APPENDIX E: EXISTING VEGETATION REFERENCES AND CODES

February 2014
Existing Vegetation References

Code	Name	Author
FSHR8	Forest Service Handbook. Atlanta, Georgia. R8 FSH 2409.26d. Silvicultural Examination and Prescription Handbook. R8 Amendment No. 2409.26d-93-1.	USDA Forest Service

Existing FSHR8 Vegetation Codes

Code	Description	Mgt Type	Code	Description	Mgt Type
2	Red pine	Y	36	Pond pine	Y
3	White pine	Y	37	Spruce pine	
4	White pine-hemlock		38	Pitch pine	Y
5	Hemlock		39	Table Mountain pine	Y
6	Fraser fir		40	Hardwood-pond pine	
7	Red spruce-frasier fir	Y	41	Cove hardwoods-white pine-hemlock	Y
8	Hemlock-hardwood	Y	42	Upland hardwoods-white pine	Y
9	White pine-cove hardwood	Y	43	Oak-Eastern redcedar	
10	White pine-upland hardwood	Y	44	Southern red oak-yellow pine	Y
11	Eastern redcedar - hardwood		45	Chestnut oak-scarlet oak-yellow pine	Y
12	Shortleaf pine-oak	Y	46	Bottomland hardwood-yellow pine	Y
13	Loblolly pine-hardwood	Y	47	White oak-black oak-yellow pine	Y
14	Slash pine-hardwood	Y	48	Northern red oak-hickory-yellow pine	Y
15	Pitch pine-oak	Y	49	Bear oak-southern scrub oak-yellow pine	Y
16	Virginia pine-oak	Y	50	Yellow poplar	Y
17	Red spruce-northern hardwood		51	Post oak-black oak	Y
18	Pond pine-hardwood		52	Chestnut oak	Y
19	Sand pine-hardwood		53	White oak-northern red oak-hickory	Y
20	Table Mountain pine-hardwood	Y	54	White oak	Y
21	Longleaf pine	Y	55	Northern red oak	Y
22	Slash pine	Y	56	Yellow poplar-white oak-northern red oak	Y
23	Pondcypress	Y	57	Scrub oak	Y
24	Baldcypress	Y	58	Sweetgum-yellow poplar	Y
25	Yellow pine	Y	59	Scarlet oak	Y
26	Longleaf pine-hardwood	Y	60	Chestnut oak-scarlet oak	Y
27	Longleaf pine - slash pine		61	Swamp chestnut oak-cherrybark oak	Y
28	Shortleaf pine - loblolly pine		62	Sweetgum-oak	Y
29	Loblolly pine - longleaf pine		63	Sugarberry-American elm-green ash	Y
30	Longlead pine - shortleaf pine		64	Laurel oak-willow oak	Y
31	Loblolly pine	Y	65	Overcup oak-water hickory	
32	Shortleaf pine	Y	66	Atlantic white cedar	
33	Virginia pine	Y	67	Baldcypress-water tupelo	Y
34	Sand pine	Y	68	Sweetbay-swamp tupelo-red maple	Y
35	Eastern red- cedar	Y	69	Beech-magnolia	Y

FSHR8 Existing Vegetation Codes (cont.)

Code	Description	Mgt Type	Code	Description	Mgt Type
70	Black cherry	Y	87	Red maple	
71	Black ash-American elm-red maple		88	Black locust	
72	River birch-sycamore	Y	90	Non-forest	Y
73	Cottonwood		97	Live oak	
74	Willow		98	Undrained flatwoods	
75	Sycamore-pecan-American elm	Y	99	Brush species	
76	Silver maple-American elm		800	Novaculite Glade (includes talus)	
77	Oak hammock		801	Cliff and Talus (Sandstone, Shale)	
78	American chestnut		802	Glade and Barrens (Sandstone, Shale)	
79	Slash pine - cypress	803	Calcareous Prairie		
80	Upland oak		804	Seep/Spring	
81	Sugar maple-beech-yellow birch	Y	805	Montane Oak	Ozark Clacareous Glade and Barren (Ozark)
82	Black walnut		807	Sinkhole and Depression Pond (Ozark)	
83	Black birch	808	Calcareous Cliff and Talus (Ozark)		
84	Chestnut oak - white oak - scarlet oak		806		
85	White oak - black oak - hickory		809	Prarie and Woodland (Ozark)	

The Existing Vegetation type code is a classification of the forest overstory cover type currently existing on the stand. These codes are also used to identify management type. Existing Vegetation type is based on one or more species of trees that comprise the main crown canopy (i.e., the dominants and co-dominants). These codes generally conform to definitions in "Forest Cover Types of the United States and Canada," Society of American Foresters (1980) with some notable exceptions. They are divided into four broad groups as follows:

Pine Types: Stands in which 70 percent or more of the basal area of trees with dominant and codominant crowns are softwoods, the specific name represents the species comprising the plurality.

Pine-Hardwood Types: Stands in which 51-69 percent of the basal area of trees with dominant and co-dominant crowns are softwood species. Use the type name associated with the softwood species comprising the plurality.

Hardwood-Pine Types: Stands in which 51-69 percent of the basal area of trees with dominant and co-dominant crowns are hardwoods. Use the type name associated with the hardwood species comprising the plurality.

Hardwood Types: Stands in which 70 percent or more of the basal area of trees with dominant and co-dominant crowns are hardwoods. Use the type name associated with the hardwood species comprising the plurality.

The SAF cover type classification requires a stand to exceed 80 percent in one species to be considered pure as opposed to the 70 percent threshold used in the Region 8 classification. The SAF cover type classification considers all mixtures of pine and hardwood that have less than 80 percent stocking of one species group as pine hardwood types. The Region 8 approach divides the group into Pine-Hardwood and Hardwood-Pine.

The percentage of softwood and hardwood in the Region 8 classification applies to the particular mixture of trees at any single sample point. This is not the same as, and should not be confused with intermingling of less-than-stand size areas of pine type in a hardwood stand or of a hardwood type in a pine stand. These less-than-stand-size areas should be treated as pine inclusions in hardwood stands or hardwood inclusions in pine stands. In heterogenous areas with neither type being of stand size, forest type should be assigned on the basis of the type occupying the plurality of the area. Such situations should not be assigned a pine-hardwood or hardwood-pine forest type unless individual plot classifications for a plurality of the area are a mixed type.

Management Type: Existing Vegetation codes are used to identify management type. The management type classification reflects the vegetation type that should be produced on the site to best meet the goals and objectives of the Forest Plan. For areas classified as suitable for timber production and allocated to management prescriptions with timber production management emphasis, the management type is the vegetation type that optimizes the productive capability of the site to produce high quality material. These same criteria also apply to all other areas unless the Forest Plan requires occupying the site with another, less productive vegetation type, to meet some other resource goal or objective.

Assigning a Management Type code to a stand implies that you expect the Existing Vegetation type to be this code after the next regeneration. For example: 74 Willow is not an acceptable Management Type because we would not regenerate a stand and expect to see Willow as the resulting Existing Vegetation Type.

Note: CISC used four levels of Management Type. Those levels have been removed from use as of the transition to FSVeg. If this causes a problem for you, please let me know.

David Belcher

APPENDIX F: POTENTIAL VEGETATION REFERENCES

Region 8 does not support the use ofPotential Vegetation References.

APPENDIX G: POTENTIAL VEGETATION CODES

Region 8 does not support Potential Vegetation Codes.

APPENDIX H: FUEL PHOTO REFERENCES AND CODES

Fuel Photo References

Code	Reference
19	Ottmar, Roger D. and R.E. Vihnanek. 2000. Stereo Photo Series for Quantifying Natural Fuels in Longleaf Pine, Pocosin, and Marshgrass Types in the Southeast United States.
24	Christine M. Lynch and L.J. Horton. 1983. Photo Series for Quantifying Forest Residues in: Loblolly Pine, Eastern White Pine, Pitch Pine and Virginia Pine. USDA Forest Service, NA-FR- 25.
26	Eric R. Scholl and Thomas A. Waldrop. 1999. Photos for Estimating Fuel Loadings Before and After Prescribed Burning in the Upper Coastal Plain of the Southeast. USDA Forest Service, SRS-26
29	Bradford M. Sanders and David H. Van Lear. 1988. Photos for Estimating Residue Loadings Before and After Burning in Southern Appalachian Mixed Pine - Hardwood Clearcuts. USDA Forest Service GTR SE-49.
30	Wade et. al. 1993. Photo Series for Estimating Post-Hurricane Residues and Fire Behavior in Southern Pine. 1993. USDA Forest Service GTR SE-82. 1993

Fuel Photo Codes

Fuel Photo Codes For Reference 19

LLP01	LLP05	MG01		MG05		MG09	PS04
PW02							
LLP02	LLP06		MG02		MG06		PS01
LLP03	LLP07		MG03		MG07		PS02
PLP05							
LLP04	LLP08	MG04	MG08		PS03	PW01	

Fuel Photo Codes For Reference 24

1-LL-2-N	6-LL-3-H	2-WP-2-P		7-WP-3-N	5-PP-2-N	2-VP-2-N	
2-LL-2-H	7-LL-3-H	3-WP-3-N		1-PP-1-N	6-PP-2-N	3-VP-3-N	
3-LL-3-N	8-LL-3-N		4-WP-3-H		2-PP-2-N	7-PP-3-H	4-VP-2-N
4-LL-2-H	9-LL-3-H	5-WP-3-H		3-PP-1-N	1-VP-2-N		
5-LL-1-P	1-WP-3-N	6-WP-2-H	4-PP-1-N				

Fuel Photo Codes For Reference 26

FC1-PRE	FC2-POST	FC4-PRE		FC5-POST	FC7-PRE	FC8-P0ST	
FC1-POST	FC3-PRE	FC4-POST		FC6-PRE	FC7-POST		
FC2-PRE	FC3-POST	FC5-PRE	FC6-POST	FC8-PRE			

Fuel Photo Codes For Reference 29

| 6 B | 8 A | 12 B | | 14 A | 18 B | 20 A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 A | 10 B | 12 A | 16 B | 18 A | | |
| 8 B | 10 A | 14 B | 16 A | 20 B | | |

Fuel Photo Codes For Reference 30

| 3 D | 3B | 2 D | 1 C | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 A | 2 C | 1 A | 1 D | |

APPENDIX I: FIXED RADIUS PLOT

1. Correct the fixed plot radius for slope percent using the "Circular Plot Radii Corrected for Slope" table and then measuring distances parallel to the ground line. This method always results in a circular plot on the slope.

Example - $1 / 300$ acre fixed plot on 50 percent slope. Corrected fixed plot radius is 7.2 feet.

Circular Plot Radii Corrected for Slope
Plot Size in Acres

SLOPE \%	$\mathbf{1 / 3 0 0}$	$\mathbf{1 / 1 0 0}$	$\mathbf{1 / 5 0}$	$\mathbf{1 / 2 0}$	$\mathbf{1 / 1 0}$	$\mathbf{1 / 5}$
$0-9$	6.8	11.8	16.7	26.3	37.2	52.7
$\mathbf{1 0 - 1 7}$	6.8	11.8	16.7	26.5	37.4	52.9
$18-22$	6.9	11.9	16.8	26.6	37.6	53.2
$23-26$	6.9	12.0	16.9	26.7	37.8	53.4
$27-30$	6.9	12.0	17.0	26.9	38.0	53.7
$31-33$	7.0	12.1	17.1	27.0	38.2	54.0
$34-36$	7.0	12.1	17.1	27.1	38.3	54.2
$37-39$	7.0	12.2	17.2	27.2	38.5	54.5
$40-42$	7.1	12.2	17.3	27.4	38.7	54.7
$43-44$	7.1	12.3	17.4	27.5	38.9	55.0
$45-47$	7.1	12.3	17.5	27.6	39.1	55.2
$48-49$	7.2	12.4	17.5	27.7	39.2	55.5
$50-51$	7.2	12.5	17.6	27.9	39.4	55.7
$52-53$	7.2	12.5	17.7	28.0	39.6	56.0
$54-55$	7.3	12.6	17.8	28.1	39.8	56.2
$56-57$	7.3	12.6	17.9	28.2	39.9	56.5
$58-59$	7.3	12.7	17.9	28.4	40.1	56.7
$60-61$	7.4	12.7	18.0	28.5	40.3	57.0

Circular Plot Radii Corrected for Slope (cont.)
Plot Size in Acres

SLOPE \%	1/300	1/100	1/50	1/20	1/10	1/5
62-63	7.4	12.8	18.1	28.6	40.4	57.2
64-65	7.4	12.8	18.2	28.7	40.6	57.4
66-67	7.4	12.9	18.2	28.8	40.8	57.7
68-69	7.5	13.0	18.3	29.0	41.0	57.9
70	7.5	13.0	18.4	29.1	41.1	58.2
71-72	7.5	13.1	18.5	29.2	41.3	58.4
73-74	7.6	13.1	18.5	29.3	41.5	58.6
75	7.6	13.2	18.6	29.4	41.6	58.7
76-77	7.6	13.2	18.7	29.6	41.8	59.1
78-79	7.7	13.3	18.8	29.7	42.0	59.3
80	7.7	13.3	18.8	29.8	42.1	59.6
81-82	7.7	13.4	18.9	29.9	42.3	59.8
83	7.8	13.4	19.0	30.0	42.5	60.0
84-85	7.8	13.5	19.1	30.1	42.6	60.3
86	7.8	13.5	19.1	30.3	42.8	60.5
87-88	7.8	13.6	19.2	30.4	42.9	60.7
89	7.9	13.6	19.3	30.5	43.1	61.0
90-91	7.9	13.7	19.3	30.6	43.3	61.2
92	7.9	13.7	19.4	30.7	43.4	61.4
93-94	8.0	13.8	19.5	30.8	43.6	61.6
95	8.0	13.8	19.6	30.9	43.7	61.9
96-97	8.0	13.9	19.6	31.0	43.9	62.1
98	8.0	13.9	19.7	31.2	44.1	62.3
99-100	8.1	14.0	19.8	31.3	44.2	62.5
101	8.1	14.0	19.8	31.4	44.4	62.8
102	8.1	14.1	19.9	31.5	44.5	63.0
103-104	8.2	14.1	20.0	31.6	44.7	63.2
105	8.2	14.2	20.1	31.7	44.8	63.4
106-107	8.2	14.2	20.1	31.8	45.0	63.6
108	8.2	14.3	20.2	31.9	45.1	63.8
109	8.3	14.3	20.3	32.0	45.3	64.1
110-111	8.3	14.4	20.3	32.1	45.5	64.3
112	8.3	14.4	20.4	32.2	45.6	64.5
113	8.4	14.5	20.5	32.4	45.8	64.7
114-115	8.4	14.5	20.5	32.5	45.9	64.9
116	8.4	14.6	20.6	32.6	46.1	65.1
117	8.4	14.6	20.7	32.7	46.2	65.3
118-119	8.5	14.7	20.7	32.8	46.4	65.6
120	8.5	14.7	20.8	32.9	46.5	65.8
121	8.5	14.8	20.9	33.0	46.7	66.0
122	8.5	14.8	20.9	33.1	46.8	66.2
123-124	8.6	14.8	21.0	33.2	47.0	66.4
125	8.6	14.9	21.1	33.3	47.1	66.6
130	8.7	15.1	21.3	33.7	47.7	67.4

Circular Plot Radii Corrected for Slope (cont.)
Plot Size in Acres

SLOPE \%	$\mathbf{1 / 3 0 0}$	$\mathbf{1 / 1 0 0}$	$\mathbf{1 / 5 0}$	$\mathbf{1 / 2 0}$	$\mathbf{1 / 1 0}$	$\mathbf{1 / 5}$
135	8.8	15.3	21.6	34.1	48.3	68.3
140	8.9	15.4	21.8	34.5	48.8	69.1
145	9.0	15.6	22.1	34.9	49.4	69.9
150	9.1	15.8	22.3	35.3	50.0	70.7

2. Determine the slope limiting distance to borderline trees by using the "Slope Correction Table" (The slope being corrected is the slope from plot center to the tree, not the overall plot slope.). Measure the distance parallel to the ground line to the borderline tree. This method always results in an oval plot on the slope. Following is a list of fixed plot sizes and the specific radius for each:

Plot Size	Plot Radius	Plot Size	Plot Radius	Plot Size	Plot Radius
$1 / 1000$	3.7 feet	$1 / 250$	7.4 feet	$1 / 5$	52.7 feet
$1 / 500$	5.3 feet	$1 / 150$	9.6 feet	$1 / 4$	58.9 feet
$1 / 400$	5.9 feet	$1 / 100$	11.8 feet	$1 / 3$	68.0 feet
$1 / 300$	6.8 feet	$1 / 50$	16.7 feet	$1 / 2$	83.3 feet
$1 / 250$	7.4 feet	$1 / 20$	26.3 feet	1	117.8 feet
$1 / 200$	8.3 feet	$1 / 10$	37.2 feet		

To determine the slope limiting distance, multiply the plot radius for the appropriate plot size by the appropriate slope correction factor.

Slope Correction Table

Percent of Slope	Degree of Slope	Correction Factor	Percent of Slope	Degree of Slope	Correction Factor	Percent of Slope	Degree of Slope	Correction Factor
0 to 9	$0-6$	1.00	78 to 79	38	1.27	117	49	1.54
10 to 17	$7-10$	1.01	80	39	1.28	118 to	50	1.55
18 to 22	$11-12$	1.02	81 to 82	39	1.29	120	50	1.56
23 to 26	$13-14$	1.03	83	40	1.30	121	50	1.57
27 to 30	$15-17$	1.04	84 to 85	40	1.31	122	51	1.58
31 to 33	18	1.05	86	41	1.32	123 to	51	1.59
34 to 36	$19-20$	1.06	87 to 88	41	1.33	125	51	1.60
37 to 39	21	1.07	89	42	1.34	126	52	1.61
40 to 42	22	1.08	90 to 91	42	1.35	127 to	52	1.62
43 to 44	23	1.09	92	43	1.36	129	52	1.63
45 to 47	24	1.10	93 to 94	43	1.37	130	52	1.64
48 to 49	$25-26$	1.11	95	44	1.38	131	53	1.65
50 to 51	27	1.12	96 to 97	44	1.39	132 to	53	1.66
52 to 53	28	1.13	98	44	1.40	134	53	1.67

Slope Correction Table (cont.)

Percent of Slope	Degree of Slope	Correction Factor	Percent of Slope	Degree of Slope	Correction Factor	Percent of Slope	Degree of Slope	Correction Factor
54 to 55	29	1.14	99 to 100	45	1.41	135	53	1.68
56 to 57	29	1.15	101	45	1.42	136	54	1.69
58 to 59	30	1.16	102	46	1.43	137 to 138	54	1.70
60 to 61	31	1.17	103 to104	46	1.44	139	54	1.71
62 to 63	32	1.18	105	46	1.45	140	54	1.72
64 to 65	33	1.19	106 to107	47	1.46	141	55	1.73
66 to 67	34	1.20	108	47	1.47	142 to	55	1.74
68 to 69	34	1.21	109	47	1.48	144	55	1.75
70	35	1.22	110 to	48	1.49	145	55	1.76
71 to 72	36	1.23	112	48	1.50	146	56	1.77
73 to 74	37	1.24	113	48	1.51	147	56	1.78
75	37	1.25	114 to	49	1.52	148 to	56	1.79
76 to 77	38	1.26	116	49	1.53	150	56	1.80

APPENDIX J: VARIABLE RADIUS PLOT

Table J-1: BAF 10 Plot Radii in Feet and Tenths of Feet from Plot Center to Face of Tree at DBH for 0\% Slope

Inches	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5	13.5	13.8	14.1	14.4	14.6	14.9	15.2	15.4	15.7	16.0
6	16.2	16.5	16.8	17.1	17.3	17.6	17.9	18.1	18.4	18.7
7	19.0	19.2	19.5	19.8	20.0	20.3	20.6	20.9	21.1	21.4
8	21.7	21.9	22.2	22.5	22.7	23.0	23.3	23.6	23.8	24.1
9	24.4	24.6	24.9	25.2	25.5	25.7	26.0	26.3	26.5	26.8
10	27.1	27.4	27.6	27.9	28.2	28.4	28.7	29.0	29.2	29.5
11	29.8	30.1	30.3	30.6	30.9	31.1	31.4	31.7	32.0	32.2
12	32.5	32.8	33.0	33.3	33.6	33.9	34.1	34.4	34.7	34.9
13	35.2	35.5	35.7	36.0	36.3	36.6	36.8	37.1	37.4	37.6
14	37.9	38.2	38.5	38.7	39.0	39.3	39.5	39.8	40.1	40.3
15	40.6	40.9	41.2	41.4	41.7	42.0	42.2	42.5	42.8	43.1
16	43.3	43.6	43.9	44.1	44.4	44.7	45.0	45.2	45.5	45.8
17	46.0	46.3	46.6	46.8	47.1	47.4	47.7	47.9	48.2	48.5
18	48.7	49.0	49.3	49.6	49.8	50.1	50.4	50.6	50.9	51.2
19	51.5	51.7	52.0	52.3	52.5	52.8	53.1	53.3	53.6	53.9
20	54.2	54.4	54.7	55.0	55.2	55.5	55.8	56.1	56.3	56.6
21	56.9	57.1	57.4	57.7	58.0	58.2	58.5	58.8	59.0	59.3
22	59.6	59.8	60.1	60.4	60.7	60.9	61.2	61.5	61.7	62.0
23	62.3	62.6	62.8	63.1	63.4	63.6	63.9	64.2	64.5	64.7
24	65.0	65.3	65.5	65.8	66.1	66.3	66.6	66.9	67.2	67.4
25	67.7	68.0	68.2	68.5	68.8	69.1	69.3	69.6	69.9	70.1
26	70.4	70.7	70.9	71.2	71.5	71.8	72.0	72.3	72.6	72.8
27	73.1	73.4	73.7	73.9	74.2	74.5	74.7	75.0	75.3	75.6
28	75.8	76.1	76.4	76.6	76.9	77.2	77.4	77.7	78.0	78.3
29	78.5	78.8	79.1	79.3	79.6	79.9	80.2	80.4	80.7	81.0
30	81.2	81.5	81.8	82.1	82.3	82.6	82.9	83.1	83.4	83.7
31	83.9	84.2	84.5	84.8	85.0	85.3	85.6	85.8	86.1	86.4
32	86.7	86.9	87.2	87.5	87.7	88.0	88.3	88.6	88.8	89.1
33	89.4	89.6	89.9	90.2	90.4	90.7	91.0	91.3	91.5	91.8
34	92.1	92.3	92.6	92.9	93.2	93.4	93.7	94.0	94.2	94.5
35	94.8	95.1	95.3	95.6	95.9	96.1	96.4	96.7	96.9	97.2
36	97.5	97.8	98.0	98.3	98.6	98.8	99.1	99.4	99.7	99.9
37	100.2	100.5	100.7	101.0	101.3	101.6	101.8	102.1	102.4	102.6
38	102.9	103.2	103.4	103.7	104.0	104.3	104.5	104.8	105.1	105.3
39	105.6	105.9	106.2	106.4	106.7	107.0	107.2	107.5	107.8	108.0
40	108.3	108.6	108.9	109.1	109.4	109.7	109.9	110.2	110.5	110.8
41	111.0	111.3	111.6	111.8	112.1	112.4	112.7	112.9	113.2	113.5
42	113.7	114.0	114.3	114.5	114.8	115.1	115.4	115.6	115.9	116.2
43	116.4	116.7	117.0	117.3	117.5	117.8	118.1	118.3	118.6	118.9
44	119.2	119.4	119.7	120.0	120.2	120.5	120.8	121.0	121.3	121.6
45	121.9	122.1	122.4	122.7	122.9	123.2	123.5	123.8	124.0	124.3
46	124.6	124.8	125.1	125.4	125.7	125.9	126.2	126.5	126.7	127.0
47	127.3	127.5	127.8	128.1	128.4	128.6	128.9	129.2	129.4	129.7
48	130.0	130.3	130.5	130.8	131.1	131.3	131.6	131.9	132.2	132.4
49	132.7	133.0	133.2	133.5	133.8	134.0	134.3	134.6	134.9	135.1
50	135.4	135.7	135.9	136.2	136.5	136.8	137.0	137.3	137.6	137.8

Prepared by multiplying the BAF 10 Plot Radius Factor 2.708 * DBH
For example, if DBH $=14.3$ inches, then $14.3 * 2.708=38$.

Table J-2: BAF 20 Plot Radii in Feet and Tenths of Feet from Plot Center to Face of Tree at DBH for 0\% Slope

Inches	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5	9.5	9.7	9.9	10.1	10.3	10.5	10.7	10.8	11.0	11.2
6	11.4	11.6	11.8	12.0	12.2	12.4	12.6	12.8	12.9	13.1
7	13.3	13.5	13.7	13.9	14.1	14.3	14.5	14.7	14.8	15.0
8	15.2	15.4	15.6	15.8	16.0	16.2	16.4	16.6	16.7	16.9
9	17.1	17.3	17.5	17.7	17.9	18.1	18.3	18.5	18.6	18.8
10	19.0	19.2	19.4	19.6	19.8	20.0	20.2	20.4	20.6	20.7
11	20.9	21.1	21.3	21.5	21.7	21.9	22.1	22.3	22.5	22.6
12	22.8	23.0	23.2	23.4	23.6	23.8	24.0	24.2	24.4	24.5
13	24.7	24.9	25.1	25.3	25.5	25.7	25.9	26.1	26.3	26.5
14	26.6	26.8	27.0	27.2	27.4	27.6	27.8	28.0	28.2	28.4
15	28.5	28.7	28.9	29.1	29.3	29.5	29.7	29.9	30.1	30.3
16	30.4	30.6	30.8	31.0	31.2	31.4	31.6	31.8	32.0	32.2
17	32.4	32.5	32.7	32.9	33.1	33.3	33.5	33.7	33.9	34.1
18	34.3	34.4	34.6	34.8	35.0	35.2	35.4	35.6	35.8	36.0
19	36.2	36.3	36.5	36.7	36.9	37.1	37.3	37.5	37.7	37.9
20	38.1	38.3	38.4	38.6	38.8	39.0	39.2	39.4	39.6	39.8
21	40.0	40.2	40.3	40.5	40.7	40.9	41.1	41.3	41.5	41.7
22	41.9	42.1	42.2	42.4	42.6	42.8	43.0	43.2	43.4	43.6
23	43.8	44.0	44.1	44.3	44.5	44.7	44.9	45.1	45.3	45.5
24	45.7	45.9	46.1	46.2	46.4	46.6	46.8	47.0	47.2	47.4
25	47.6	47.8	48.0	48.1	48.3	48.5	48.7	48.9	49.1	49.3
26	49.5	49.7	49.9	50.0	50.2	50.4	50.6	50.8	51.0	51.2
27	51.4	51.6	51.8	52.0	52.1	52.3	52.5	52.7	52.9	53.1
28	53.3	53.5	53.7	53.9	54.0	54.2	54.4	54.6	54.8	55.0
29	55.2	55.4	55.6	55.8	55.9	56.1	56.3	56.5	56.7	56.9
30	57.1	57.3	57.5	57.7	57.9	58.0	58.2	58.4	58.6	58.8
31	59.0	59.2	59.4	59.6	59.8	59.9	60.1	60.3	60.5	60.7
32	60.9	61.1	61.3	61.5	61.7	61.8	62.0	62.2	62.4	62.6
33	62.8	63.0	63.2	63.4	63.6	63.8	63.9	64.1	64.3	64.5
34	64.7	64.9	65.1	65.3	65.5	65.7	65.8	66.0	66.2	66.4
35	66.6	66.8	67.0	67.2	67.4	67.6	67.7	67.9	68.1	68.3
36	68.5	68.7	68.9	69.1	69.3	69.5	69.6	69.8	70.0	70.2
37	70.4	70.6	70.8	71.0	71.2	71.4	71.6	71.7	71.9	72.1
38	72.3	72.5	72.7	72.9	73.1	73.3	73.5	73.6	73.8	74.0
39	74.2	74.4	74.6	74.8	75.0	75.2	75.4	75.5	75.7	75.9
40	76.1	76.3	76.5	76.7	76.9	77.1	77.3	77.5	77.6	77.8
41	78.0	78.2	78.4	78.6	78.8	79.0	79.2	79.4	79.5	79.7
42	79.9	80.1	80.3	80.5	80.7	80.9	81.1	81.3	81.4	81.6
43	81.8	82.0	82.2	82.4	82.6	82.8	83.0	83.2	83.4	83.5
44	83.7	83.9	84.1	84.3	84.5	84.7	84.9	85.1	85.3	85.4
45	85.6	85.8	86.0	86.2	86.4	86.6	86.8	87.0	87.2	87.3
46	87.5	87.7	87.9	88.1	88.3	88.5	88.7	88.9	89.1	89.3
47	89.4	89.6	89.8	90.0	90.2	90.4	90.6	90.8	91.0	91.2
48	91.3	91.5	91.7	91.9	92.1	92.3	92.5	92.7	92.9	93.1
49	93.2	93.4	93.6	93.8	94.0	94.2	94.4	94.6	94.8	95.0
50	95.2	95.3	95.5	95.7	95.9	96.1	96.3	96.5	96.7	96.9

Prepared by multiplying the BAF 20 Plot Radius Factor 1.902 * DBH.
For example, if DBH $=14.3$ inches, then $14.3 * 1.903=27$.

Table J-3: BAF 30 Plot Radii in Feet and Tenths of Feet from Plot Center to Face of Tree at DBH for 0\% Slope

Inches	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5	7.7	7.9	8.0	8.2	8.3	8.5	8.7	8.8	9.0	9.1
6	9.3	9.4	9.6	9.7	9.9	10.0	10.2	10.4	10.5	10.7
7	10.8	11.0	11.1	11.3	11.4	11.6	11.7	11.9	12.1	12.2
8	12.4	12.5	12.7	12.8	13.0	13.1	13.3	13.5	13.6	13.8
9	13.9	14.1	14.2	14.4	14.5	14.7	14.8	15.0	15.2	15.3
10	15.5	15.6	15.8	15.9	16.1	16.2	16.4	16.5	16.7	16.9
11	17.0	17.2	17.3	17.5	17.6	17.8	17.9	18.1	18.2	18.4
12	18.6	18.7	18.9	19.0	19.2	19.3	19.5	19.6	19.8	19.9
13	20.1	20.3	20.4	20.6	20.7	20.9	21.0	21.2	21.3	21.5
14	21.6	21.8	22.0	22.1	22.3	22.4	22.6	22.7	22.9	23.0
15	23.2	23.3	23.5	23.7	23.8	24.0	24.1	24.3	24.4	24.6
16	24.7	24.9	25.0	25.2	25.4	25.5	25.7	25.8	26.0	26.1
17	26.3	26.4	26.6	26.7	26.9	27.1	27.2	27.4	27.5	27.7
18	27.8	28.0	28.1	28.3	28.4	28.6	28.8	28.9	29.1	29.2
19	29.4	29.5	29.7	29.8	30.0	30.1	30.3	30.5	30.6	30.8
20	30.9	31.1	31.2	31.4	31.5	31.7	31.8	32.0	32.2	32.3
21	32.5	32.6	32.8	32.9	33.1	33.2	33.4	33.5	33.7	33.9
22	34.0	34.2	34.3	34.5	34.6	34.8	34.9	35.1	35.2	35.4
23	35.6	35.7	35.9	36.0	36.2	36.3	36.5	36.6	36.8	36.9
24	37.1	37.3	37.4	37.6	37.7	37.9	38.0	38.2	38.3	38.5
25	38.7	38.8	39.0	39.1	39.3	39.4	39.6	39.7	39.9	40.0
26	40.2	40.4	40.5	40.7	40.8	41.0	41.1	41.3	41.4	41.6
27	41.7	41.9	42.1	42.2	42.4	42.5	42.7	42.8	43.0	43.1
28	43.3	43.4	43.6	43.8	43.9	44.1	44.2	44.4	44.5	44.7
29	44.8	45.0	45.1	45.3	45.5	45.6	45.8	45.9	46.1	46.2
30	46.4	46.5	46.7	46.8	47.0	47.2	47.3	47.5	47.6	47.8
31	47.9	48.1	48.2	48.4	48.5	48.7	48.9	49.0	49.2	49.3
32	49.5	49.6	49.8	49.9	50.1	50.2	50.4	50.6	50.7	50.9
33	51.0	51.2	51.3	51.5	51.6	51.8	51.9	52.1	52.3	52.4
34	52.6	52.7	52.9	53.0	53.2	53.3	53.5	53.6	53.8	54.0
35	54.1	54.3	54.4	54.6	54.7	54.9	55.0	55.2	55.3	55.5
36	55.7	55.8	56.0	56.1	56.3	56.4	56.6	56.7	56.9	57.0
37	57.2	57.4	57.5	57.7	57.8	58.0	58.1	58.3	58.4	58.6
38	58.7	58.9	59.1	59.2	59.4	59.5	59.7	59.8	60.0	60.1
39	60.3	60.4	60.6	60.8	60.9	61.1	61.2	61.4	61.5	61.7
40	61.8	62.0	62.1	62.3	62.5	62.6	62.8	62.9	63.1	63.2
41	63.4	63.5	63.7	63.8	64.0	64.2	64.3	64.5	64.6	64.8
42	64.9	65.1	65.2	65.4	65.6	65.7	65.9	66.0	66.2	66.3
43	66.5	66.6	66.8	66.9	67.1	67.3	67.4	67.6	67.7	67.9
44	68.0	68.2	68.3	68.5	68.6	68.8	69.0	69.1	69.3	69.4
45	69.6	69.7	69.9	70.0	70.2	70.3	70.5	70.7	70.8	71.0
46	71.1	71.3	71.4	71.6	71.7	71.9	72.0	72.2	72.4	72.5
47	72.7	72.8	73.0	73.1	73.3	73.4	73.6	73.7	73.9	74.1
48	74.2	74.4	74.5	74.7	74.8	75.0	75.1	75.3	75.4	75.6
49	75.8	75.9	76.1	76.2	76.4	76.5	76.7	76.8	77.0	77.1
50	77.3	77.5	77.6	77.8	77.9	78.1	78.2	78.4	78.5	78.7

Prepared by multiplying the BAF 30 Plot Radius Factor 1.546 * DBH.
For example, if DBH $=14.3$ inches, then $14.3 * 1.546=22$.

Table J-4: BAF 40 Plot Radii in Feet and Tenths of Feet from Plot Center to Face of Tree at DBH for 0\% Slope

Inches	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5	6.7	6.8	6.9	7.1	7.2	7.3	7.5	7.6	7.7	7.9
6	8.0	8.1	8.3	8.4	8.5	8.7	8.8	8.9	9.1	9.2
7	9.3	9.5	9.6	9.7	9.9	10.0	10.1	10.3	10.4	10.5
8	10.7	10.8	10.9	11.1	11.2	11.3	11.5	11.6	11.7	11.9
9	12.0	12.1	12.3	12.4	12.5	12.7	12.8	12.9	13.1	13.2
10	13.3	13.5	13.6	13.7	13.9	14.0	14.1	14.3	14.4	14.5
11	14.7	14.8	14.9	15.1	15.2	15.3	15.5	15.6	15.7	15.9
12	16.0	16.1	16.3	16.4	16.5	16.7	16.8	16.9	17.1	17.2
13	17.3	17.5	17.6	17.7	17.9	18.0	18.1	18.3	18.4	18.5
14	18.7	18.8	18.9	19.1	19.2	19.3	19.5	19.6	19.7	19.9
15	20.0	20.1	20.3	20.4	20.5	20.7	20.8	20.9	21.1	21.2
16	21.3	21.5	21.6	21.7	21.9	22.0	22.1	22.3	22.4	22.5
17	22.7	22.8	22.9	23.1	23.2	23.3	23.5	23.6	23.7	23.9
18	24.0	24.1	24.3	24.4	24.5	24.7	24.8	24.9	25.1	25.2
19	25.3	25.5	25.6	25.7	25.9	26.0	26.1	26.3	26.4	26.5
20	26.7	26.8	26.9	27.1	27.2	27.3	27.5	27.6	27.7	27.9
21	28.0	28.1	28.3	28.4	28.5	28.7	28.8	28.9	29.1	29.2
22	29.3	29.5	29.6	29.7	29.9	30.0	30.1	30.3	30.4	30.5
23	30.7	30.8	30.9	31.1	31.2	31.3	31.5	31.6	31.7	31.9
24	32.0	32.1	32.3	32.4	32.5	32.7	32.8	32.9	33.1	33.2
25	33.3	33.5	33.6	33.7	33.9	34.0	34.1	34.3	34.4	34.5
26	34.7	34.8	34.9	35.1	35.2	35.3	35.5	35.6	35.7	35.9
27	36.0	36.1	36.3	36.4	36.5	36.7	36.8	36.9	37.1	37.2
28	37.3	37.5	37.6	37.7	37.9	38.0	38.1	38.3	38.4	38.5
29	38.7	38.8	38.9	39.1	39.2	39.3	39.5	39.6	39.7	39.9
30	40.0	40.1	40.3	40.4	40.5	40.7	40.8	40.9	41.1	41.2
31	41.3	41.5	41.6	41.7	41.9	42.0	42.1	42.3	42.4	42.5
32	42.7	42.8	42.9	43.1	43.2	43.3	43.5	43.6	43.7	43.9
33	44.0	44.1	44.3	44.4	44.5	44.7	44.8	44.9	45.1	45.2
34	45.3	45.5	45.6	45.7	45.9	46.0	46.1	46.3	46.4	46.5
35	46.7	46.8	46.9	47.1	47.2	47.3	47.5	47.6	47.7	47.9
36	48.0	48.1	48.2	48.4	48.5	48.7	48.8	48.9	49.1	49.2
37	49.3	49.5	49.6	49.7	49.9	50.0	50.1	50.3	50.4	50.5
38	50.7	50.8	50.9	51.1	51.2	51.3	51.5	51.6	51.7	51.9
39	52.0	52.1	52.2	52.4	52.5	52.7	52.8	52.9	53.1	53.2
40	53.3	53.5	53.6	53.7	53.9	54.0	54.1	54.3	54.4	54.5
41	54.7	54.8	54.9	55.1	55.2	55.3	55.5	55.6	55.7	55.9
42	56.0	56.1	56.2	56.4	56.5	56.7	56.8	56.9	57.1	57.2
43	57.3	57.5	57.6	57.7	57.9	58.0	58.1	58.3	58.4	58.5
44	58.7	58.8	58.9	59.1	59.2	59.3	59.5	59.6	59.7	59.9
45	60.0	60.1	60.2	60.4	60.5	60.7	60.8	60.9	61.1	61.2
46	61.3	61.5	61.6	61.7	61.9	62.0	62.1	62.3	62.4	62.5
47	62.7	62.8	62.9	63.1	63.2	63.3	63.5	63.6	63.7	63.9
48	64.0	64.1	64.2	64.4	64.5	64.7	64.8	64.9	65.1	65.2
49	65.3	65.5	65.6	65.7	65.9	66.0	66.1	66.3	66.4	66.5
50	66.7	66.8	66.6	67.0	67.2	67.3	67.4	67.6	67.7	67.8

Prepared by multiplying the BAF 40 Plot Radius Factor 1.333 * DBH.
For Example if DBH = 14.3 inches, then 14.3 * $1.333=19.1$ feet.

Table J-5: BAF 60 Plot Radii in Feet and Tenths of Feet from Plot Center to Face of Tree at DBH for 0\% Slope

Inches	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5	5.4	5.5	5.6	5.7	5.8	5.9	6.1	6.2	6.3	6.4
6	6.5	6.6	6.7	6.8	6.9	7.0	7.1	7.2	7.4	7.5
7	7.6	7.7	7.8	7.9	8.0	8.1	8.2	8.3	8.4	8.5
8	8.6	8.8	8.9	9.0	9.1	9.2	9.3	9.4	9.5	9.6
9	9.7	9.8	9.9	10.1	10.2	10.3	10.4	10.5	10.6	10.7
10	10.8	10.9	11.0	11.1	11.2	11.4	11.5	11.6	11.7	11.8
11	11.9	12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.8	12.9
12	13.0	13.1	13.2	13.3	13.4	13.5	13.6	13.7	13.8	13.9
13	14.1	14.2	14.3	14.4	14.5	14.6	14.7	14.8	14.9	15.0
14	15.1	15.2	15.4	15.5	15.6	15.7	15.8	15.9	16.0	16.1
15	16.2	16.3	16.4	16.5	16.6	16.8	16.9	17.0	17.1	17.2
16	17.3	17.4	17.5	17.6	17.7	17.8	17.9	18.1	18.2	18.3
17	18.4	18.5	18.6	18.7	18.8	18.9	19.0	19.1	19.2	19.3
18	19.5	19.6	19.7	19.8	19.9	20.0	20.1	20.2	20.3	20.4
19	20.5	20.6	20.8	20.9	21.0	21.1	21.2	21.3	21.4	21.5
20	21.6	21.7	21.8	21.9	22.1	22.2	22.3	22.4	22.5	22.6
21	22.7	22.8	22.9	23.0	23.1	23.2	23.3	23.5	23.6	23.7
22	23.8	23.9	24.0	24.1	24.2	24.3	24.4	24.5	24.6	24.8
23	24.9	25.0	25.1	25.2	25.3	25.4	25.5	25.6	25.7	25.8
24	25.9	26.1	26.2	26.3	26.4	26.5	26.6	26.7	26.8	26.9
25	27.0	27.1	27.2	27.3	27.5	27.6	27.7	27.8	27.9	28.0
26	28.1	28.2	28.3	28.4	28.5	28.6	28.8	28.9	29.0	29.1
27	29.2	29.3	29.4	29.5	29.6	29.7	29.8	29.9	30.1	30.2
28	30.3	30.4	30.5	30.6	30.7	30.8	30.9	31.0	31.1	31.2
29	31.3	31.5	31.6	31.7	31.8	31.9	32.0	32.1	32.2	32.3
30	32.4	32.5	32.6	32.8	32.9	33.0	33.1	33.2	33.3	33.4
31	33.5	33.6	33.7	33.8	33.9	34.1	34.2	34.3	34.4	34.5
32	34.6	34.7	34.8	34.9	35.0	35.1	35.2	35.3	35.5	35.6
33	35.7	35.8	35.9	36.0	36.1	36.2	36.3	36.4	36.5	36.6
34	36.8	36.9	37.0	37.1	37.2	37.3	37.4	37.5	37.6	37.7
35	37.8	37.9	38.1	38.2	38.3	38.4	38.5	38.6	38.7	38.8
36	38.9	39.0	39.1	39.2	39.3	39.5	39.6	39.7	39.8	39.9
37	40.0	40.1	40.2	40.3	40.4	40.5	40.6	40.8	40.9	41.0
38	41.1	41.2	41.3	41.4	41.5	41.6	41.7	41.8	41.9	42.1
39	42.2	42.3	42.4	42.5	42.6	42.7	42.8	42.9	43.0	43.1
40	43.2	43.3	43.5	43.6	43.7	43.8	43.9	44.0	44.1	44.2
41	44.3	44.4	44.5	44.6	44.8	44.9	45.0	45.1	45.2	45.3
42	45.4	45.5	45.6	45.7	45.8	45.9	46.1	46.2	46.3	46.4
43	46.5	46.6	46.7	46.8	46.9	47.0	47.1	47.2	47.3	47.5
44	47.6	47.7	47.8	47.9	48.0	48.1	48.2	48.3	48.4	48.5
45	48.6	48.8	48.9	49.0	49.1	49.2	49.3	49.4	49.5	49.6
46	49.7	49.8	49.9	50.1	50.2	50.3	50.4	50.5	50.6	50.7
47	50.8	50.9	51.0	51.1	51.2	51.3	51.5	51.6	51.7	51.8
48	51.9	52.0	52.1	52.2	52.3	52.4	52.5	52.6	52.8	52.9
49	53.0	53.1	53.2	53.3	53.4	53.5	53.6	53.7	53.8	53.9
50	54.1	54.2	54.3	54.4	54.5	54.6	54.7	54.8	54.9	55.0

Prepared by multiplying the BAF 60 Plot Radius Factor 1.081 * DBH.
For Example, if DBH = 14.3 inches, then 14.3 * $1.081=15.5$ feet.

Table J-6: Limiting Distance to Face of Tree and Slope Correction Factors for Various Basal Area Factors
This table provides an expanded list of slope correction factors to the face of the tree for use with various basal area factors. To use the table, measure the slope and the distance from plot-center to the face of the tree at DBH. To obtain the corrected limiting distance to a tree multiply the trees DBH by the "combined factor" shown under the appropriate BAF heading.

\% of Slope	Slope Correction Factor	Combined Factor					
		5 BAF	10 BAF	15 BAF	20 BAF	30 BAF	40 BAF
1	1.00000	3.847	2.708	2.203	1.902	1.546	1.333
2	1.00020	3.848	2.709	2.203	1.902	1.546	1.333
3	1.00045	3.849	2.709	2.204	1.903	1.547	1.334
4	1.00080	3.850	2.710	2.205	1.904	1.547	1.334
5	1.00125	3.852	2.711	2.206	1.904	1.548	1.335
6	1.00180	3.854	2.713	2.207	1.905	1.549	1.335
7	1.00245	3.856	2.715	2.208	1.907	1.550	1.336
8	1.00319	3.859	2.717	2.210	1.908	1.551	1.337
9	1.00404	3.863	2.719	2.212	1.910	1.552	1.338
10	1.00499	3.866	2.722	2.214	1.911	1.554	1.340
11	1.00603	3.870	2.724	2.216	1.912	1.555	1.341
12	1.00717	3.875	2.727	2.219	1.916	1.557	1.343
13	1.00841	3.879	2.731	2.222	1.918	1.559	1.344
14	1.00975	3.884	2.734	2.224	1.921	1.567	1.346
15	1.01119	3.890	2.738	2.228	1.923	1.563	1.348
16	1.01272	3.896	2.742	2.231	1.926	1.566	1.350
17	1.01435	3.902	2.747	2.235	1.921	1.568	1.352
18	1.01607	3.909	2.752	2.238	1.933	1.571	1.354
19	1.01789	3.916	2.756	2.245	1.936	1.574	1.357
20	1.01980	3.923	2.762	2.245	1.940	1.577	1.359
21	1.02181	3.931	2.767	2.251	1.943	1.580	1.362
22	1.02391	3.939	2.773	2.256	1.947	1.583	1.365
23	1.02611	3.947	2.779	2.261	1.952	1.586	1.368
24	1.02840	3.956	2.785	2.266	1.956	1.590	1.371
25	1.03078	3.965	2.791	2.271	1.967	1.594	1.374
26	1.03325	3.975	2.798	2.276	1.965	1.597	1.377
27	1.03581	3.985	2.805	2.282	1.970	1.601	1.381
28	1.03846	3.995	2.812	2.288	1.975	1.605	1.384
29	1.04120	4.005	2.820	2.294	1.980	1.610	1.388
30	1.04403	4.016	2.827	2.300	1.986	1.614	1.392
31	1.04695	4.028	2.835	2.306	1.991	1.619	1.396
32	1.04995	4.039	2.843	2.313	1.997	1.623	1.400
33	1.05304	4.051	2.852	2.320	2.003	1.628	1.404
34	1.05622	4.063	2.960	2.327	2.009	1.633	1.408
35	1.05948	4.076	2.869	2.334	2.015	1.638	1.412
36	1.06283	4.089	2.878	2.341	2.022	1.643	1.417
37	1.06626	4.102	2.887	2.349	2.028	1.648	4.421
38	1.06977	4.115	2.897	2.357	2.035	1.654	1.426
39	1.07336	4.129	2.907	2.365	2.042	1.659	1.431
40	1.07703	4.143	2.917	2.373	2.049	1.665	1.436
41	1.08079	4.158	2.927	2.381	2.056	1.671	1.441
42	1.08462	4.173	2.937	2.389	2.063	1.677	1.446
43	1.08853	4.188	2.948	2.398	2.070	1.683	1.451

Table J-6: Limiting Distance to Face of Tree and Slope Correction Factors for Various Basal Area Factors (cont.)

\% of Slope	Slope Correction Factor	Combined Factor					
		5 BAF	10 BAF	15 BAF	20 BAF	30 BAF	40 BAF
44	1.09252	4.203	2.959	2.407	2.078	1.689	1.456
45	1.09659	4.219	2.970	2.416	2.086	1.695	1.462
46	1.10073	4.235	2.981	2.425	2.094	1.702	1.467
47	1.10494	4.251	2.992	2.434	2.102	1.708	1.473
48	1.10923	4.267	3.004	2.444	2.110	1.715	1.479
49	1.11360	4.284	3.016	2.453	2.118	1.723	1.484
50	1.11803	4.301	3.028	2.463	2.126	1.728	1.490
51	1.12254	4.318	3.040	2.473	2.135	1.735	1.496
52	1.12712	4.336	3.052	2.483	2.144	1.743	1.502
53	1.13177	4.354	3.065	2.493	2.153	1.750	1.509
54	1.13649	4.372	3.078	2.504	2.162	1.757	1.515
55	1.14127	4.390	3.091	2.514	2.171	1.764	1.521
56	1.14612	4.409	3.104	2.525	2.180	1.772	1.528
57	1.15104	4.428	3.117	2.536	2.189	1.780	1.534
58	1.15603	4.447	3.131	2.547	2.199	1.788	1.541
59	1.16108	4.467	3.144	2.558	2.208	1.795	1.548
60	1.16619	4.486	3.158	2.569	2.218	1.803	1.555
61	1.17137	4.506	3.172	2.581	2.228	1.811	1.561
62	1.17661	4.526	3.186	2.592	2.238	1.819	1.568
63	1.18191	4.547	3.201	2.604	2.248	1.827	1.575
64	1.18727	4.567	3.215	2.616	2.258	1.836	1.583
65	1.19269	4.588	3.230	2.627	2.268	1.844	1.590
66	1.19817	4.609	3.245	2.640	2.279	1.852	1.597
67	1.20370	4.631	3.260	2.652	2.289	1.861	1.605
68	1.20930	4.652	3.275	2.664	2.300	1.870	1.612
69	1.21949	4.691	3.302	2.687	2.319	1.885	1.626
70	1.22066	4.696	3.306	2.689	2.322	1.887	1.627
71	1.22642	4.718	3.321	2.702	2.333	1.896	1.635
72	1.23223	4.740	3.337	2.715	2.344	1.905	1.643
73	1.23810	4.763	3.353	2.728	2.355	1.914	1.650
74	1.24403	4.786	3.369	2.741	2.366	1.923	1.658
75	1.25000	4.809	3.385	2.754	2.378	1.933	1.666
76	1.25603	4.832	3.401	2.767	2.389	1.942	1.674
77	1.26210	4.855	3.418	2.780	2.401	1.951	1.682
78	1.26823	4.879	3.434	2.794	2.412	1.961	1.691
79	1.27440	4.903	3.451	2.808	2.424	1.970	1.699
80	1.28062	4.927	3.468	2.821	2.436	1.980	1.707
81	1.28690	4.951	3.485	2.835	2.448	1.990	1.715
82	1.29321	4.975	3.502	2.849	2.460	1.999	1.724
83	1.29958	4.999	3.519	2.863	2.472	2.009	1.732
84	1.30599	5.024	3.537	2.877	2.484	2.019	1.741
85	1.31244	5.049	3.554	2.891	2.496	2.029	1.749
86	1.31894	5.074	3.572	2.906	2.509	2.039	1.758
87	1.32548	5.099	3.589	2.920	2.521	2.049	1.767
88	1.33207	5.124	3.607	2.935	2.534	2.059	1.776
89	1.33870	5.150	3.625	2.949	2.546	2.070	1.784
90	1.34536	5.176	3.643	2.964	2.559	2.080	1.793
91	1.35207	5.201	3.661	2.979	2.572	2.090	1.802

Table J-6: Limiting Distance to Face of Tree and Slope Correction Factors for Various Basal Area Factors (cont.)

\% of	Slope Correction	Combined Factor					
Slope	Factor	5 BAF	10 BAF	15 BAF	20 BAF	30 BAF	40 BAF
92	1.35882	5.227	3.680	2.993	2.584	2.101	1.811
93	1.36561	5.254	3.698	3.008	2.597	2.111	1.820
94	1.37244	5.280	3.717	3.023	2.610	2.122	1.829
95	1.37931	5.306	3.735	3.039	2.623	2.132	1.839
96	1.38622	5.333	3.754	3.054	2.637	2.143	1.848
97	1.39316	5.359	3.773	3.069	2.650	2.154	1.857
98	1.40014	5.386	3.792	3.085	2.663	2.165	1.866
99	1.40716	5.413	3.811	3.100	2.676	2.175	1.876
100	1.41421	5.440	3.830	3.116	2.690	2.186	1.885
102	1.42843	5.495	3.868	3.147	2.717	2.208	1.904
103	1.43558	5.523	3.888	3.163	5.730	2.219	1.914
104	1.44278	5.550	3.907	3.178	2.744	2.231	1.923
105	1.45000	5.578	3.927	3.194	2.758	2.242	1.933
106	1.45726	5.606	3.946	3.210	2.772	2.253	1.943
107	1.46455	5.634	3.966	3.226	2.786	2.264	1.952
108	1.47187	5.662	3.986	3.243	2.799	2.276	1.962
109	1.47922	5.691	4.006	3.259	2.813	2.287	1.972
110	1.48661	5.719	4.026	3.275	2.828	2.298	1.982
111	1.49402	5.747	4.046	3.291	2.842	2.310	1.992
112	1.50147	5.776	4.066	3.308	2.856	2.321	2.001
113	1.50894	5.805	4.086	3.324	2.870	2.333	2.011
114	1.51644	5.834	4.107	3.341	2.884	2.344	2.021
115	1.52498	5.863	4.127	3.357	2.899	2.356	2.031
116	1.53154	5.892	4.147	3.374	2.913	2.368	2.042
117	1.53912	5.921	4.168	3.391	2.927	2.379	2.052
118	1.54674	5.950	4.189	3.407	2.942	2.391	2.062
119	1.55438	5.980	4.209	3.424	2.956	2.403	2.072
120	1.56205	6.000	4.230	3.441	2.971	2.415	2.082
121	1.56975	6.039	4.251	3.458	2.985	2.427	2.092
122	1.57747	6.069	4.272	3.475	3.000	2.439	2.103
123	1.58521	6.098	4.293	3.492	3.015	2.451	2.113
124	1.59298	6.128	4.314	3.509	3.030	2.463	2.123
125	1.60078	6.158	4.335	3.527	3.045	2.475	2.134
126	1.60860	6.188	4.356	3.544	3.060	2.487	2.144
127	1.61645	6.218	4.377	3.561	3.074	2.499	2.155
128	1.62432	6.249	4.399	3.578	3.089	2.511	2.165
129	1.63221	6.279	4.420	3.595	3.104	2.523	2.176
130	1.64012	6.310	4.441	3.613	3.120	2.536	2.186
131	1.64806	6.340	4.463	3.631	3.135	2.546	2.197
132	1.65602	4.370	4.485	3.648	3.150	2.560	2.207
133	1.66400	6.401	4.506	3.666	3.165	2.573	2.218
134	1.67200	6.432	4.528	3.683	3.180	2.585	2.229
135	1.68003	6.463	4.550	3.701	3.195	2.597	2.239
136	1.68808	6.494	4.571	3.719	3.211	2.261	2.250
137	1.69614	6.525	4.593	3.737	3.226	2.622	2.261
138	1.70423	6.556	4.615	3.754	3.241	2.635	2.272
139	1.71234	6.587	4.637	3.772	3.257	2.647	2.283
140	1.72047	6.619	4.659	3.790	3.272	2.660	2.293

Table J-6: Limiting Distance to Face of Tree and Slope Correction Factors for Various Basal Area Factors (cont.)

\% of Slope	Slope Correction Factor	Combined Factor					
		5 BAF	10 BAF	15 BAF	20 BAF	30 BAF	40 BAF
141	1.72861	6.650	4.681	3.808	3.288	2.672	2.304
142	1.73678	6.681	4.703	3.826	3.303	2.685	2.315
143	1.74497	6.713	4.725	3.844	3.319	2.698	2.326
144	1.75317	6.744	4.748	3.862	3.335	2.710	2.337
145	1.76139	6.776	4.770	3.880	3.350	2.723	2.348
146	1.76963	6.808	4.792	3.898	3.366	2.736	2.359
147	1.77789	6.840	4.815	3.917	3.382	2.749	2.370
148	1.78617	6.871	4.837	3.935	3.397	2.761	2.381
149	1.79446	6.903	4.859	3.953	3.413	2.774	2.392

This page intentionally left blank.

APPENDIX K: DAMAGE CATEGORIES, AGENTS, SEVERITY RATINGS, AND TREE PARTS

Damage Categories

Code	Description
10	General Insects
11	Bark Beetles
12	Defoliators
13	Chewing Insects
14	Sucking Insects
15	Boring Insects
16	Seed/Cone/Flower/Fruit Insects
17	Gallmaker Insects
18	Insect Predators
19	General Diseases
20	Biotic Damage
21	Root/Butt diseases
22	Stem Decays/Cankers
23	Parasitic/Epiphytic Plants
24	Decline Complexes/Dieback/Wilts
25	Foliage Diseases
26	Stem Rusts
27	Broom Rusts
30	Fire
40	Animal damage, source unknown
41	Wild animals
42	Domestic Animals
50	Abiotic Damage
60	Competition
70	Human Activities
71	Harvest
80	Multi-Damage (Insect-Disease)
90	Unknown
99	Physical Effects

Damage Agents

Category	Agent	Common Name	Scientific Name
10	000	General Insects	
SEVERITY RATING			
$\begin{aligned} & 1=\text { minor } \\ & 2=\text { severe } \end{aligned}$			
	001	Thrips	
	002	Tip moth	
	003	Wasp	
	007	Clerid beetle	Cleridae
	008	Weevil	Curculionidae
	011	Ant	Formicidae
	017	Bagworm moth	Psychidae
11	000	Bark Beetles	
SEVERITY RATING			
1 = Unsuccessful bole attack: pitchout and beetle brood absent 2 = Strip attacks: galleries and brood present 3 = Successful bole attack: galleries and brood present 4 = Topkill 5 = Successful attack last year 6 = Older dead			
	003	Southern pine beetle	Dendroctonus frontalis
	011	Black turpentine beetle	Dendroctonus terebrans
	012	Red turpentine beetle	Dendroctonus valens
	018	Native elm bark beetle	Hylurgopinus rufipes
	020	Small southern pine engraver	Ips avulsus
	021	Sixspined ips	Ips calligraphus
	023	Southern pine engraver beetle	Ips grandicollis
	030	Ips engraver beetles	Ips spp.
	035	Cedar bark beetles	Phloeosinus spp.
	037	Tip beetles	Pityogenes spp.
	039	Twig beetles	Pityophthorus spp.
	045	Small European elm bark beetle	Scolytus multistriatus
	047	Hickory bark beetle	Scolytus quadrispinosus
	053	Four-eyed bark beetle	Polygraphus spp.
	055	Spruce ips	Ips pilifrons
	056	Mexican pine beetle	Dendroctonus mexicanus

Damage Agents (cont.)

Category	Agent	Common Name	Scientific Name
12	000	Defoliators	
SEVERITY RATING			
1 = Light defoliation (1-25\%), no topkill			
2 = Light defoliation (1-25\%), topkill $\leq 10 \%$			
$3=$ Light defoliation (1-25\%), topkill $>10 \%$			
4 = Moderate defoliation (26-75\%), no topkill			
$5=$ Moderate defoliation (26-75\%), topkill $\leq 10 \%$			
$6=$ Moderate defoliation (26-75\%), topkill $>10 \%$			
7 = Heavy defoliation (76-100\%), no topkill			
8 = Heavy defoliation (76-100\%), topkill $\leq 10 \%$			
9 = Heavy defoliation (76-100\%), topkill $>10 \%$			
	002	Leaftier	
	003	Looper	
	004	Needleminer	
	005	Sawfly	
	006	Skeletonizer	
	007	Larger elm leaf beetle	Monocesta coryli
	008	Spanworm	
	009	Webworm	
	013	Whitefly	Aleyrodoidae
	014	Fall cankerworm	Alsophila pometaria
	018	Oak worms	Anisota spp.
	019	Orange-striped oakworm	Anisota senatoria
	021	Fruit tree leafroller	Archips argyrospila
	028	Texas leafcutting ant	Atta texana
	029	Oak skeletonizer	Bucculatrix ainsliella
	031	Scarlet oak sawfly	Caliroa quercuscoccineae
	034	Maple petiole borer	Caulocampus acericaulis
	044	Cottonwood leaf beetle	Chrysomela scripta
	045	Leafhopper	Cicadellidae
	053	Sycamore lace bug	Corythucha ciliata
	054	Lace bugs	Corythucha spp.
	055	Oak leaftier	Croesia semipurpurana
	057	Walnut caterpillar	Datana integerrima
	058	Yellownecked caterpillar	Datana ministra
	059	Walkingstick	Diapheromera femorata
	061	Introduced pine sawfly	Diprion similis
	062	Greenstriped mapleworm	Dryocampa rubicunda
	064	Elm spanworm	Ennomos subsignaris
	065	Maple trumpet skeletonizer	Epinotia aceriella
	067	Linden looper	Erannis tiliaria
	072	Geometrid moth	Geometridae
	075	Pale tussock moth	Halisidota tessellaris
	078	Buck moth	Hemileuca maia
	079	Saddled prominent	Heterocampa guttivitta

Damage Agents (cont.)

Category	Agent	Common Name	Scientific Name
12 (cont.)	080	Variable oakleaf caterpillar	Heterocampa manteo
	081	Cherry scallop shell moth	Hydria prunivorata
	082	Fall webworm	Hyphantria cunea
	083	Hemlock looper	Lambdina fiscellaria
	085	Tent caterpillar moth	Lasiocampidae
	089	Gypsy moth	Lymantria dispar
	090	Cottonwood leafminers	Lyonetia spp.
	092	Rose chafer	Macrodactylus subspinosus
	093	Eastern tent caterpillar	Malacosoma americanum
	096	Forest tent caterpillar	Malacosoma disstria
	098	Leafcutting bees	Megachilidae
	099	Blister beetle	Meloidae
	102	Willow sawfly	Nematus spp.
	105	Blackheaded pine sawfly	Neodiprion excitans
	107	Redheaded pine sawfly	Neodiprion lecontei
	110	White pine sawfly	Neodiprion pinetum
	112	Virginia pine sawfly	Neodiprion pratti pratti
	114	Loblolly pine sawfly	Neodiprion taedae linearis
	119	Locust leafminer	Odontota dorsalis
	122	Whitemarked tussock moth	Orgyia leucostigma
	125	Spring cankerworm	Paleacrita vernata
	127	Maple leafcutter	Paraclemensia acerifoliella
	130	Half-wing geometer	Phigalia titea
	138	Japanese beetle	Popillia japonica
	141	Elm leaf beetle	Pyrrhalta luteola
	143	Giant silkworm moth	Saturniidae
	144	Redhumped caterpillar	Schizura concinna
	151	Maple webworm	Tetralopha asperatella
	152	Pine webworm	Tetralopha robustella
	154	Bagworm	Thyridopteryx ephemeraeformis
	155	Leafroller/seed moth	Tortricidae
	161	Cypress looper	Anacamptodes pergracilis
	162	Cottonwood leaf beetle	Chrysomela spp.
	163	Pine colaspis	Colaspis pini
	180	Tent caterpillar	Malacosoma spp.
	181	Abbot's sawfly	Neodiprion abbotii
	182	Slash pine sawfly	Neodiprion merkell
	183	Sand pine sawfly	Neodiprion pratti
	185	Cypress leaf beetle	Systena marginalis
	190	Hickory tussock moth	Halisidota caryae
	191	Pin oak sawfly	Caliroa lineata
	192	Palmerworm	Dichomeris ligulella
	193	Pitch pine looper	Lambdina athasaria pellucidaria
	194	Red pine sawfly	Neodiprion nanulus nanulus
	195	Pine tip moth	Argyrotaenia pinatubana

Damage Agents (cont.)

Category	Agent	Common Name	Scientific Name
$\mathbf{1 2}$ (cont.)	196	Baldcypress leafroller	Archips goyerana
	197	Winter moth	Operophtera
	198	Basswood thrips	Neohydatothrips
	199	Noctuid moth	Xylomyges simplex (walker)
	200	Pyralid moth	Palpita magniferalis
	201	Pacific silver fir budmoth	Zeiraphera sp. destitutana
$\mathbf{1 3}$	$\mathbf{0 0 0}$	Chewing Insects	
$\mathbf{S E V E R}$			

SEVERITY RATING

1 = Minor: bottlebrush or shortened leaders, 0-2 forks on stem, OR $<20 \%$ of branches affected 2 = Severe: 3 or more forks on bole, OR 20% or more branches affected, OR terminal leader dead

	001	Grasshopper	
	002	Shorthorn grasshoppers	Acrididae
	006	Cicadas	Cicadidae
	009	Whitefringed beetles	Graphognathus spp.
	010	Pales weevil	Hylobius pales
	012	Periodical cicada	Magicicada septendecim
	028	Pitch-eating weevil	Pachylobius picivorus
	029	Deodar weevil	Pissodes nemorensis
	030	Adana tip moth	Rhyacionia adana
$\mathbf{1 4}$	$\mathbf{0 0 0}$	Sucking Insects	
$\mathbf{~}$			

SEVERITY RATING

1 = Minor: bottlebrush or shortened leaders, 0-2 forks on stem, OR <20\% of branches affected 2 = Severe: 3 or more forks on bole, OR 20% or more branches affected, OR terminal leader dead

	001	Scale insect	
	003	Balsam woolly adelgid	Adelges piceae
	004	Hemlock woolly adelgid	Adelges tsugae
	006	Aphid	Aphididae
	007	Pine spittlebug	Aphrophora parallela
	011	Wax scale	Ceroplastes spp.
	012	Pine needle scale	Chionaspis pinifoliae
	015	White pine aphid	Cinara strobi
	016	Beech scale	Cryptococcus fagisuga
	018	Woolly apple aphid	Eriosoma lanigerum
	020	Elongate hemlock scale	Fiorinia externa
	022	Pine thrips	Gnophothrips spp.
	024	Honeysuckle aphids	Hyadaphis tataricae
	026	Lecanium scale	Lecanium spp.
	027	Common falsepit scale	Lecanodiaspis prosopidis
	028	Oystershell scale	Lepidosaphes ulmi
	035	Treehoopers	Membracidae
	037	Balsam twig aphid	Mindarus abietinus
	040	Spruce spider mite	Oligonychus ununquis
	041	Twig girdler	Oncideres cingulata

Damage Agents (cont.)

Category	Agent	Common Name	Scientific Name
$\mathbf{1 4}$ (cont.)	042	Woolly alder aphid	Paraprociphilus tessellatus
	043	Maple aphids	Periphyllus spp.
	046	Pine leaf adelgid	Pineus pinifoliae
	047	White pine adelgid	Pineus spp.
	048	Pine bark adelgid	Pineus strobi
	050	Mealybug	Pseudococcidae
	051	Cottony maple scale	Pulvinaria innumerabilis
	059	Mulberry whitefly	Tetraleurodes mori
	060	Tuliptree scale	Toumeyella liriodendri
	061	Pine tortoise scale	Toumeyella parvicornis
	065	Casuarina spittlebug	Clastoptera undulata
	066	Giant bark aphid	Longistigma caryae
	067	Woolly pine scale	Pseudophilippia quaintancii
	069	Elm scurfy scale	Chionaspis americana
$\mathbf{1 5}$	$\mathbf{0 0 0}$	Boring Insects	
SEVERITY RATING			

1 = Minor: bottlebrush or shortened leaders, 0-2 forks on stem, OR <20\% of branches affected 2 = Severe: 3 or more forks on bole, OR 20% or more branches affected, OR terminal leader dead

	001	Shoot borer	
	002	Termite	
	004	Bronze birch borer	Agrilus anxius
	005	Twolined chestnut borers	Agrilus bilineatus
	007	Carpenter bees	Apidae
	008	Flatheaded borer	Buprestidae
	010	Carpenter ants	Camponotus spp.
	011	Gouty pitch midge	Cecidomyia piniinopis
	016	Columbian timber beetle	Corthylus columbianus
	017	Pitted ambrosia beetle	Corthylus punctatissimus
	018	Carpenterworm moths	Cossidae
	019	Poplar and willow borer	Cryptorphynchus lapathi
	023	Oak twig pruners	Elaphidionoides spp.
	024	Twig pruner	Elaphidionoides villosus
	025	Lesser cornstalk borer	Elasmopalpus lignosellus
	026	Red oak borer	Enaphalodes rufulus
	031	Sugar maple borer	Glycobius speciosus
	032	Goes borers	Goes spp.
	033	Pine root collar weevil	Hylobius radicis
	034	Warren's collar weevil	Hylobius warreni
	035	Powderpost beetle	Lyctidae
	036	Tarnished plant bug	Lygus lineolaris
	038	White pine bark miner	Marmara fasciella
	039	Locust borer	Megacyllene robiniae
	042	Whitespotted sawyer	Monochamus scutellatus
	043	Redheaded ash borer	Neoclytus acuminutus

Damage Agents (cont.)

Category	Agent	Common Name	Scientific Name
15 (cont.)	050	White pine weevil	Pissodes strobi
	052	Ambrosia beetles	Platypus spp.
	053	Cottonwood borer	Plectrodera scalator
	055	Pine gall weevil	Podapion gallicola
	056	Ash borer	Podesesia syringae fraxini
	057	Lilac borer	Podosesia syringae
	058	Carpenterworm	Prionoxystus robiniae
	065	Nantucket pine tip moth	Rhyacionia frustrana
	068	Poplar borer	Saperda calcarata
	069	Roundheaded appletree borer	Saperda candida
	070	Saperda shoot borer	Saperda spp.
	071	Clearwing moths	Sesiidae
	072	Dogwood borer	Synanthedon scitula
	078	Black twig borer	Xylosandrus compactus
	080	Subtropical pine tip moth	Rhyacionia subtropica
	081	Asian ambrosia beetle	Xylosandrus crassiusculus
	082	Asian longhorned beetle	Anoplophora glabripennis
	087	Emerald ash borer	Agrilus planipennis
16	000	Seed/Cone/Flower/Fruit Insects	
SEVERITY RATING 1 = minor 2 = severe			
	008	White pine cone beetle	Conopthorus coniperda
	012	Pecan	Curculio spp.
	016	Southern pine cone worm	Dioryctria amatella
	018	Loblolly pine cone worm	Dioryctria merkeli
	021	Dioryctria moths	Dioryctria spp.
	023	Seed chalcid	Eurytomidae
	024	Slash pine flower thrips	Gnophothrips fuscus
	026	Longleaf pine seed worm/moth	Laspeyresia ingens
	029	Boxelder bug	Leptocoris trivittatus
	030	Leaffooted pine seed bug	Leptoglossus corculus
	038	Yellow poplar weevil	Odontopus calceatus
	049	Prairie tent caterpillar	Malacosoma lutescens
	050	Jack pine tip beetle	Conophthorus banksianae
17	000	Gallmaker Insects	
SEVERITY RATING			
$\begin{aligned} & 1=\text { minor } \\ & 2=\text { severe } \end{aligned}$			
	003	Cooley spruce gall adelgid	Adelges cooleyi
	005	Gouty oak gall	Callirhytis quercuspunctata
	006	Gall midge	Cecidomyiidae
	008	Gall mite	Eriophyidae
	010	Hackberry nipplegall maker	Pachypsylla celtidismamma
	012	Leaf stem gall adelgid	Phylloxera caryaecaulis

Damage Agents (cont.)

Category	Agent	Common Name	Scientific Name
17 (cont.)	013	Gall aphid	Phylloxeridae
	015	Psyllid	Psyllidae
	018	Gouty pitch midge	Cedidomyia piniinopsis
	019	Spider mites	Oligonychus spp.
	020	Cypress gall midges	Taxodiomyia spp.
18	000	Insect Predators	
SEVERITY RATING			
$\begin{aligned} & 1=\text { minor } \\ & 2=\text { severe } \end{aligned}$			
	001	Lacewing	
19	000	General Diseases	
SEVERITY RATING			
$\begin{aligned} & 1=\text { minor } \\ & 2=\text { severe } \end{aligned}$			
20	000	Biotic Damage	
SEVERITY RATING			
$\begin{aligned} & 1=\text { minor } \\ & 2=\text { severe } \end{aligned}$			
	001	Damping off	
21	000	Root/Butt Diseases	
SEVERITY RATING for trees			
1 = Tree within 30 feet of tree with deteriorating crown, tree with diagnostic symptoms or signs, or tree killed by root disease			
2 = Pathogen (sign) or diagnostic symptom detected - no crown deterioration			
3 = Crown deterioration detected - no diagnostic symptoms or signs			
$4=$ Both crown deterioration and diagnostic signs symptoms detected			
5 = Bleeding present on bole			
$6=$ Bleeding present on bole and adjacent mortality present			

SEVERITY RATING for Setting Level

G2 $=\quad$ Minor evidence of RDS on plot
G3 $=$ RDS present, canopy reduction less then 20%
G4 = RDS present, canopy reduction 20-30 \%
G5 = RDS present, canopy reduction 30-50\%
G6 = RDS present, canopy reduction 50-57\%, most ground area infested
G7 = RDS present, 76+\% canopy reduction
G8 = Entire area infested with RDS, one or very few susceptible overstory trees
G9 = Entire area infested with RDS, no susceptible overstory trees present

	001	Armillaria root disease	Armillaria spp.
	003	Cylindrocladium root disease	Cylindrocladium spp.
	004	Brown crumbly rot	Fomitopsis pinicola
	005	Black root rot of pine	Fusarium oxysporum
	006	Fusarium root rot	Fusarium spp.
	007	White mottled rot	Ganoderma applanatum
	008	Ganoderma rot of hardwoods	Ganoderma lucidum
	009	Ganoderma rot of conifers	Ganoderma tsugae

Damage Agents (cont.)

Category	Agent	Common Name	Scientific Name
21 (cont.)	010	Annosus root disease	Heterobasidion annosum
	011	Circinatus root rot	Inonotus circinatus
	012	Tomentosus root disease	Inonotus tomentosus
	013	Charcoal root rot	Macrophomina phaseolina
	015	Schweinitzii butt rot	Phaeolus schweinitzii
	018	Phytophthora root rot	Phytophthora cinnamomi
	019	Littleleaf disease	Phytophthora cinnamomi/Pythium
	022	Pythium root rot	Pythium spp.
	023	Procera root disease of conifers	Verticicladiella procera
	024	Crown gall	Agrobacterium tumefaciens
	027	Brown cubical rot	Laetiporus sulphureus
22	000	Stem Decays/Cankers	
$\begin{aligned} & \text { SEVERITY RATING } \\ & \hline 0=0-4 \% \text { rotten } \\ & 1=5-15 \% \text { rotten } \\ & 2=16-25 \% \text { rotten } \\ & 3=26-35 \% \text { rotten } \\ & 4=36-45 \% \text { rotten } \\ & 5=46-55 \% \text { rotten } \\ & 6=56-65 \% \text { rotten } \\ & 7=66-75 \% \text { rotten } \\ & 8=76-85 \% \text { rotten } \\ & 9=86-100 \% \text { rotten } \end{aligned}$			
	001	Heart rot	
	002	Stem rot	
	003	Sap rot	
	004	Slime flux	
	005	Virus	
	006	Black knot of cherry	Apiosporina morbosa
	007	Atropellis canker	Atropellis piniphila
	009	Botryosphaeria canker	Botryosphaeria ribis
	023	Chestnut blight	Cryphonectria parasitica
	030	Eutypella canker	Eutypella parasitica
	032	Pitch canker	Fusarium subglutinans
	036	Cedar apple rust	Gymnosporangium juniperivirginianae
	037	Hypoxylon canker of oak	Hypoxylon atropunctatum
	039	Canker rot of oak	Inonotus hispidus
	042	Beech bark disease	Nectria coccinea
	043	Nectria canker	Nectria galligena
	047	Red ring rot	Phellinus pini
	049	Stem decay of black walnut	Phellinus weirianus
	051	Phomopsis canker	Phomopsis spp.
	052	Leyland cypress canker	Seiridium cardinale
	053	Butternut canker	Sirococcus clavigignenti-jugl.

Damage Agents (cont.)

Category	Agent	Common Name	Scientific Name
22 (cont.)	054	Maple canker	Steganosporium spp.
	056	Citrus canker	Xanthomonas citri
	058	Dothichiza canker	Dothichiza populae
	062	Brown heartrot	Fomitopsis Officinalis
	063	unknown	Coniophora puteana
	064	Tinder fungus	Fomes fomentarius
	068	False tinder fungus	Phellinus igniarius
	071	Oyster mushroom	Pleurotus ostreatus
	074	Cedar brown pocket rot	Poria sericeomollis
	075	Lachnellula canker	Lachnellula flavovirens
	076	Strumella canker	Strumella coryneoidea
	077	Phomopsis blight	Phomopsis juniperovora
	078	Fusarium canker of yellow poplar	Fusarium solani
	079	Sterile conk of maple and beech	Inonotus glomeratus
	080	Canker of spruce	Aleurodiscus spp.
	081	Birch conk	Piptoporus betulinusai
	082	Canker	Discocainia treleasei
23	000	Parasitic/Epiphytic Plants	
SEVERITY RATING			
1 = Hawksworth tree DMR rating $=1$; light infection $2=$ Hawksworth tree DMR rating $=2$; light infection 3 = Hawksworth tree DMR rating = 3; medium infection 4 = Hawksworth tree DMR rating = 4; medium infection 5 = Hawksworth tree DMR rating = 5; heavy infection 6 = Hawksworth tree DMR rating $=6$; heavy infection 7 = Vine damage: less than 50% of crown involved $8=$ Vine damage: 50% or more of crown involved			
	001	Mistletoe	
	002	Parasitic plants	
	003	Vine damage	
	018	Dodder	Cuscuta spp.
24	000	Decline Complexes/Dieback/Wilts	

SEVERITY RATING

1 = Minor: minor crown symptoms
2 = Severe: severe crown symptoms

	002	Norfolk Island pine decline	
	003	Stillwell's syndrome	
	004	Ash decline/yellows	
	008	Decline	
	014	Oak decline	
	019	Pinewood nematode	Cursaphelenchus xylophilus
	021	Oak wilt	Ceratocystis fagacearum
	022	Dutch elm disease	Erwiniastis ulmi
	023	Bacterial wetwood	

Damage Agents (cont.)

Category	Agent	Common Name	Scientific Name
$\mathbf{2 4}$ (cont.)	024	Mimosa wilt	Fusarium oxysporum f. sp. perniciosum
	025	Verticillium wilt	Verticilium albo-atrum
	026	unknown	Xylella fastidiosa
	027	Wetwood	Mycoplasma
	030	Elm phloem necrosis	
$\mathbf{2 5}$	$\mathbf{0 0 0}$	Foliage Diseases	

SEVERITY RATING

1 = Minor: $<20 \%$ of foliage affected or $<20 \%$ of crown in brooms
$2=$ Severe: $>20 \%$ of foliage affected or $>20 \%$ of crown in brooms

	001	Blight	
	002	Broom rust	
	003	Juniper blights	
	004	Leaf spots	
	005	Needlecast	
	006	Powdery mildew	
	007	Tobacco mosaic virus	
	010	Sycamore anthracnose	Apiognomonia veneta
	011	Cercospora blight of juniper	Cercospora sequoiae
	015	Pine needle rust	Coleosporium spp.
	016	Anthracnose on Russian olive	Colletotrichum spp.
	020	Dogwood anthracnose	Discula spp.
	023	Fire blight	Erwinia amylovora
	024	Walnut anthracnose	Gnomonia leptostyla
	025	Anthracnose	Gnomonia spp.
	029	Hardwood anthracnose	Kabatiella apocrypta
	030	Cone damage	Lasiodiplodia spp.
	033	White pine needle cast	Lophodermella arcuata
	034	Lophodermella needle cast	Lophodermella spp.
	035	Lophodermium needle cast	Lophodermium spp.
	036	Marssonina blight	Marssonina populi
	037	Melampsora rusts	Melampsora medusae
	040	Dothistroma needle blight	Mycosphaerella pini
	045	Phyllosticta leaf spot	Phyllosticta spp.
	051	Rhizoctonia needle blight	Rhizoctonia spp.
	054	Brown spot needle blight	Scirrhia acicola
	055	Septoria leaf spot	Septoria alnifolia
	056	Septoria leaf spot and canker	Septoria musiva
	058	Diplodia blight	Sphaeropsis sapinea
	059	Leaf blister of oak	Taphrina caerulescens
	064	Broom rust	Chrysomyxa arctostaphyli
	068	Hardwood leaf rusts	Melampsora spp.
	074	Delphinella shoot blight	Delphinella abietis
	075	Tar spot	Rhytisma acerinum

Damage Agents (cont.)

Category	Agent	Common Name	Scientific Name
26	000	Stem Rusts	
SEVERITY			

SEVERITY RATING

1 = Branch infections located greater than 2 feet from tree bole
$2=$ Branch infections located between 6 inches and 2 feet from tree bole
3 = Bole infections or branch infections located within 6 inches of bole
4 = Topkill

	001	White pine blister rust	Cronartium ribicola
	004	Comandra blister rust	Cronartium comandrae
	006	Eastern gall rust	Cronartium quercuum
	008	Gall rust of shortleaf pine	Cronartium quercuumf. $s p$. echinatae
	009	Fusiform rust	Cronartium quercuumf. $s p$. fusiforme
	010	Gall rust of virginia pine	Cronartium quercuumf. $s p$. virginianae
	013	Southern cone rust	Cronartium strobilinum
$\mathbf{2 7}$	$\mathbf{0 0 0}$	Broom Rusts	

SEVERITY RATING
1 = Minor: $<20 \%$ of crown in brooms

$2=$ Severe $>20 \%$ of crown in brooms

30	000	Fire	
SEVERITY RATING			
1 = minor $2=$ severe			
	031	Wild-fire	
	032	Human caused fire	
	033	Crown fire damage	
	034	Ground fire damage	
40	000	Animal damage, source unknown	
SEVERITY RATING			
1 = minor 2 = severe			
41	000	Wild Animals	

SEVERITY RATING

1 = Minor: <20\% of crown affected, bole damage is $<50 \%$ circumference
$2=$ Severe: $>20 \%$ of crown affected, bole damage is $>50 \%$ circumference, upper $1 / 3$ of crown is killed
4 = Earthworms are present
5 = Earthworms are absent

	001	Bear	
	002	Beaver	
	003	Big game (deer)	
	004	Mice or voles	
	005	Pocket gophers	
	006	Porcupines	
	007	Rabbits or hares	
	008	Sapsucker	

Damage Agents (cont.)

Category	Agent	Common Name	Scientific Name
41 (cont.)	009	Squirrels	
	010	Woodpeckers	
	011	Moose	
	012	Elk	
	013	Deer	
	014	Feral pigs	
	015	Mountain beaver	
	016	Deer or elk	Lumbricidae
	017	Earthworm	
$\mathbf{4 2}$	$\mathbf{0 0 0}$	Domestic Animals	
SEVERITY RATING			

SEVERITY RATING

1 = Minor $<20 \%$ of crown affected, bole damage is $<50 \%$ circumference
$2=$ Severe: $>20 \%$ of crown affected, bole damage is $>50 \%$ circumference, upper $1 / 3$ of crown is killed

	001	Cattle	
	002	Goats	
	003	Horses	
	004	Sheep	
$\mathbf{5 0}$	$\mathbf{0 0 0}$	Abiotic Damage	

SEVERITY RATING

1 = Minor: <20\% of crown affected, bole damage is $<50 \%$ circumference
$2=$ Severe: $>20 \%$ of crown affected, bole damage is $>50 \%$ circumference, upper $1 / 3$ of crown is killed

	001	Air pollutants	
	002	Chemical	
	003	Drought	
	004	Flooding/high water	
	005	Frost	
	006	Hail	
	007	Heat	
	008	Lightning	
	009	Nutrient imbalances	
	010	Radiation	
	011	Snow/ice	
	013	Wind-tornado	
	014	Winter injury	
	018	Other geologic events	
	019	Mechanical (non-human caused)	
$\mathbf{6 0}$			
$\mathbf{0 0 0}$			Competition

Damage Agents (cont.)

Category	Agent	Common Name	Scientific Name
$\mathbf{7 0}$	$\mathbf{0 0 0}$	Human Activities	
SEVERITY RATING 1 = minor 2 = severe			
	001	Herbicides	
	003	Imbedded objects	
	004	Improper planting technique	
	005	Land clearing	
	006	Land use conversion	
	007	Logging damage	
	008	Mechanical	
	009	Pesticides	
	010	Roads	
	011	Soil compaction	
	012	Suppression	
	013	Vehicle damage	
$\mathbf{7 1}$	014	Road salt	
$\mathbf{0 0 0}$	Harvest		

SEVERITY RATING			
$\begin{aligned} & 1=\text { minor } \\ & 2=\text { severe } \end{aligned}$			
80	000	Multi-Damage (Insect/Disease)	
SEVERITY RATING			
$\begin{aligned} & 801=\text { minor } \\ & 802=\text { severe } \end{aligned}$			
90	000	Unknown	
SEVERITY RATING			
$0=0-9 \%$ affected			
$1=10-19 \%$ affected			
$2=20-29 \%$ affected			
$3=30-39 \%$ affected			
$4=40-49 \%$ affected			
$5=50-59 \%$ affected			
6=60-69\% affected			
$7=70-79 \%$ affected			
$8=80-89 \%$ affected			
$9=90-100 \%$ affected			
99		Physical Effects	
	001	Broken top	\% of original height that is missing.
			For example, if a tree was originally
			100 feet high, but 15 feet of the top
			is broken or missing, enter " 15 " in
	002	Dead top	\% of total tree height that is dead
	003	Limby (large limbs top to bottom)	\% of total tree height with many limbs/knots

Damage Agents (cont.)

Category	Agent	Common Name	Scientific Name
99 (cont.)	004	Forked top	\% of total tree height above fork
	005	Forked below merch top	\% of the total length of the bole affected
	006	Crook or sweep	\% of total tree height, which contains the crook or sweep
	007	Checks, bole cracks	\% of total tree height, which contains a crack or check
	008	Foliage discoloration	\% of foliage discolored
	009	Mortality (for plantation surveys only)	1 = dead tree
	010	Lack of seed source (for plantation surveys only)	If present, 100\%
	011	Poor planting stock source (for plantation surveys only)	If present, 100\%
	012	Poor growth/fading/foliage is yellowing and loss of needles is occurring	$\begin{aligned} & 1=\text { minor (reduced growth) } \\ & 2=\text { severe (affecting survival) } \end{aligned}$
	013	Total board foot volume loss	\% of total board foot volume loss
	014	Total cubic foot volume loss	\% of total cubic foot volume loss
	015	Bark removal	\% of tree circumference missing bark
	016	Foliage loss	$\begin{aligned} & 1=\text { minor } \\ & 2=\text { severe } \end{aligned}$
	017	Sunscald	$\begin{aligned} & 1=\text { minor } \\ & 2=\text { severe } \end{aligned}$
	018	Uproot	1 = uprooted tree
	019	Scorched foliage	\% of foliage scorched
	020	Scorched bark	\% of bark scorched
	021	Dieback source (for plantation surveys only)	$\begin{aligned} & 1=\text { minor } \\ & 2=\text { severe } \end{aligned}$
	022	Poor crown form	$\begin{aligned} & 1=\text { minor } \\ & 2=\text { severe } \end{aligned}$
	023	Severe forking	\% of bole with forks
	026	Open wound	\% of bole or trunk affected using the height and width of the wound. For example, if a tree is 100 feet tall and the wound covers 15 feet of the bole, enter a value of " 15 ."
	031	Broken or dead branches	\% of branches broken or dead
	033	Damaged shoots, buds, or foliage (for plantation surveys only)	$\begin{aligned} & 1=\text { minor } \\ & 2=\text { severe } \end{aligned}$
	034	Excessively deformed sapling	\% of sapling deformed
	036	Fire scar	\% of bole covered by fire scar
	037	Leaning tree	\% lean from vertical
	038	Charred bark	Not recorded unless cambium is killed from heating

Tree Parts

Code	
UN	Unspecified
TO	Top
FO	Foliar (crown)
LI	Limb
BO	Bole, other than Top or Base
BA	Base
RO	Roots
WT	Whole Tree
TT	Top Third of Crown
MT	Middle Third of Crown
BT	Bottom Third of Crown

APPENDIX L: ACCURACY STANDARDS

Settings Measurements

	Field
Project Name	No Errors
Region	No Errors
Proclaimed Forest	No Errors
District	No Errors
Location	No Errors
Stand Number	No Errors
Ownership	No Errors
State	No Errors
County	No Errors
Administrative Forest	No Errors
Date	No Errors
Photo ID	No Errors
Exam Level	No Errors
Exam Purpose	No Errors
Stratum	No Errors
Existing Vegetation Composition Type	No Errors
Potential Vegetation Reference	No Errors
Potential Vegetation	No Errors
Structure	± 10 Percent
Capable Growing Area	No Errors
Fuel Model	± 2 Contour Intervals
Elevation	± 45 degrees
Aspect	± 10 Percent
Slope	± 1 class
Slope Position	No Errors
Acres	No Errors
Radial Growth Interval	No Errors
Radial Growth Interval \#2	No Errors
Height Growth Interval	No Errors
Fuel Photo Reference	No Errors
Precision Protocol	No Errors
Examiner	No Errors
Stand Remarks	No Errors
Damage Category	No Errors
Damage Agent	No Errors
Damage Severity	No Errors
Species of Management Interest	
Sketch Map and Traverse Notes	

Sample Design Criteria

Field	Tolerance
Form Type	
Selection Method Type	No Errors
Sample Expansion Factor	No Errors
Plots Installed	No Errors
Sub population Filter	No Errors
Starting Azimuth	No Errors
Sample Design Remarks	No Errors
Selection Criteria Number	No Errors
Sub pop Variable	No Errors
Sub pop Minimum Value	No Errors
Sub pop Maximum Value	No Errors

Plot Data

Field	
Plot Number	No Errors
Plot Latitude	No Errors
Plot Longitude	No Errors
Capable Grow Area	± 10 Percent
Plot Aspect	$\pm 45^{\circ}$
Plot Slope	± 10 Percent
Slope Position	± 1 Class
Slope Horizontal Shape	± 1 Class
Slope Vertical Shape	± 1 Class
Plot Elevation	± 2 Contour Intervals
Existing Vegetation	No Errors
Potential Vegetation	Accurate to series understory union and phases
Plot History	No Errors
Plot History Date	Year required if field 12 is other than code 10 or blank
Fuel Model	No Errors
Residual Descriptive Code	No Errors
Distance to Seed wall	± 100 feet
Plot Remarks	

Tree Data

Tree Data (cont.)

Field		Tolerance
Tree Age	$\pm 10 \%$ (Based on actual tree ring count at breast height for trees ≥ 3.0 " DBH otherwise based on total age recorded.)	
Crown Ratio	± 10 \%	
Crown Class	No Errors	
Crown width	No Errors	
Wildlife Use	No Errors	
Log/Snag Decay	No Errors	
Cone Serotiny	No Errors	
Damage Category	No Errors	
Damage Category	Damage Category Description	Tolerance
11	Bark Beetles	No misses on live trees with a severity of 2 or greater.
12	Defoliators	No misses on live trees with a severity of 3 or greater.
13-17	Other Insects	No misses of shoot moths or weevils on live trees.
21	Root/Butt Diseases	No misses on live trees with a severity of 2 or greater.
22	Stem Decays/Cankers	No misses on live trees with a severity of 3 or greater.
25	Foliage Diseases	No misses on Elytroderma on live trees.
41-42	Animal Damage	No misses on live trees with terminal leader damage or with greater than $1 / 4$ of bole circumference affected.
50	Abiotic Damage	No misses on wind, snow, or ice bending, breakage, or bole cracks and frost damage to shoots on trees less than 1-inch diameter and lightning.
70	Human Damage	No misses on live trees for logging damage or fire if the damage affects greater than $1 / 4$ of the bole circumference or if an open wound is in contact with the ground.
Damage Agent		
Damage Part		
Damage Severity		
Tree Remarks		

Ground Surface Cover

Field	Tolerance
Plot Number	No Errors
Cover Type	No Errors
Cover Percent	± 10 Percent

Vegetation Composition

Field	Tolerance
Plot Number	No Errors
Live /Dead	No Errors
Layer	No Errors
Life form	No Errors
Species	No Error in species level identification for dominant, common or community type indicator plants. No plant name can be repeated within a layer.
Minimum Height	$\pm 10 \%$ of Height
Average Height	$\pm 10 \%$ of Height
Maximum Height	$\pm 10 \%$ of Height
Canopy Cover	± 10 Percent
Average Diameter	No Errors
Maturity	No Errors
Cover Remarks	
User Field	

Down Woody

Field	
Plot Number	No Errors
First Duff	$\pm 1 / 2$ inch
Second Duff	$\pm 1 / 2$ inch
Fuel Depth	No Errors
Twigs 0 -.24	$\pm 40 \%$
Twigs .25-.99	$\pm 30 \%$
Branch 1.0-2.99	$\pm 20 \%$
Volume 1	
Weight 1	
Volume 2	
Weight 2	
Volume 3	
Weight 3	
Volume 4	
Weight 4	
Piece Count	No missed pieces
Decay Class	No Errors
Diameter	± 1 inch on measurements
Piece Length	No Errors

APPENDIX M: GLOSSARY OF TERMS

Term	Definition
Aspect	A position facing or commanding a given direction; exposure. Aspect is the compass direction of the prevailing slope with respect to true north.
Azimuth	A horizontal angular measure from true north to an object of interest.
Basal Area	The cross-sectional area of the stem or stems of a plant or of all plants in a stand, generally expressed as square units per unit area. For trees, measured at 4.5 feet above ground, for forbs and grasses, measured at the root crown.
Bole Length	The straight-line distance measured parallel to the main bole of a tree, from its base to its tip.
Breast Height	A point located on the uphill side of the main stem, by measuring 4.5 feet along the uphill side of the bole from ground level or the predominant root collar. Preclude slight, non-compacted litter accumulations when establishing breast height.
CALVEG	Classification and Assessment with LANDSAT of Visible Ecological Groupings. It is a California-wide system for classifying vegetative and non-vegetative cover types. The primary cover type relates to life form and uses a 3-character alpha code.
Canopy Cover	The percent of a fixed area covered by the crown of an individual plant species or delimited by the vertical projection of its outermost perimeter; small openings in the crown are included.
Compacted Live Crown Ratio	The percent of the total height of the tree that supports a full, live crown. For trees that have uneven length crowns, occularly transfer lower branches to fill holes in the upper portions of the crown, until a full, even crown is created.
Compartment	A land area, usually between 3,000 and 8,000 acres, easily identified on the ground by physical features. A compartment is comparable in size to a sub-watershed, or landscape management unit. It is used as a convenience for maintaining stand records and planning vegetation management projects.
Crown Class	The relative position of the tree or shrub crown with respect to the competing vegetation around it. Crown class for each tree or shrub is judged in the context of its immediate environment, that its, those trees or shrubs which are competing for sunlight with the subject tree or shrub.
Crown Length	The vertical distance from the top of the leader to the base of the crown, measured to the lowest live branch-whorl with live branches in at least 3 quadrants, and continuous with the main crown.
Crown Ratio	The ratio of compacted live crown length to bole length. Lengths are measured parallel to the bole from the base of the tree to the tip.
DEM	Digital Elevation Model. USGS geographic elevation data distributed in raster form. Digital representation of the shape of the earth's surface. Typically, digital elevation data consists of arrays of values that represent topographic elevations measured at equal intervals on the Earth's surface.

Glossary of Terms (cont.)

Term	Definition
Diameter	The length of a straight-line segment passing through the center of an item and terminating at its periphery.
Diameter at Breast Height (DBH)	A measure at breast height (4.5 feet), outside bark, of the tree bole, perpendicular to the tree bole.
Diameter at Root Collar (DRC)	The straight line passing through the center of a cross section of a bole measured at the root collar of a shrub or tree.
Down Log	Stem material (conifer or hardwood) that is lying on the ground. If a stem material is leaning more than 45 degrees from vertical, is not selfsupporting, and/or in contact with the ground, it is considered a down log.
Down Woody Material	Woody pieces of trees and shrubs that have been uprooted (no longer supporting growth) or severed from their root system, not selfsupporting, and are lying on the ground.
Duff Layer	Duff is the fermentation and humus layer of the forest floor. It does not include the freshly cast material in the litter layer. The top of the duff is where needles, leaves, and other cast-off vegetative material have noticeably begun to decompose. Individual particles usually will be bound by fungi mycelium. When moss is present, the top of the duff is just below the green portion of the moss. The bottom of the duff is the start of the soil ("A" horizon).
Elevation	Vertical distance from a datum, usually mean sea level, to a point or object on the earth's surface. Not to be confused with altitude, which refers to points above the earth's surface.
Fuel Bed	The fuel bed is the accumulation of dead, woody residue on the forest floor. It begins at the top of the duff layer and above. It includes litter, dead limbwood and bolewood from tree species, as well as dead material from shrub, herbaceous, and grass species.
Fuel Model	Mathematical descriptions of fuel properties (e.g., fuel load and fuel depth) that are used as inputs to calculations of fire danger indices and fire behavior potential.
GPS	Global Positioning System. A network of radio-emitting satellites deployed by the U.S. Department of Defense. Ground-based GPS receivers can automatically derive accurate surface coordinates for all kinds of GIS, mapping, and surveying data collection.
Ground Level	The forest floor, made up by soil and duff layer. It does not include unincorporated woody debris that may rise above the ground line. In reference to a point of measure, it is the highest point of the ground touching the base of the object being referenced.
Group Talley	A count of one or more items of the same type or species and recorded as a single line entry.
Growth	A measure of the increase in growth layers for a specified time frame.
Height Growth	The increase in height over a set period of time.
Intersect Diameter	Measurement of diameter at a point where the sampling plane intersects the geometric center of the object being tallied. No adjustment is made for stem irregularities at the point of intersection.

Glossary of Terms (cont.)

Term	Definition
Lean (Tree)	The deflection from vertical, > 15 degrees of a straight line passing through the geometric center of the base and top of the main stem.
Length	The measurement of the extent of something along its greatest dimension.
Life Form	Species and individuals that are grouped into classes on the basis of their similarities in structure and function. A growth form that displays an obvious relationship to important environmental factors.
Limiting Distance	A comparative measurement between the subplot radius and the distance from the subplot center to the center of the object. The comparison is used to determine whether the object is IN or OUT of the fixed area subplot. IN - The object is "in" if the measured distance is equal to or less than the subplot radius. 0UT - The object is "out" if the measured distance is greater than the subplot radius.
Live Crown Length	The straight-line distance measured parallel to the main bole of a tree, from the top of the live crown to the base of the live crown.
Ownership	The identification of the legal owner/administrator on both the surface and subsurface estates.
Plant Species	The major subdivision of a genus or subgenus of a plant being described or measured.
Plot Configuration	The size and shape of the sampling unit (plot) and the spatial arrangement of subplots within that unit.
Plot	A sub-sample of a plot or stand exam. This is the unit on which data are recorded to individual trees, snags, logs, understory vegetation, and fuels. Data can be collected on either a fixed area or variable radius area.
Sroclaimed Forest	Units of the National Forest System as originally proclaimed or designated by Congress.
Quadratic Mean	The diameter of the tree of average basal area. Diameter
Radial Growth	
Increment	The increase in tree radius over a period of time at breast height, or occasionally at the base.
Random Sample	Any method of sample selection based on the theory of probability (degree of certainty). At any stage of the operation of selection, the probability of any set of units being selected must be known. It is the only method that can provide a measure of precision of the estimate.
Slope	A code used to reflect the status of an individually tallied item with regards to previous surveys.
Apecies	A deviation from the horizontal. classification of an organism.
A spatially continuous group of trees and associated vegetation having similar structures and growing under similar soil and climatic conditions.	

Glossary of Terms (cont.)

Term	Definition
Stand Exam Grid	Basic data collection method for stand exams. It consists of a set of plots, separated by equal distances on a grid pattern. The lines of the grid (transects) are oriented in cardinal directions. There is a predetermined distance between plots. The number of transects and grid plots will vary depending upon the size and shape of the stand.
Stratified Sample	A method of sampling forest resources where stands or polygons of similar properties are lumped into strata. This improves the efficiency of an inventory by reducing the variability within a given population. The less variability there is within a strata, the fewer samples will need to be taken to achieve a statistically valid result.
Stratum	A group of stands within a condition class; similar characteristics such as forest type, tree size class, and canopy density.
Stump	The woody base of a tree remaining in contact with the soil after the trunk or main stem has been severed at a point less than 4.5 feet above ground height (measured on the uphill side).
Tree	A woody perennial plant, typically large, with a single well-defined stem carrying a more or less definite crown.
Tree Age	Total age of the above ground stem of a tree (not age of the root stock or the total age from seed). Total age is usually the annual ring count to the pith of the tree at breast height plus an estimate of the number of years it took the tree to reach breast height.

Region 8 Land Class Codes

Land Class	Name	Suitable	Description
$\mathbf{0 0 0}$	Un-Inventoried	No	Land in Forest Service Ownership that has not been classified. Usually for new acquisitions or other lands for which no information is available
$\mathbf{1 0 0}$	Water Area	No	Areas that are covered by water and not included in the more specific codes below
110	Natural Lake	No	A naturally occurring area of water of more than one are in size
120	Reservoir	No	A constructed area of water of more than one acre in size
125	Pond	No	A natural or construncted area of water of less than one acre in size
130	Estuary	No	An area where fresh water from a river mixes with salt water from the sea
140	River	A flowing body of water in a well defined bed or channel. Wider than a stream	
150	Stream	A flowing body of water in a well defined bed or channel. Narrower than a river. Most of the streams that we are used to seeing are components of stands and do not get mapped out separately with stand numbers of their own and thus would not be covered by this code. Use this code when a stream is large enough or important enough to be mapped separately as a stand by itself.	

Region 8 Land Class Codes (cont.)

Land Class	Name	Suitable	Description
160	Wetlands	No	Areas that are periodically or permanently inundated by surface or ground water and support vegetation adapted for life in saturated soil. These areas are also referred to as swamps, marshes, bogs, and bays.
200	Non-Forest Land	No	Lands developed for non-forest use include areas for crops, improved pasture, residential, or administrative areas, improved roads of any width, and adjoining road clearing and power line/pipeline clearing of any width. (Forest land is defined as land at least 10 percent occupied by forest trees of any size or formerly having had such tree cover and not currently developed for non-forest use). 219.3. Use this code for non-forest land not covered by more specific codes below.
210	Public Park, Cemetery	No	Land containing an officially designated public park or a cemetary
220	Utility R-O-W	No	Land containing easements or Right-of-way for utility lines
230	Road and Railroad R-O-W	No	Land occupied by road and/or railroad right-or-way
240	Special Use	No	Lands that rea under a special user permit
250	Wildlife Opening	No	Non-forest land used for wildlife purposes
251	Balds	No	High elevation heaths or grassy areas
260	Nursery	No	Nursery
265	Seed Orchard	No	Seed Orchard
270	Non Forest service	No	Lands within Forest Service boundary that do not belong to Forest Service. May be forested or non-forested.
280	Mine	No	Strip Mines, well sites, quarries, etc.
290	Military Use	No	Lands used by or formerly used by military. May contain unexploded ordinance at or near ground surface. May contain shrapnel in trees.
300	Reserved - Withdrawn	No	Withdrawn from timber production by an acto of Cngress, the Secretary of Agriculture, or the Chief of the Forest Service
310	Scenic Area	No	Officially designated scenic area
320	Historic Area	No	Officially designated historic area
330	Natural Area	No	Officially designated natural area. Includes research natural areas, RNAs
340	Geological/Archeological Area	No	Officially designated geological/archeological area
350	Wilderness Area	No	Officially designated wilderness area
351	RCW in Wilderness - Active	No	Officially designated wilderness area with RCW currently active
352	RCW in Wilderness - in active	No	Officially designated wilderness area with RCW previously active
360	Wild and Scenic River	No	Officially designated wild and scenic river. Includes river corridor
370	Roadless Area	No	Officially designated roadless area
400	Deferred - Withdrawn	No	Defferred - withdrawn from timber production pending final action at which time it may be re-classified into the 300 series or some other land class
410	Scenic Area	No	Scenic area. Pending

Region 8 Land Class Codes (cont.)

Land Class	Name	Suitable	Description
420	Historic Area	No	Historic area. Pending
430	Natural Area	No	Natural area. Pending
440	Geological/Archeological Area	No	Geological/Archeological area. Pending
450	Wilderness Area	No	Wilderness area. Pending
460	Wild and Scenic River	No	Wild and Scenic River. Includes river corridor. Pending
470	Roadless Area	No	Roadless area. Pending
500	Standard Forest Land	Yes	Standard - timber production emphasis
510	Key Area for Wildlife, Fish, Rare Plants	Yes	A stand lying within an area having a timber production emphasis where wildlife, fish, and rare plants resources area a major management consideration
511	Contains key area for wildlife, Fish, rare Plants	Yes	Area of standard forest land which contains an inclusion where wildlife, fish, and rare plants resources area major management consideration.
512	Contains Threatened \& endangered Species-Plants	Yes	Area of standard forest land which contains an inclusion where threatened \& endangered plants resources are a major management consideration.
513	Contains Threatened \& endangered SpeciesAnimals	Yes	Area of standard forest land which contains an inclusion where threatened \& endangered animals resources are a major management consideration.
520	Open woodland	Yes	Stocking levels are maintained below regional guidelines for fully stocked stands. Stands are open, park-like with emphasis on maintaining a strong herbaceous component. Percent crown closure from all woody vegetation is between 10% and 60%
530	Low Site Productivity	Yes	
540	Steep Slopes	Yes	Steep slopes
545	Sensitive Soils	Yes	Sensitive soils
550	Needs R-O-W	Yes	Lands needing road access for implementation of management prescriptions
560	Needs Road	Yes	Lands needing road construction for implementation of management prescriptions
580	Military Use	No	Lands used or formerly used by military. May contain unexploded ordinance at or near ground surface. May contain shrapnel in trees.
590	RCW Forage for Active Cluster	Yes	Stand designated as foraging habitat for active RCW cluster
591	RCW Foraging Stand for Recruitment Cluster	Yes	Stand designated as foraging habitat for RCW recruitment cluster. Note: recruitment clusters are provisioned with artificial cavities.
592	RCW Foraging Stand for Recruitment Stand	Yes	Stand designated as foraging habitat for RCW recruitment stand. Note: recruitment stands are not provisioned with artificial cavities.
593	RCW Foraging Stand for Inactive Cluster	Yes	Stand designated as foraging habitat for inactive RCW cluster
594	RCW Potential Recruitment	Yes	Stand that may be used for recruitment in the future
600	Special	Yes	Special - Timber production secondary to other resources
620	Sensitive Plants	Yes	Sensitive plants

Region 8 Land Class Codes (cont.)

Land Class	Name	Suitable	Description
630	Recreation Emphasis	Yes	Recreation emphasis
640	Visual Emphasis	Yes	Visual emphasis
650	Wildlife Emphasis	Yes	Wildlife emphasis
660	Water Emphasis	Yes	Water emphasis
665	Cultural Resource Emphasis	Yes	Cultural resource emphasis
667	Wildlife Preserve	Yes	Wildlife preserve
670	Special Study Area	Yes	Special study area
671	Growth and Yield Research Plot	Yes	Growth and yield research plot
680	Progeny Test Plantation	Yes	Progeny test plantation
690	Military Use	No	Lands used or formerly used by military. May contain unexploded ordinance at or near ground surface. May contain shrapnel in trees.
700	Lack of Technology	No	Technology is not available t ensure timber production from the land withut irreversible resource damage to soils, productivity, or watershed conditions.
710	Restocking Not Assured	No	There is not reasonable assurance that the land can be adequately restocked as provided in 219.27©(3). Adequate restocking means that the cut area will contain the minimum number, size, distribution, and species composition of regeneration as specified in the regional silvicultural guides for each forest type 5 years after harvest.
720	Irreversible Damage	No	Timber production would cause irreversible resource damage to soils, productivity, or watershed conditions.
740	Response Info Lacking	No	It is not known if timber production can be ensured without irreversible resource damage to soils, productivity, or watershed conditions.
800	Not Appropriate	No	Land coded in the 800's series are designated as Not Appropriate for timber production by regional Forester's decision in approving forest plans
810	Experimental Forest, Range or Watershed	No	Lands used for research and special study
820	MIN Level	No	Lands that are unsuitable due to access or existing landscape features. Lands that are difficult and/or exceedingly costly to manage. Minimally productive. If a treatment is applied then a number of mitigating measures must be implemented to protect the resources. Use this code if, when classifying a stand, you think "I would not tough this area with a 10 foot pole," nothing but big trouble once disturbed, "Why would I want to?"
821	MIN Level - Steep Slopes	No	MIN level - steep slopes
822	MIN Level - Inadequate Markets	No	MIN level - inadequate markets
823	MIN Level - Inaccessible ROW needed	No	MIN level - In accessible - ROW needed
824	MIN Level - Sensitive Soils	No	MIN level - sensitive soils
825	MIN Level - Low Level Management	No	MIN level - low level management

Region 8 Land Class Codes (cont.)

Land Class	Name	Suitable	Description
826	MIN Level - Physical Barriers	No	MIN level - physical barriers
827	MIN Level - Road Costs Exceed Values	No	MIN level - road costs exceeds values
828	MIN Level - Riparian Area	No	MIN level - riparian area
830	Wildlife Emphasis	No	Wildlife emphasis
832	Threatened \& Endangered Species - Plants	No	Unsuitable forest land with threatened \& endangered plant resources
833	Threatened \& Endangered Species - Animals	No	Unsuitable forest land with threatened \& endangered animal resources
840	RCW Cluster Active	No	Area, at least 10acres in size, containing the aggregate of cavity trees + a 200^{\prime} buffer in an active cluster
841	RCW Cluster Inactive	No	Area, at least 10acres in size, containing the aggregate of cavity trees + a 200 ' buffer in an inactive cluster
842	RCW Recruitment Stand	No	Area, at least 10 acres in size, designated for RCW recruitment that has not been provisioned with artificial cavities
843	RCW Replacement Stand	No	Area, at least 10 acres in size, designated to replace existing active RCW cluster. Sites should be adjacent to or within $1 / 4$ mile of active cluster it is replacing. Cavities are not present.
844	RCW Recruitment Cluster	No	Area, at least 10 acres in size, designated for RCW recruitment that has been provisioned with artificial cavities
846	Other Rare/Endangered Species	No	Area, ar least 10 acres in size, designated for conservation of rare/endangered species other than RCW
848	Designated Critical habitat	No	Area, at least 10 acres in size, legally designated as critical habitat. For aquatic designated crtical habitat, the adjacent riparian should also be coded as critical habitat.
850	Developed Recreation Site	No	Developed recreation site
851	Un-Developed Recreation Site	No	Un-developed recreation site
852	Appalachian Trail	No	Appalachian Trail corridor
853	Other National Recreation Trail	No	Other national Recreation Trail corridor
860	Administrative Site	No	Land occupied by Forest Service structures such as District offices, work centers, etc.
861	Undeveloped Administrative Site	No	Land potentially occupied by Forest Service structures such as District offices, work centers, etc.
862	Summer Home Site	No	Site contains a residential structure owned by Forest Service but rented or leased to public for residential or recreational purposes
870	Nursery	No	Lands dedicated to production of tree seedlings
871	Seed Orchards	No	Lands dedicated to the production and collection of tree seed
880	RARE II Lands under study	No	Lands removed from the suitable timber base pending evaluation with the roadless Area Review and Evaluation legislated program
890	Military Use	No	Lands used or formerly used by military. May contain unexploded ordinance at or near ground surface. May contain shrapnel in trees.

Region 8 Land Class Codes (cont.)

Land Class	Name	Suitable	Description
891	Contaminated	No	Lands containing hazardous materials (chemical, nuclear, etc.)
$\mathbf{9 0 0}$	Unproductive	No	Forested land that is incapable of producing a minimum level of growth where the minimum level is set in the forest plan

This page intentionally left blank.

APPENDIX N: FUEL MODELS

The original 13 fuel models are from "Aids to Determining Fuel Models for Estimating Fire Behavior", Hal E. Anderson, INT-122, 1982. The remaining fuel models are from "Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel's Surface Fire Spread Model" by Joe H. Scott and Robert E. Burgan. RMRS -GTR-153. June 2005.

Fuel Model	Fuel Model Code	Fuel Model Name	Fuel Type	Model Set	Fuel 1-Hr	$\begin{aligned} & \text { Fuel } \\ & 10-\mathrm{Hr} \end{aligned}$	$\begin{aligned} & \hline \text { Fuel } \\ & \text { 100- } \\ & \mathrm{Hr} \\ & \hline \end{aligned}$	Fuel Bed Depth
1		Short grass (1 foot)	Grass and grassdominated	Original 13	0.74	0	0	1
2		Timber (grass and understory)	Grass and grassdominated	Original 13	2	1	0.500	1
3		Tall grass (2.5 feet)	Grass and grassdominated	Original 13	3.01	0	0	2.50
4		Chaparral (6 feet)	Chaparral and shrub fields	Original 13	5.01	4.010	2	6
5		Brush (2 feet)	Chaparral and shrub fields	Original 13	1	0.500	0	2
6		Dormant brush, hardwood slash	Chaparral and shrub fields	Original 13	1.50	2.500	2	2.50
7		Southern rough	Chaparral and shrub fields	Original 13	1.13	1.870	1.500	2.50
8		Closed timber litter	Timber litter	Original 13	1.50	1	2.500	0.20
9		Hardwood litter	Timber litter	Original 13	2.92	0.410	0.150	0.20
10		Timber (litter and understory)	Timber litter	Original 13	3.01	2	5.010	1
11		Light logging slash	Slash	Original 13	1.50	4.51	5.510	1
12		Medium logging slash	Slash	Original 13	4.01	14.03	16.53	2.30
13		Heavy logging slash	Slash	Original 13	7.01	23.04	28.05	3
91	NB1	Urban/Developed	Nonburnable	Scott and Burgan	0	0	0	0
92	NB2	Snow/Ice	Nonburnable	Scott and Burgan	0	0	0	0
93	NB3	Agricultural	Nonburnable	Scott and Burgan	0	0	0	0
98	NB4	Open Water	Nonburnable	Scott and Burgan	0	0	0	0
99	NB5	Bare Ground	Nonburnable	Scott and Burgan	0	0	0	0
101	GR1	Short, Sparse Dry Climate Grass (Dynamic)	Grass	Scott and Burgan	0.10	0	0	0.40
102	GR2	Low Load, Dry Climate Grass (Dynamic)	Grass	Scott and Burgan	0.10	0	0	1
103	GR3	Low Load, Very Coarse, Humid Climate Grass (Dynamic)	Grass	Scott and Burgan	0.10	0.40	0	2

Fuel Models (cont.)

Fuel Model	Fuel Model Code	Fuel Model Name	Fuel Type	Model Set	$\begin{aligned} & \text { Fuel } \\ & \text { 1-Hr } \end{aligned}$	$\begin{aligned} & \text { Fuel } \\ & 10- \\ & \mathrm{Hr} \end{aligned}$	$\begin{gathered} \text { Fuel } \\ 100- \\ \mathrm{Hr} \end{gathered}$	Fuel Bed Depth
104	GR4	Moderate Load, Dry Climate Grass (Dynamic)	Grass	Scott and Burgan	0.25	0	0	
105	GR5	Low Load, Humid Climate Grass (Dynamic)	Grass	Scott and Burgan	0.40	0	0	1.50
106	GR6	Moderate Load, Humid Climate Grass (Dynamic)	Grass	Scott and Burgan	0.10	0	0	1.50
107	GR7	High Load, Dry Climate Grass (Dynamic)	Grass	Scott and Burgan	1	0	0	3
108	GR8	High Load, Very Coarse, Humid Climate Grass (Dynamic)	Grass	Scott and Burgan	0.50	1	0	4
109	GR9	Very High Load, Humid Climate Grass (Dynamic)	Grass	Scott and Burgan	1	1	0	5
121	GS1	Low Load, Dry Climate Grass-Shrub (Dynamic)	Grass-Shrub	Scott and Burgan	0.20	0	0	0.90
122	GS2	Moderate Load, Dry Climate Grass-Shrub (Dynamic)	Grass-Shrub	Scott and Burgan	0.50	0.500	0	1.50
123	GS3	Moderate Load, Humid Climate Grass-Shrub (Dynamic)	Grass-Shrub	Scott and Burgan	0.30	0.250	0	1.80
124	GS4	High Load, Humid Climate Grass-Shrub (Dynamic)	Grass-Shrub	Scott and Burgan	1.90	0.300	0.100	2.10
141	SH1	Low Load, Dry Climate Shrub (Dynamic)	Shrub	Scott and Burgan	0.25	0.250	0	1
142	SH2	Moderate Load, Dry Climate Shrub	Shrub	Scott and Burgan	1.35	2.400	0.750	1
143	SH3	Moderate Load, Humid Climate Shrub	Shrub	Scott and Burgan	0.45	3	0	2.40
144	SH4	Low Load, Humid Climate Timber-Shrub	Shrub	Scott and Burgan	0.85	1.150	0.200	3
145	SH5	High Load, Dry Climate Shrub	Shrub	Scott and Burgan	3.60	2.100	0	6
146	SH6	Low Load, Humid Climate Shrub	Shrub	Scott and Burgan	2.90	1.450	0	2
147	SH7	Very High Load, Dry Climate Shrub	Shrub	Scott and Burgan	3.50	5.300	2.200	6
148	SH8	High Load, Humid Climate Shrub	Shrub	Scott and Burgan	2.05	3.400	0.850	3
149	SH9	Very High Load, Humid Climate Shrub (Dynamic)	Shrub	Scott and Burgan	4.50	2.450	0	4.40

Fuel Models (cont.)

Fuel Model	Fuel Model Code	Fuel Model Name	Fuel Type	Model Set	$\begin{aligned} & \text { Fuel } \\ & 1-\mathrm{Hr} \end{aligned}$	$\begin{aligned} & \text { Fuel } \\ & \text { 10- } \\ & \mathrm{Hr} \end{aligned}$	$\begin{gathered} \text { Fuel } \\ 100- \\ \mathrm{Hr} \end{gathered}$	Fuel Bed Depth
161	TU1	Low Load, Dry Climate Timber-Grass-Shrub (Dynamic)	TimberUnderstory	Scott and Burgan	0.20	0.900	1.500	0.60
162	TU2	Moderate Load, Humid Climate Timber-Shrub	TimberUnderstory	Scott and Burgan	0.95	1.800	1.250	1
163	TU3	Moderate Load, Humid Climate Timber-GrassShrub (Dynamic)	TimberUnderstory	Scott and Burgan	1.10	0.150	0.250	1.30
164	TU4	Dwarf Conifer With Understory	TimberUnderstory	Scott and Burgan	4.50	0	0	0.50
165	TU5	Very High Load, Dry Climate Timber-Shrub	TimberUnderstory	Scott and Burgan	4	4	3	1
181	TL1	Low Load Compact Conifer Litter	Timber Litter	Scott and Burgan	1	2.200	3.600	0.20
182	TL2	Low Load Broadleaf Litter	Timber Litter	Scott and Burgan	1.40	2.300	2.200	0.200
183	TL3	Moderate Load Conifer Litter	Timber Litter	Scott and Burgan	0.50	2.200	2.800	0.30
184	TL4	Small Downed Logs	Timber Litter	Scott and Burgan	0.50	1.500	4.200	0.40
185	TL5	High Load Conifer Litter	Timber Litter	Scott and Burgan	1.15	2.500	4.400	0.60
186	TL6	Moderate Load Broadleaf Litter	Timber Litter	Scott and Burgan	2.40	1.200	1.200	0.30
187	TL7	Large Downed Logs	Timber Litter	Scott and Burgan	0.30	1.400	8.100	0.40
188	TL8	Long-Needle Litter	Timber Litter	Scott and Burgan	5.80	1.400	1.100	0.30
189	TL9	Very High Load Broadleaf Litter	Timber Litter	Scott and Burgan	6.65	3.300	4.150	0.60
201	SB1	Low Load Activity Fuel	Slash-Blowdown	Scott and Burgan	1.50	3	11	1
202	SB2	Moderate Load Activity Fuel or Low Load Blowdown	Slash-Blowdown	Scott and Burgan	4.50	4.250	4	1
203	SB3	High Load Activity Fuel or Moderate Load Blowdown	Slash-Blowdown	Scott and Burgan	5.50	2.750	3	1.20
204	SB4	High Load Blowdown	Slash-Blowdown	Scott and Burgan	5.25	3.500	5.250	2.70

Detailed Description of the Fuel Models

Code	Detailed Description
1	Contains fine, very porous, and continuous herbaceous fuels that have cured or are nearly cured. Generally less than one-third of the area contains shrubs or timber. Grasslands and savanna are represented along with stubble, grass-tundra, and grass-shrub combinations. Annual and perennial grasses are included in this fuel model.
2	Herbaceous material with litter and dead-down stem wood from the open shrub or timber overstory. Open shrub lands and pine stands or scrub oak stands that cover one-third to two-thirds of the area. Stand may include clumps and may include pinyon-juniper.
3	Stands are tall, averaging about three feet, but considerable variation may occur. Approximately one-third or more of the stand is considered dead and cured. May include cultivated grains that have not been harvested, tall prairie, and marshland grasses
4	Stands of mature shrubs, 6 feet or more tall such as California mixed chaparral, the high pocosin along the east coast, the pine barrens of New Jersey, or the closed jack pine stands of the north-central states. Besides flammable foliage, stand may contain dead woody material. May contain a deep litter layer.
5	Shrubs are young with little dead material, and the foliage contains little volatile material. Usually shrubs are short and almost totally cover the area. Young, green stands with no dead wood qualify: laurel, vine maple, alder, or even chaparral, manzanita, or chamise.
6	The shrubs are older, but not as tall as model 4, nor do they contain as much fuel as model 4. This model covers a broad range of shrub conditions: intermediate stands of chamise, chaparral, oak brush, low pocosin, Alaskan spruce taiga, and shrub tundra. May include hardwood slash that has cured. Pinyonjuniper shrub lands may be represented.
7	Stands of shrubs are generally between 2 and 6 feet high. Palmetto-galliberry understory, with a pine overstory, is typical. Low pocosin may be represented. Black spruce shrub combinations in Alaska may also be represented.
8	Contains closed canopy stands of short needle conifers or hardwoods that have leafed out. The compact litter layer is mainly needles, leaves, and occasionally twigs because little undergrowth is present. Representative conifer types are white pine, lodgepole pine, spruce, fir, and larch.
9	Both long-needle conifer stands and hardwood stands, especially the oak-hickory types, are typical. Closed stands of long-needled pine like ponderosa, Jeffrey, red pines, or southern pine plantations are grouped in this model. May contain concentrations of dead-down woody material.
10	Dead-down fuels include quantities of 3-inch or larger limb wood resulting from over maturity or natural events that create a large load of dead material on the forest floor. Any forest type may be considered if heavy down material is present; examples are insect- or disease-ridden stands, wind thrown stands, overmature situations with deadfall, and aged light thinning or partial cut slash.
11	Contains slash and herbaceous material intermixed with slash. Light partial cuts or thinning operations in mixed conifer stands, hardwood stands, and southern pine harvests are considered. Clearcuts generally produce more slash than represented here. The less than 3-inch material load is less than 12 tons per acre. The greater than 3 inch is represented by not more than 10 pieces, 4 inches in diameter, along a 50 foot transect.
12	The visual impression is dominated by slash and much of it is less than 3 inches in diameter. The fuels are well distributed. Heavily thinned conifer stands; clearcuts, and medium or heavy partial cuts are represented. The material larger than 3 inches is represented by encountering 11 pieces, 6 inches in diameter along a 50 foot transect.
13	There is a continuous layer of slash. Large quantities of material larger than 3 inches are present. Clearcuts and heavy partial cuts in mature and over mature stands are depicted where the slash load is dominated by the greater than 3 inch diameter material. Fuels less than 3 inches are generally only 10 percent of the total load. May include situations where the slash still has "red" needles attached.
91	Land covered by urban and suburban development. The area must not support wildland fire spread. In some cases the area may experience structural fire losses during a wildland fire incident; however, structure ignition in those cases is either house-to-house or by firebrands, neither of which is directly modeled using fire behavior fuel models. If sufficient vegetation surrounds structures such that wildland fire spread is possible, then choose a fuel model appropriate for the wildland vegetation.

Detailed Description of the Fuel Models (cont.)

Code	Detailed Description
92	Land covered by permanent snow and ice. Areas covered by seasonal snow and ice can be mapped to two different fuels models.
93	Agricultural land maintained in a nonburnable condition; examples include irrigated annual crops, mowed or tilled orchards, and so forth. However, there are many agricultural areas that are not kept in a non burnable condition. For example, grass is often allowed to grow beneath vines or orchard trees, and wheat or similar crops are allowed to cure before harvest; in those cases use a different fuel model.
98	Land covered by open bodies of water such as lakes, rivers and oceans.
99	Land devoid of enough fuel to support wildland fire spread. Such areas include gravel pits, arid deserts with little vegetation, sand dunes, rock outcroppings, beaches and so forth.
101	The primary carrier of fire is sparse grass, though small amounts of fine fuel may be present. The grass is generally short, either naturally or by grazing, and may be sparse or discontinuous. The moisture extraction is indicative of a dry climate fuelbed, but may also be applied in high-extinction moisture fuelbeds because in both cases predicted spread rate and flame length are low compare to other grass models.
102	The primary carrier of fire is grass, though small amounts of fine dead fuel may be present. Load is greater than 101, and fuelbed may be more continuous. Shrubs, if present, do not affect fire behavior.
103	The primary carrier of fire is continuous, coarse, humid-climate grass. Grass and herb fuel load is relatively light; fuelbed depth is about 2 feet. Shrubs are not present in significant quantity to affect fire behavior.
104	The primary carrier of fire is continuous, dry-climate grass. Load and depth are greater than 102; fuelbed depth is about 2 feet.
105	The primary carrier of fire is humid-climate grass. Load is greater than 103 but depth is lower, about 1-2 feet.
106	The primary carrier of fire is continuous humid-climate grass. Load is greater than 105 but depth is about the same. Grass is less coarse than 105.
107	The primary carrier of fire is continuous dry-climate grass. Load and depth are greater than 104. Grass is about 3 feet tall.
108	The primary carrier of fire is continuous, very coarse, humid-climate grass. Load and depth are greater than 106. Spread rate and flame length can be extreme if grass is fully cured.
109	The primary carrier of fire is dense, tall, humid-climate grass. Load and depth are greater than 108, about 6 feet tall. Spread rate and flame length can be extreme if grass is fully or mostly cured.
121	The primary carrier of fire is grass and shrubs combined. Shrubs are about 1 foot high, grass load is low. Spread rate is moderate; flame length is low. Moisture of extinction is low.
122	The primary carrier of fire is grass and shrubs combined. Shrubs are 1 to 3 feet high, grass load is moderate. Spread rate is high; flame length moderate. Moisture of extinction is low.
123	The primary carrier of fire is grass and shrubs combined. Moderate grass/shrub load, average grass/shrub depth less than 2 feet. Spread rate is high; flame length moderate. Moisture of extinction is high.
124	The primary carrier of fire is grass and shrubs combined. Heavy grass/shrub load, depth greater than 2 feet. Spread rate high; flame length very high. Moisture of extinction is high.
141	The primary carrier of fire is woody shrubs and shrub litter. Low shrub fuel load, fuelbed about 1 foot; some grass may be present. Spread rate is very low; flame length very low.
142	The primary carrier of fire is woody shrubs and shrub litter. Moderate fuel load (higher than 141), depth about 1 foot, no grass fuel present. Spread rate is very low; flame length low.
143	The primary carrier of fire is woody shrubs and shrub litter. Moderate shrub load, possibly with pine overstory or herbaceous fuel, fuel bed depth 2 to 3 feet. Spread rate is low; flame length low.
144	The primary carrier of fire is woody shrubs and shrub litter. Low to moderate shrub and litter load, possibly with pine overstory, fuel bed depth about 3 feet. Spread rate is high; flame length moderate.
145	The primary carrier of fire is woody shrubs and shrub litter. Heavy shrub load, depth 4-6 feet. Spread rate very high; flame length very high. Moisture of extinction is high.
146	The primary carrier of fire is woody shrubs and shrub litter. Dense shrubs, little or no herbaceous fuel, fuelbed depth about 2 feet. Spread rate is high; flame length high.

Detailed Description of the Fuel Models (cont.)

Code	Detailed Description
147	The primary carrier of fire is woody shrubs and shrub litter. Very heavy shrub load, depth 4 to 6 feet. Spread rate lower than 146, but flame length similar. Spread rate is high, flame length is very high.
148	The primary carrier of fire is woody shrubs and shrub litter. Dense shrubs, little or no herbaceous fuel, fuelbed depth about 3 feet. Spread rate is high; flame length high.
149	The primary carrier of fire is woody shrubs and shrub litter. Dense, finely branched shrubs with significant fine dead fuel, about 4-6 feet tall; some herbaceous fuel may be present. Spread rate is high; flame length very high.
161	The primary carrier of fire is low load of grass and/or shrub with litter. Spread rate is low; flame length is low.
162	The primary carrier of fire is moderate litter load with shrub component. High extinction moisture. Spread rate is moderate; flame length is low.
163	The primary carrier of fire is moderate forest litter with grass and shrub components. High extinction moisture. Spread rate is high; flame length is moderate.
164	The primary carrier of fire is short conifer trees with grass or moss understory. Spread rate is moderate; flame length is moderate.
165	The primary carrier of fire is heavy forest litter with a shrub or small tree understory. Spread rate is moderate; flame length is moderate.
181	The primary carrier of fire is compact forest litter. Light to moderate load, fuels 1 to 2 inches deep. May be used to represent a recently burned forest. Spread rate is very low; flame length is very low.
182	The primary carrier of fire is broadleaf (hardwood) litter. Low load, compact broadleaf litter. Spread rate is very low; flame length is very low.
183	The primary carrier of fire is moderate load conifer litter, light load of coarse fuels. Spread rate is very low; flame length low.
184	The primary carrier of fire is moderate load of fine litter and coarse fuels. Includes small diameter downed logs. Spread rate is low; flame length low.
185	The primary carrier of fire is high load of fine litter; light slash or mortality fuel. Spread rate is low; flame length low.
186	The primary carrier of fire is moderate load broadleaf litter, less compact than 182. Spread rate is very moderate; flame length is low.
187	The primary carrier of fire is heavy load of forest litter, includes large diameter downed logs. Spread rate low; flame length low.
188	The primary carrier of fire is moderate load long-needle pine litter, may include small amount of herbaceous load. Spread rate is moderate; flame length low.
189	The primary carrier of fire is very high load, fluffy broadleaf litter. This can also be used to represent heavy needle-drape. Spread rate is very moderate; flame length moderate.
201	The primary carrier of fire is light dead and down activity fuel. Fine fuel load is 10 to 20 t/ac weighted towards fuels 1 to 3 inch diameter class; depth is less than 1 foot. Spread rate is moderate; flame length moderate.
202	The primary carrier of fire is moderate dead and down activity fuel or light blowdown. Fine fuel load is 7 to 12 t/ac, evenly distributed across 0 to $0.25,0.25$ to 1 , and 1 to 3 inch diameter classes, depth is about 1 foot. Blowdown is scattered, with many trees still standing. Spread rate is moderate; flame length moderate.
203	The primary carrier of fire is heavy dead and down activity fuel or moderate blowdown. Fine fuel load is 7 to 12 t/ac, weighted toward 0 to 0.25 inch diameter class, depth is more than 1 foot. Blowdown is moderate; trees compacted to near the ground. Spread rate is high; flame length high.
204	The primary carrier of fire is heavy blowdown fuel. Blowdown id total, fuelbed is not compacted, most foliage and fine fuel still attached to blowdown. Spread rate is very high; flame length very high.

