climate variable within the region. The three models are CCSM4, GFDL CM3, and HadGEM2-ES I the emission scenarios are the 4.5 and 8.5 RCP. The average value for the region is reported, even though locations hin the region may vary substantially based on latitude, elevation, land-use, or other factors.

e as: Iverson, L.R.; Prasad, A.M.; Peters, M.P.; Matthews, S.N. 2019. Facilitating Adaptive Forest Management under nate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern ited States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

HAD85

76.1

HUC 6 Watershed

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv	ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
ashe juniper	Juniperus ashei	NDH	High	14.1	585.4	49.9	No change	No change	Medium	Abundant	Good	Good			0 1
live oak	Quercus virginiana	NDH	High	19.5	267.5	22.8	No change	No change	Medium	Common	Fair	Fair			1 2
cedar elm	Ulmus crassifolia	NDH	Medium	10.4	55.0	25.2	Sm. inc.	Sm. inc.	Low	Common	Fair	Fair	Infill +	Infill +	1 3
blackjack oak	Quercus marilandica	NSL	Medium	1.6	27.8	14.0	Lg. dec.	Lg. dec.	High	Rare	Poor	Poor	Infill +	Infill +	2 4
sugarberry	Celtis laevigata	NDH	Medium	12.1	24.2	11.6	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 5
hackberry	Celtis occidentalis	WDH	Medium	4.9	13.1	16.0	No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	1 6
pecan	Carya illinoinensis	NSH	Low	1	11.1	7.7	No change	No change	Low	Rare	Very Poor	Very Poor			2 7
bald cypress	Taxodium distichum	NSH	Medium	0.3	8.7	37.8	Very Lg. dec.	Very Lg. dec.	Medium	Rare	Lost	Lost			0 8
sycamore	Platanus occidentalis	NSL	Low	0.3	4.8	20.9	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			2 9
post oak	Quercus stellata	WDH	High	1	4.6	9.5	No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 10
black cherry	Prunus serotina	WDL	Medium	2.5	4.2	1.1	No change	Sm. dec.	Low	Rare	Very Poor	Very Poor			2 11
red mulberry	Morus rubra	NSL	Low	1.4	3.5	5.7	Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 12
black walnut	Juglans nigra	WDH	Low	0.4	1.8	3.2	No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 13
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	0.9	1.2	1.8	Lg. inc.	Lg. inc.	High	Rare	Good	Good			2 14
Texas ash	Fraxinus texensis	NDH	FIA	1.3	1.2	2.8	Unknown	Unknown	NA	Rare	FIA Only	FIA Only			0 15
green ash	Fraxinus pennsylvanica	WSH	Low	2.2	0.8	6.7	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 16
winged elm	Ulmus alata	WDL	Medium	1.1	0.6	11.0	Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 17
durand oak	Quercus sinuata var. sinuata	NSL	FIA	0.3	0.2	0.7	Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 18
black willow	Salix nigra	NSH	Low	0.8	0.1	1.6	No change	No change	Low	Rare	Very Poor	Very Poor			0 19
pawpaw	Asimina triloba	NSL	Low	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 20
shellbark hickory	Carya laciniosa	NSL	Low	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 21
shagbark hickory	Carya ovata	WSL	Medium	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 22
eastern redbud	Cercis canadensis	NSL	Low	0	0	0	Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 23
common persimmon	Diospyros virginiana	NSL	Low	0	0	0	Unknown	Unknown	High	Absent	Unknown	Unknown			0 24
white ash	Fraxinus americana	WDL	Medium	0	0	0	Unknown	Unknown	Low	Absent	Unknown	Unknown			0 25
blue ash	Fraxinus quadrangulata	NSL	Low	0	0	0	Unknown	Unknown	Low	Absent	Unknown	Unknown			0 26
redbay	Persea borbonia	NSL	Low	0	0	0	Unknown	Unknown	High	Absent	Unknown	Unknown			0 27
American mountain-ash	Sorbus americana	NSL	Low	0	0	0	Unknown	Unknown	Low	Absent	Unknown	Unknown			0 28

