A Spatial Model Approach for Assessing Windbreak Growth and Carbon Stocks
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Agroforestry, the deliberate integration of trees into agricultural
operations, sequesters carbon (C) while providing valuable
services on agricultural lands. However, methods to quantify
present and projected C stocks in these open-grown woody
systems are limited. As an initial step to address C accounting in
agroforestry systems, a spatial Markov random field model for
predicting the natural logarithm (log) of the mean aboveground
volume of green ash (Fraxinus pennsylvanica Marsh.) within a
shelterbelt, referred to as the log of aboveground volume, was
developed using data from an eatlier study and web-available
soil and climate information. Windbreak characteristics, site,
and climate variables were used to model the large-scale trend
of the log of aboveground volume. The residuals from this
initial model were correlated among sites up to 24 km from a
point of interest. Therefore, a spatial dependence parameter was
used to incorporate information from sites within 24 km into
the prediction of the log of the aboveground volume. Age is an
important windbreak characteristic in the model. Thus, the log
of aboveground volume can be predicted for a given windbreak
age and for values of other explanatory variables associated
with a site of interest. Such predictions can be exponentiated
to obtain predictions of aboveground volume for windbreaks
without repeated inventory. With the capability of quantifying
uncertainty, the model has the potential for large regional
planning efforts and C stock assessments for many deciduous
tree species used in windbreaks and riparian buffers once it is
calibrated.
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AJGROFORESTRY, the deliberate integration of trees into crop and
ivestock operations, sequesters substantial amounts of carbon
(C) on agricultural lands while providing the production and con-
servation services for which it was designed (Korn et al., 2003; Nair
etal., 2009; Schoeneberger, 2009; Verchot et al., 2007). The Global
Research Alliance on Agricultural Greenhouse Gases, established at
the 2009 climate change meetings in Copenhagen (http://www.
globalresearchalliance.org/home.aspx), explicitly includes agrofor-
estry as a viable C sequestering option for agricultural operations.
Of the five main agroforestry practices used in the United States
(windbreaks, riparian buffers, alley cropping, silvopasture, and
forest farming), windbreaks are especially appealing as a C seques-
tering option on private lands. Windbreaks, also referred to as shel-
terbelts, are linear plantings consisting of trees and shrubs. They
are used throughout the United States to protect and improve crop
yields, reduce wind erosion, manage snow, reduce energy consump-
tion by homesteads and other buildings, and protect livestock. In so
doing, they provide additional wildlife habitat in areas dominated
by agriculture as well as other benefits afforded by the altered micro-
climate and landscape structure created by the plantings (Brandle
etal,, 2009). Although a small portion (about 2 to 5%) of an agri-
cultural field is dedicated to the windbreak, this small amount of
land is able to sequester greater amounts of C per unit land area
than many of the other agricultural options, thereby contributing
significantly to overall greenhouse gas mitigation within a farming
operation (Schoeneberger, 2009; USEPA, 2006). Furthermore, the
very purpose for windbreak plantings—the use of perennials and
the additional services they provide to the landowner—adds a level
of permanence not necessarily present in other practices.

Being able to estimate current and future amounts of biomass
and C sequestered in agroforestry plantings, such as windbreaks,
provides a basis for directing conservation programs and policy
development as well as future land management decisions by
landowners. Initial estimates made for windbreaks in the north-
central United States (USDA NAC, 2001) and for riparian buf-
fers, woody plantings in the unfarmed corners of center pivot
fields, and living snow fences in Nebraska (Nebraska Department
of Natural Resources, 2001) indicate that agroforestry has tre-
mendous potential as a C sequestering option for these areas.
However, more reliable means for generating these estimates are
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needed as cost-share and C credit programs are argued and for-
mulated and as modeling efforts are developed for C account-
ing in agroecosystems.

Like a forest stand, windbreak growth is a function of site
quality and climate conditions as well as species genetics, com-
position, arrangement, and age. Site quality and climate con-
ditions change from location to location. Even within a single
windbreak, site quality may vary dramatically depending on the
microtopographical conditions. Species characteristics, as influ-
enced by the seed source (genetic potental) and environmental
conditions, are also quite variable, reflecting the variety of plant
materials generally used in conservation plantings and the wide
range of settings into which they are planted (Cunningham,
1988). Considerable effort has been made to develop methods to
estimate the site quality of individual forest stands so their future
growth and development can be estimated (Alemdag, 1991). Two
principle approaches have been used for this purpose. The eco-
logical approach classifies site quality based on plant communities
because plant associations reflect both climatic and topographic
factors that contribute to a stand’s growth potential. Such classifi-
cations are largely descriptive, difficult to quantify, and predomi-
nantly used for broad classification and comparisons across large
geographical scales. The other approach uses site index as a com-
prehensive indicator of site quality and is the most commonly
used method for estimating site quality in North American forests
(Carmean et al., 1989). Site index refers to the predicted height
of the dominant and codominant trees of a stand at an index age
(usually 50 yr for hardwood species). This approach treats site
condition as a single variable with additive effects and models
height growth as a nonlinear function of age. Theoretically, each
site should have a unique site index, and abrupt, rather than
smooth, changes should be expected from site to site. The nonlin-
ear functional relationship between height and age provides the
basis to forecast future growth through extrapolation.

Despite great effort, especially in commercial forest produc-
tion systems (Alemdag, 1991), it is impractical to develop a site
index for each stand. In many cases, the estimation of site index
remains impossible due to the lack of a woody plantation for
measurement. Approximations and assumptions must therefore
be made to make use of index curves for other sites with simi-
lar site conditions. Because site index is a function of age and
the average height of the dominant and codominant trees in a
stand, at least one measurement of age and height must be made
to estimate site index. Consequently, site indices for projected
plantings on reclaimed, agricultural, or pasture sites are rarely
available, and predictions for future growth based on site index
at potential windbreak sites are essentially impossible.

The objective of this work is to develop a spatial model of
the natural logarithm of the mean aboveground volume of trees
within a windbreak that provides spatial prediction at any point
within Nebraska. To do this, we propose using a spatial Markov
random field model that uses web-available data. This approach
differs from the traditional forestry practice in that the discrete
qualitative site classification is replaced with a continuous linear
predictor based on a series of quantitative and qualitative soil
and climate variables (Lundergren and Dolid, 1970). With a
Markov random field model, the spatial variation in the natu-
ral logarithm of the mean aboveground volume of trees within
a windbreak is attributed to two sources: (i) large-scale varia-

tion or trend across the region and (ii) small-scale variation due
to correlation among nearby sites. The linear predictor can be
used to capture the trend of natural logarithm of the windbreak
mean aboveground volume (the response variable) over space,
with soil, climate, and windbreak-related parameters serving as
the predictor variables. The spatial dependence parameter quan-
tifies the correlation among sites as a function of their distance
from each other, thereby capturing the small-scale correlation
among neighboring locations. The Markov random field model
approach is independent of site index and allows the user to
combine data over a geographical area of interest, providing spa-
tial prediction at existing and at new locations.

Materials and Methods
Data Sources and Description

The primary focus of this study was on developing a model to
predict the log of aboveground volume of green ash (Fraxinus
pennsylvanica Marsh.) windbreaks as a first step for getting esti-
mates of aboveground volume and then ultimately for use in
estimating potential woody biomass and C in future plantings.
The woody component in these afforestation-like practices rep-
resents the dominant component of C sequestered, with the
aboveground portion generally representing the majority of
new C sequestered in these systems (Nui and Duicker, 2006) as
well as being used to estimate roots in forestry projects (Brown,
2002). Such a model could begin to provide estimates of agro-
forestry’s current and future contributions for reporting and
management planning purposes. The model could be applied
at any site within the research area for which soil and climate
data are available. The data used in this study were obtained
from three different sources and are described below.

Windbreak Data

Green ash windbreak data were obtained from the Windbreak
Site Standard Plot Reports (USDA NRCS, 2002a), which have
windbreak characteristics (age, species composition, health condi-
tion, and site average height and diameter at breast height [DBH])
for each site. In addition, site coordinates (Township, Range, and
Section), soil types within the windbreak, and annual precipitation
from the nearest weather station are listed. To estimate within-site
variation, individual tree height and DBH were entered into a
supplemental database. Exploratory data analyses were conducted.
Although potential outliers were identified, no observations were
excluded unless the record indicated the tree was dead, physically
damaged, replanted, or a sprout so that the full variation within
and among windbreaks could be captured. Unlike a forest inven-
tory of the USDA Forest Service Inventory and Analysis Program
(FIA), the Windbreak Site Standard Plot Reports were not
designed to measure and monitor the total aboveground volume
per unit area. No undergrowth and shrubs were measured, and
the size of each sample plot was not necessarily uniform (Table 1).
Each windbreak was sampled at only one point in time.

Of the major tree species listed in the Nebraska standard report
(e.g., green ash, cottonwood [Populus sp.], elm [Ubmus pumila L.],
eastern red cedar [funiperus virginiana L.], and ponderosa pine
[Pinus ponderosa Dougl. Ex Laws.]), only green ash and eastern red
cedar were dominant and present at most sites. We selected green
ash for this study because it was widely used in many agroforestry
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and conservation plantings throughout the Great Plains region.
(Since our study, the spread of the emerald ash borer [Agrilus pla-
nipennis Fairmaire] into the Midwest and toward the Great Plains
has begun to threaten the survival of this species, and it is no longer
recommended as a key conservation tree.) Additionally, green ash
was selected because we have a model relating the log of aboveg-
round volume to height and DBH developed from field wind-
break measurements (Zhou et al., 2002). This model reflects the
more open-grown tree form attained in windbreaks, as opposed to
the generally available models developed from forest stands (Smith
et al., 2004). Of the 235 windbreaks surveyed in Nebraska, 96
contained green ash as a major component, and these windbreaks
were selected for this study (Table 1). Green ash is native to a
large region of north-central United States, is sensitive to site and
climate variation, and is subject to large within-stand differentia-
tion due to internal competition for light and nutrients (Kennedy,
1990). These factors lead to large within- and between-site varia-
tion, making estimation of the spatial dependence structure espe-
cially challenging. Table 2 lists the variables in the windbreak data
used in our model. Among these variables was the windbreak
growth condition code (Cocode), which used G, F, B and D for
good, fair, poor and deteriorating growing status of the windbreak
as a result of maintenance and management. For spatial modeling,
we recoded G, E B or D as 1, 2, 3, and 4, respectively, considering
the ordinal nature of the original survey classifications. Based on
the assumption that the distance between consecutive condition
codes is the same, this variable was entered as a continuous variable
in the model.

Soil Data

Nebraska soil data were downloaded from the USDA Natural
Resources  Conservation  Service State  Soil ~ Geographic

Table 1. Background information on windbreak sites used in this study.

County Ye?r No. of NP. of
established trees sites
Antelope 1967 12 1
Blaine 1963 12 1
Box Butte 1965 12 1
Chase 1967 12 1
Custer 1959 258 16
Dundy 1967 12 1
Franklin 1965 60 5
Gauge 1980 14 1
Hitchcock 1964 60 5
Holt 1961 242 12
Johnson 1983 16 1
Lancaster 1965 24 1
Lancaster 1989 45 2
Madison 1960 209 15
Morrill 1965 7 2
Seward 1984 21 1
Sheridan 1967 30 4
Stanton 1960 125 12
Thurston 1963 14 1
Webster 1964 24 4
Wheeler 1964 30 4
Wheeler 1965 41 5
Total (16) 1280 96

(STATSGO) database maintained by the Nebraska Department
of Natural Resources (State Soil Geographic [STATSGO] database
for Nebraska). Designed for regional, river-basin resource plan-
ning and management, STATSGO core data are available for map
units, which are polygons of various shapes and sizes. Depending
on the region, these map units average from 7000 to 60,000 acres
in size; the minimum size is 1544 acres (USDA SCS, 1991).

Each STATSGO map unit may have up to 21 soil types.
However, the location of the specific individual soil types within
each map unit is not given. Instead, the proportion of the map
unit’s area covered by each soil type is provided. In addition, each
map unit has a set of attribute tables containing 60 soil proper-
ties that include physical, chemical, biological, taxonomic, and
geographical characteristics of each soil type within that unit.
These attribute tables are connected to map units through a set
of identifier variables. All attribute tables were merged to form
one SAS data set (SAS Institute, 1990). A list of the soil variables
included in our model is given in Table 3.

(limate Data

Climate data for the windbreak sites were obtained from the High
Plains Regional Climate Center website (High Plains Regional
Climate Center, 2002). This site has short-term weather records
and long-time climate measurements from 125 weather stations
throughout Nebraska. Climate variables include monthly precipi-
tation; temperature; and heating, cooling, and growing-degree-
days. Also available from this data source are monthly and annual
means of the Palmer Drought Severity Index (PDSI) for each
weather station. Widely used as an indicator of regional drought
conditions, the PDSI provides an estimate of the accumulated
effect of monthly rainfall deficit or surplus relative to the monthly
climatologically “appropriate” rainfall, defined as precipitation

Table 2. Windbreak variables from the windbreak survey data.

Code Description
Age windbreak age at time of survey
DBH tree diameter at breast height
Ht tree height at time of survey
Wthnrow windbreak within-row spacing (tree spacing)
Btwnrow windbreak between-row spacing (row spacing)
Neighbor neighbor row species
Post row position (interior or side)
Cocode windbreak growth condition code (1, 2, 3, or 4)
Volume log of aboveground volume (stem, branches, leaves)

Table 3. Soil properties included in the tree model and site mean model.

Code Description
Group windbreak suitability group
Om1 first-layer organic matter content
Shrin1 second-layer soil shrinkage
Clay2 second-layer clay content
Wei soil wind erodibility index
PH1 first-layer soil reaction
Perm1 first-layer soil permeability
Text2 second-layer soil texture
Sdep soil depth of the first and second layers
Liq soil available water content
Cec2 second-layer cation exchange capacity

Kfactor soil erodibility factor




needed to maintain adequate soil water content for normal plant
growth in a particular region (Qi and Willson, 2000). The PDSI
is a scaled value with a mean of zero. Negative values represent
insufficient moisture, and positive values indicate at least adequate
moisture. To better reflect climate impact on the multi-decade-
long growth of trees in windbreaks, we calculated the number
of months during each growing season (March—August) over a
30-yr period (1961-1990) for which the PDSI indicated drought
based on records from each weather station. In this study, we have
defined drought for trees as a PDSI of less than —2. Selection of
—2 as a critical value is based on the assumption that woody plants
are relatively tolerant to moderate drought conditions due to their
deep root system and that tree growth is more likely to suffer with
increases in both intensity and frequency of drought periods. This
measurement of drought was used as an independent variable for
the spatial prediction of volume at each windbreak point. Table 4
provides a list of the climate variables included in the model.

Combining Windbreak with Soil and Climate Data

The windbreak, soil, and climate data used in this study are spa-
tially misaligned (Gotway and Young, 2002); that is, they have
been collected on different observational units. The windbreak
information was observed at the windbreak sites, which are points
on a map. The soil data are recorded on polygons. The climate data
are recorded at weather stations, which are also points on a map
but different from those of the windbreaks. The first challenge was
to combine all of the data at the windbreak site level (see Fig. 1).

To combine the soil and windbreak data, the coordinates
for the windbreak sites expressed in terms of Township, Range,
and Section (USDA NRCS, 2002a) were converted into lati-
tude and longitude. Then, the windbreak data points were
overlaid onto the STATSGO soil map, and a unique map unit
was identified for each sampling point using ArcMap’s spatial
join function (ESRI, 2001; State Soil Geographic [STATSGO]
data base for Nebraska). If the map unit contained the spe-
cific type of soil identified in the windbreak data set, all ateri-
butes for that soil type from STATSGO attribute tables were
assigned to the windbreak data point (Fig. 2).

An exact match occurred for only about half the windbreak
points, possibly because of differences in sampling scales or
changes in terminology in soil taxonomy. If none of the soil types
in a map unit matched those identified in the windbreak data
set, the weighted mean values from STATSGO attribute tables
for all soil types in the corresponding map unit were assigned to
the corresponding windbreak data point, where the weight for
a soil type was the proportion of that soil type in the map unit.

Table 4. Climate variables included in the weather data used in devel-
oping the tree model.

Code Description
PDSI2 total number of months in which the Palmer Drought
Severity Index was below -2 over a 30-yr period
Arain 30-yr average annual precipitation
Avgetl 30-yr average Jan. temperature
Srain 30-yr average summer precipitation
Avgt7 30-yr average July temperature
Cddall 30-yr average annual cooling degree day
Hddall 30-yr average annual heating degree day
Meantall 30-yr average annual mean temperature

Consequently, for each windbreak sampling point, we obtained
a complete set of soil specific attributes. However, the quality of
the attributes differed depending on whether the windbreak soil
type matched one of the soils in the associated STATSGO map
unit. This disparity in quality was not considered further.
Because windbreaks grow for years, long-term climate, as
opposed to short-term weather conditions, was thought to be
more relevant to overall biomass accumulation. We calculated
30-yr averages (1961 to ~1990) for precipitation; mean, maxi-
mum, and minimum temperatures; cooling and heating degree
days; and PDSI for each weather station. Although the 125
weather stations were roughly uniformly distributed over the
state (Fig. 1), their spatial coordinates in latitude and longitude
did not match those of the windbreak sampling points. We
obtained the spatial predictions for the long-term climate attri-
butes at each windbreak sampling point using inverse distance
weighting (Cressie, 1993), which assigns weight to nearby sta-
tions according to their proximity to the target point (i.e., the
closer the station, the greater its weighted value). Finally, the
predicted values for all climate variables were merged with the

windbreak-STATSGO data for spatial modeling.
Spatial Markov Random Field Model

Historically, multiple regression models have been developed for
predicting quantities of interest (Searle, 1971; Neter et al., 1996;
Draper and Harry, 1998). Here, the natural logarithm of the
aboveground volume is to be predicted from potential explanatory
variables (from soil, windbreak, and climatic data). A regression
model can account for large-scale trends over a region. However,
itis difficult, if not impossible, to identify all explanatory variables
that are influential in predicting the log of aboveground volume.
Because they tend to vary over space and are omitted from the
modeling process, spatial dependencies among the errors are often
present. Furthermore, because sites close together tend to be more
alike than sites further apart, using nearby sites to inform predic-
tions can make them more precise. Thus, in the modeling process,
we account for large-scale trends and borrow information from
nearby sites to capture small-scale trends. This leads to a correlated,
and not an independent, error structure.

We hypothesized that a measure of windbreak tree growth
(the natural logarithm of aboveground volume), Z(s), for a site
located at s, is spatially correlated with the same windbreak tree
growth measure at all sites within a certain range of the one of
interest. (Although the aboveground volume is of interest, its dis-
tribution is highly skewed. Thus, the natural logarithm, referred
to here as the log, of aboveground tree volume is modeled so that
the assumption of normality is more nearly met. The aboveground
tree volume can then be obtained by exponentiation.) This spatial
dependence can be quantified by fitting a spatial Markov random
field model (Cressie and Lele, 1992). For a site 7, N represents
a neighborhood with a set of sampled windbreaks within some
distance from site 7, but not including site 7. Thus,

[Z(s;):i¢ N, {N,

1

i =12,...,n]

where 7 is the number of sites for which predictions are required.
In the simple linear regression of a response y on an explanatory
variable x, it is assumed that there is a population of y’s and each
x and that population has a mean, which is linearly related to
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x, and a variance, which is often assumed to be
the same for all x’s. A similar assumption is made
in spatial random processes. Here a conceptual
population of possible log-transformed aboveg-
round volumes is assumed for each windbreak. A
particular realization of these volumes has been
observed at each site, and that realization reflects
any inherent spatial dependence among sites. Let
i, and o be the mean and variance of the log of
aboveground volume at site 7. Suppose that the
mean varies over space so that . = (li,,..., |1, ) cap-
tures this large-scale variation. Further, define M
= Diag (012,..., crnz) to be a diagonal matrix of
the unknown site variances and C = {¢} to be a

matrix that captures the small-scale dependence

among sites. Here, the small-scale dependence is

assumed to be 0 if a site is not in the neighbor-

hood (¢, = 0if j € N and to decrease with distance between the
windbreaks when a site is in the neighborhood (cij =¢f (dl_]), if
7 € N, where ﬂ'ij is a function of distance between s, and s). Let
I be an 7 x 7 identity matrix and C = {¢.} be a spatial c{epen-
dence matrix. Assuming the auto-Gaussian model (an autore-
gressive model with Gaussian (normally) distributed responses)
and under certain conditions (Cressie, 1993; Griffith, 2003), the
log of the aboveground volume at sites S5 Sy -ees S, namely the
spatial random process Z = [Z(s,), Z(s,),....Z(s )]’ s normally dis-
tributed (see Appendix for details). That is,

Z ~N[pdI-C)' M] (1]

For the combined windbreak data, the large-scale variation is
assumed to be a linear function of the explanatory site and
climate variables; that is,

p=X3 (2]

where the design matrix X includes all potential quantitative
and qualitative predictor variables ranging from windbreak attri-
butes, soil measurements, and long-term climate data, and (3 is
a vector of coefficients (Searle, 1971). The qualitative variables
enter the model through indicator variables (Neter et al., 1996;
Draper and Harry, 1998). We assume that all effects on the
log of aboveground volume by predictor variables are additive
because soil, climate, and windbreak characteristics tend to have
linear effects on site, as indicated in the various site index curves
found in the forestry literature (Alemdag, 1991; Sander, 1971).

The spatial dependence matrix C in Eq. [1] can be modeled
as a function of distance between windbreaks. In this study, a
semivariogram was used to quantify the spatial dependence. The
empirical semivariogram is a function of distance and estimates
half the variation among pairs of points a specified distance (lag)
apart. Because the empirical semivariogram is comprised of a
series of estimates (one estimate for each lag), it generally does
not appear to be smooth, just as data do not all lie on the line
in a linear regression. To obtain a smooth function of the rela-
tionship between the semivariogram and distance, so that the
semivariogram can be estimated for distances for which no pairs
were observed, various semivariogram models, such as spherical,
exponential, and power semivariogram models, are used (Cressie,
1993). For windbreaks in Nebraska, the range (R* of spatial

Fig. 1. Spatial distributions of green ash windbreak sampling points (dots), weather sta-
tions (flags), and State Soil Geographic database map units (polygons).

dependence must first be estimated. We fitted a semivariogram
model to the residual from the regression model in Eq. [2] and
then used the estimated range of correlation from the semivario-
gram model to identify the neighborhoods of the Markov random
field. That is, a spatial dependence is assumed to exist only within
adistance R*of a given point, and all windbreaks within R*of the
point are in its neighborhood. Observations from windbreaks fur-
ther than R* apart are uncorrelated. The value of R* is unknown
and must be estimated (see Appendix for details). Then windbreak
7 is in the neighborhood of point 7 (j € N) if

dz’j :\/(xi _x]‘)z +(}’l _}’j)z <R

where the x’s and y’s are coordinates of sample locations, and R
represents the estimated range of spatial dependence.

We have a neighborhood for each site, and we now turn to
quantifying the spatial dependence within a neighborhood. To
do this, deﬁneﬂdl_]) = C(/e)dl_]_’k for j € N.. Then:

¢, = eClk)d (3]

where ¢ is the 7jth element of the spatial dependence matrix C,
¢ is the spatial dependence parameter, C(#) = minimum dtf :
JEN,i=(1,2,..,n), and £ is a scale parameter that controls
how rapidly the spatial dependence changes with distance of
separation. Cressie and Chan (1989) showed that the spatial

Source Coordinate system Attribute
Windbreak Township-Range System  Points
STATSGO UTM, NADS3 Polygons
Climate Latitude & Longitude Points
Weather |:> Windbreak ‘:> STATSGO
Stations Data Points Soil Map
SAS Data Match Soil Locate
Set <:\ Get Attrib. <:, Map Units

Fig. 2. Data source coordinates and synthesizing process.




dependence parameter ¢ can be estimated and tested using
maximum likelihood methods (see Appendix for details).

The predicted log of aboveground volume at a site includes
a term for large-scale trend and a term that accounts for small-
scale variation:

Y’ = XB + (pH)(Y — XB) (4]
where H = f(a’z,j) = C(/e)a’i]_"(. The first term, XB3, in Eq. [4]

accounts for large-scale variation that comes from windbreak
characteristics, such as age, species composition, and the
arrangement of the trees in the windbreak. The second term,
(pH)(Y —XB), in Eq. [4] accounts for small-scale variation that
occurs because the response (the log of aboveground volume)
at sites closer together tend to be more alike than that at sites
further apart, leading to spatial dependence among responses
from neighboring sites. The variance of the predicted log of the
volume is estimated using Eq. [5] (see Appendix for details).

Var(Y?) = FXF/ (5]
where F = (I - pgH)(X’2'X) 'X’X"and X = (I - pH)'c2

The Markov random field model is especially useful because
its predictive power at a given point increases as more data
within the spatial neighborhood become available.

Results and Discussion

Because trees within a windbreak varied considerably in size, the
distribution of the aboveground volume of individual trees was
highly skewed. Thus, the natural logarithm of individual tree
volume was taken as the response so that the assumption of nor-
mality would be more nearly met. Two separate Markov random
field models were fitted to the spatially aligned climate, soil, and
windbreak data. The first used the log of aboveground volume of
individual trees as the response variable (individual tree model),
while the other took the average of the log of individual tree
volume first and then modeled the mean log tree volume on each
site (site mean model). The individual tree variability in the log
of aboveground volume on the log scale among and within sites
was further explored through analysis of variance. The estimated
within-site variance and between-site variance was 0.36 and
0.26, respectively, suggesting within windbreak variation was
even larger than between windbreaks. All of the explanatory vari-
ables, except neighbor row species and row position indicator,
considered in this study were observed at the site level and thus
were constant for any given windbreak. As a consequence, no
explanatory variable was capable of explaining any of the tree-to-
tree variability within a site. The large residual variance, possibly
due to severe internal competition, indicated that the individual
tree model obscured any spatial dependence that might exist. As
a result, the site mean model was found to be more useful. Thus,
the log of the mean aboveground volume of all green ash trees
within a windbreak, which we refer to as the log of the aboveg-
round volume, is the focus of our modeling and is discussed in
the rest of the paper.

Large-Scale Variation

Because of the heavily skewed distribution, we fitted the
Markov random field model with site mean volume of green
ash on the log scale as the response variable using soil, climate,

and windbreak characteristics as explanatory variables. The
model for large-scale trend in the log of aboveground volume
for green ash windbreaks across Nebraska was estimated with
multivariate regression. Backward elimination (using p < 0.05)
was used to identify the most important explanatory variables
(SAS Institute, 1990). The resulting linear model was as follows:

In(y) =B, +Bx, +B,x, + B, +efori=1,2,...... n

where 7 is an indicator of the windbreak site, ¥, is the log of
aboveground tree (more specifically, the natural logarithm of
the mean aboveground tree volume of all green ash trees within
the windbreak), x,, is the natural logarithm of windbreak age,
x,, is the 30-yr average summer precipitation at the windbreak
18 the windbreak growth condition code (1, 2, 3,
or 4 for good, fair, poor, or deteriorating, respectively), and E,

location, x

represents random error, which is assumed to be independently
and identically distributed N(0, 0?).

Small-Scale Variation

The maximum range of spatial dependence R was 24 km as
estimated by semivariogram analysis with the SAS KRIGE2D
procedure (SAS Institute, 2008; Drignei, 2009). Three differ-
ent values for the scale parameter (£ = 0, 1, 2) in f(a’y) = C(k)
d/j”e were tested, where C(£) = minimum (df cjEN,i=1,
2,...n). Maximum likelihood methods were used to choose
among the three values of 4. The maximum likelihood estimate
is that value of the parameter that maximizes the likelihood
function, which is the probability of the observed data as a
function of the parameter(s). The logarithm of the likelihood
function is often mathematically more tractable, and, because
maximizing a function is equivalent to maximizing the log of
that function, usually the log likelihood function is maximized
or, equivalently, the negative of the log-likelihood function is
minimized, to find the maximum likelihood estimates. Because
the minimum of the negative log-likelihood function (Chap,
2003) for k = 1 is smaller than 4 = 0 or £ = 2 (Fig. 3a), the spa-
tial dependence function f(d,) based on the inverse function of
distance between sites (£ = 1) provided a better fit than a power
function (£ = 2) or a uniform function (4 = 0) of distance. For
k = 1, the log-likelihood changed with the spatial dependence
parameter and reached a maximum at the estimated value of
0.575, which implied a positive correlation among neighbor-
ing windbreaks. Biologically, this result was appealing because
soil and climatic conditions tend to be similar for sites within
close proximity and thus positively correlated. As a conse-
quence, windbreak growth at sites within close proximity tends
to be similar. Here “close” was estimated to be within 24 km.
By the maximum likelihood ratio test, the spatial dependence
parameter was found to be statistically significant (p = 0 vs. ¢
# 0) at the 5% level. Based on an estimated ¢ of 0.575, 3 was
estimated as shown in the Appendix. Tests for H: B/ =0(=0,
1, 2, 3) were all significant at the 0.01% level (Table 5).

Prediction of Windbreak Growth

The residuals from the model (Fig. 3b) showed no trend and
were approximately normally distributed. A graph of the pre-
dicted mean volume for each location from the model versus
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the observed mean volume at that location, both on the
logarithmic scale, is shown in Fig. 3c.

Using the estimated spatial dependence parameter, the
model predicted mean site volumes (obtained by exponenti-
ating the predicted values from the model, which are on the
log scale) in cubic centimeters at age 36 for all sample sites.
A smoothed map of predictions within the target region
is illustrated in Fig. 4. The predicted mean site volume in
Nebraska increased from the southeast to the northwest.
This is reasonable because eastern Nebraska, with its more
favorable climatic conditions, is generally more productive
compared with the western panhandle region. The uncer-
tainty of the prediction was quantified through the predic-
tion errors (see Appendix for details). These too had to be
back transformed from the log to the original scale using
the delta method (Rice, 1994), and we refer to those on
the original scale as the prediction errors of aboveground
tree volume. The prediction error of aboveground tree
volume was smallest near the sample sites (Fig. 5) because
more information was available for modeling at these sites.
The highest prediction errors of aboveground tree volume
occurred at points farthest from the sample sites. The mod-
el’s predictive accuracy would improve and prediction errors
would be reduced if additional data become available.

Existing C stock models for forests are site and type spe-
cific, mostly using periodic inventory data to obtain volume
estimates on a unit area basis, which are then converted to
biomass with a set of nonlinear volume-to-biomass equa-
tions (Brown, 2002; Smith et al., 2004; Von Mirbach, 2000).
Prediction for future C stocks is based on results from forest
simulation models that project inventory, growth, and har-
vest on timberland changes from consecutive inventories.
Smith et al. (2003) provided inventory-based calculations
for major forest types in the United States. However, for
the six forest types in the northern prairie states region that
includes Nebraska, none included green ash or eastern red
cedar, which are two of the major windbreak species, as the
dominant species. Because trees in agroforestry systems are
not explicitly inventoried within the FIA program (Perry et
al., 2009), recent attempts at estimating current or predicting
future sequestration of C by these systems have mainly used
modifications to models developed for major forest types.

Without periodic forest inventories, site index curves can
be a useful alternative to predicting tree growth, and thus
biomass and C stock for a single stand, or multiple stands
with uniform or similar site and climate conditions. Its use
for inferences over large geographical regions, however, is
limited because many site curves are lacking and site and cli-
matic conditions are variable. This is particularly true for use
in predicting growth for estimating C stocks in current and
potential windbreak locations throughout entire states and
regions as well as for other high C-sequestering agroforestry
plantings, such as riparian forest buffers.

Conclusions

The readily available soil and climate information from online
sources makes it possible to model windbreak growth with quan-
titative and qualitative soil and climate variables in place of site
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Fig. 3. (a) Negative log-likelihood as a function of spatial dependence param-
eter () and scale parameter (k) for the site mean model. The log-likelihood
reaches maximum with k = 1 and ¢ = 0.575. (b) Residual distributions for the
site mean model with spatial dependence parameter ¢ = 0.575 (dots) and
for the individual tree model with independence model with ¢ = 0 (circles).
(c) Predicted vs. observed site mean volume on natural log scale for the site
mean model (dot) and individual tree model (circle). The linear regression
line for the site mean model (M) is closer to the 1:1 reference line (N) than
the individual tree model (T).

indices. This approach overcomes the limitations of the stand
method by capturing the large-scale trend as a smooth curve over
space rather than an abrupt change from location to location.
Further, it enables the prediction of windbreak growth at any
location over an entire region regardless of previous tree growth
information at that particular location. On the large-scale trend,
we found that the log of windbreak age (p < 0.001), the 30-yr
average summer precipitation (p < 0.001), and growth condition




Table 5. Parameter estimates and test for statistics for site mean model 2.

Effect Parameter estimate SE tvalue Pr >t value
Intercept -6.903 1.624 -4.260 <0.0001
Ln (age) 1.933 0.458 4.227 <0.0001
Summer rain 0.404 0.062 6.559 <0.0001
Condition codet —-0.441 0.092 -4.799 <0.0001

1 Growth condition code is inversely correlated with the natural log of aboveground volume. One degree lower in condition code, from good to fair, for
example, will lead to a drop in the log of aboveground volume of 1.554 cm?® on average (if every other predictor variable remains the same).
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Fig. 4. Smooth map for the predicted log of the aboveground volume (cm?3) per tree at sample points (circles) with the site mean model (spatial

dependence parameter ¢ = 0.575; scale parameter k = 1; tree age, 36 yr). At this fixed age, the average volume for a green ash field windbreak
increases from the northwest to southeast in the state of Nebraska.

Legend
0.00- 1,50 - 495400
1.51-2.68 | EEIE
259-337 B s-577

P s3s-30 e
B sod-a34 | EERLEC
Fig. 5. Smooth map for the standard error for predicted log of aboveground volume (cm?3) per tree at sample points (circles) with the site mean

model (spatial dependence parameter ¢ = 0.575; scale parameter k = 1; tree age, 36 yr). The error is lower at or around densely sampled points and
becomes larger when moving away from sample points and densely sampled areas.
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(p < 0.001) were the most important predictors for the log of
aboveground volume, indicating that climate and management
practices play major roles in determining windbreak C yield
within a given time period. For small-scale variation, the model
estimated that the log of windbreak aboveground volumes were
positively correlated (¢ = 0.575; p < 0.05) for sites within 24
km of each other. By capturing this spatial dependence, the spa-
tial model approach makes it possible to improve predictions
of C stocks for present and future windbreaks by incorporat-
ing information from neighboring sites. Because the maximum
likelihood method is used for parameter estimates and statistical
inferences and all the input information is readily available, this
model provides an alternative that can be further improved with
updated data sources for green ash windbreaks for larger regional
assessments, as well as for all major windbreak tree species, with
limited adjustment.

Limitations

There are a number of limitations with the spatial Markov
random field model. First, we modeled the natural logarithm of
the site mean tree volume rather than biomass per unit area like
other forest C stock models. Unlike the FIA program, repeated
measurement of windbreak yield from permanent sampling
plots was not available in the agroforestry intensive Midwest
region and is unlikely to be in the near future. The limited wind-
break standard report data we used in this study may underes-
timate the total C stocks because the original survey was not
designed to measure total biomass per unit area but rather was
a survey of major windbreak tree species with no estimates of
understory growth. An attempt to convert individual tree data
to biomass per unit area may induce uncertainty due to varied
species composition, unequal sample size, and lack of understory
measurements. Second, quantification of net change over time
for the same sites was unrealistic because of the lack of repeated
sampling on the same windbreaks. Prediction for future C stocks
based on modeling tree growth as a function of time along with
site, climate, and available management condition may not fully
capture the potentially large variation over space, especially at
sites with few sample points in the surrounding area. Third, cli-
mate data and about half of the soils data used for the windbreak
sites in this study were predicted. Fourth, the quality of the soil
attributes differed depending on whether the windbreak soil type
matched one of the soils in the associated STATSGO map unit.
This disparity in quality was not considered. Finally, because the
STATSGO soil data and the long-time records by High Plains
Regional Climate Center are quality data sources and the pre-
diction process leads to predictions that tend to be smoother
than the true responses, the use of these predicted values in the
modeling process should result in unbiased predictions of the
response (Gryparis et al., 2009; Lopiano et al., 2010). However,
the errors associated with the predicted volumes reported here
are biased downward because the extra variation associated with
the predicted soil and climate variables was not considered.
With the method developed here, future studies on agrofor-
estry C stocks could benefit by focusing on (i) increasing the
extent and intensity of data collection from the target region, (ii)
using an updated network for climate measurements, and (iii)

using the more detailed Soil Survey Geographic Database. All

of these steps would decrease potential error associated with the
geographical mismatch from different data sources, thus improv-
ing the model fit and leading to better predictions of C stocks.

Appendix
The spatial model used to fit the windbreak data is explained in
this Appendix. The notation of Cressie and Chan (1989) and
Cressie (1993) is followed closely.

A windbreak growth variable can be regarded as a spatial
random process

(Z(s;):i=1,2,...,n] [A1]

where {s,:i=1,2, 3,...,n} represents a windbreak spatial loca-
tions. By the Markov property, the conditional distribution of
a windbreak attribute at a specific location Z(s) given all other
sampling points {Z(s) : j = i} depends only on a subset of

[Z(sj):jGNi;i:1,2,...,n] [A2]

where the Ns are a set of neighborhood sample locations
determined by the distance between point 7 and j with j = 7.
By deriving the Hammersley-Clifford theorem, Besag (1974)
showed that the joint distribution

Pr[Z(s)), Z(sy),...,Z(s,)] [A3]
is determined by the conditional probability distributions
Pr[z]|(z].:j EN)Li=1,2,.mj=1,2,..,m [A4]

A Markov random field is the joint probability distribution in
Eq. [A3] as determined by Eq. [A4] (Cressie and Chan, 1989).
Suppose the density function of the conditional distribution in
Eq. [A4] is of exponential family form, that is, the conditional

density of Eq. [A4] can be denoted by
PI‘[ZI- | (Z] : ] € Nz)] = CXP[A(Zj)Bj(Zi)+C,(Zj)+D,'(Zj)] [AS]

Then a consequence of the Hammerley-Clifford theorem is
that, under regularity conditions, the auto-Gaussian model is a
spatial model for continuous data and has conditional densities

Prlz; | (z,: jEN,)] = ! = expl—(z; —;)* / (20%)]

270 ]
I = 1, 2, Y/
where
b =Elz, |z €N =0 oy + 3 g2, (A7)
JjeN;

is of a linear form. Here {oci :i=1,..., n} are large-scale variation
parameters. The {c : j € N } are small-scale variation parameters
that model spatial dependence. Note that when c, = 0 in Eq.
[A6], the joint independence model results. Furthermore, ¢, =
¢ Lete, =0 and ¢, = 0ifj € N..

Besag (1974) showed that for the auto-Gaussian case,
the expression in Eq. [A6] and [A7] are equivalent to

Elz; |(z]- tJEN)I=n, —‘ch,j(zj —H]')and
i=1

Varlz; | (z; : j € N,)] =0 [A8]




Further, the conditional distribution of Z(sl) is Guassian; 7 =
1,..., n.

Thus, the log of the aboveground volume at sites Sr 8y s
s, Z = [Z(s,), Z(s,),....2(s,)]" is normally distributed provided
that M-'(I - C) is symmetric, positive definite, and invertible;
that is,

Z - N[p,(I—-C)"'M] [A9]
where p = (i, ....., )" captures the large-scale variation; M =
Diag (012,...., 0”2); I is an 7x7 identity matrix; C = {Qj} with ¢

=0ifj ZN; ;=9 f(dl,j); and if j € N, a’l,]_ is a function of dis-
tance between s, and s. Notice that C captures the small-scale
spatial dependence.

Consequently, the negative log-likelihood for a data set
from a distribution in Eq. [A9] is

L(,M,C) = (z/2)In(2)+(1/2)In|(I—-C)"'M)|

[A10]
+(1/2)(Z—p)M I —-C)(Z —p)

which can be minimized with respect to the parameters p, M,

and C.

Modeling Large-Scale Variation

To account for large-scale variation in site and climate conditions,
the linear predictor (p) is used to capture the mean response at a
given site with given responses at neighboring windbreaks:

p=XB [A11]

In Eq. [A11], the design matrix X includes all significant quan-
titative and qualitative predictor variables ranging from wind-
break attributes, soil measurements, and long-term climate
data. We assume that all effects are additive. Site productivity
tends to be linear in effects of soil, climate, and windbreak char-
acteristics, as indicated in the various site index curves found in
the forestry literature (Carmean et al., 1989; Alemdag, 1991).

Modeling Small-Scale Variation

The spatial dependence matrix C is modeled as a function of
the distance between windbreaks. To do this, the range (R¥)
of spatial dependence must first be determined. The correla-
tion structure can be approximated by fitting an appropriate
semivariogram model to the residual from the regression in Eq.
[A11]. The range parameter R* from the semivariogram model
identifies the neighborhoods of the Markov random field. That
is, the spatial dependence is assumed to exist only within a
distance of R* of a given point, and all windbreaks within R*
of the point are in its neighborhood. Windbreaks further than
R*apartare independent. Thus, windbreak ; is in the neighbor-
hood of point 7 (j € N)) if

dy =\t =2 +( = 7)* <R [A12]

where x and y are coordinates of sample locations, and R stands
for the estimated range of spatial dependence.

As defined in Eq. [A9], C represents spatial dependence
with ;= 0ifj N, and €= kpf(dl.].) ifj € N.. Forj € N, define

fldy)=C) d;* [A13]

where C(£) = minimum (d; :j€Ni, i=1,2,.n),and dl] is as
defined in Eq. [A12]. Notice that 4 is a scale parameter, con-
trolling the speed of changes for the spatial dependence with
distance of separation.

Likelihood Based Fitting of the Spatial Model

Cressie and Chan (1989) showed that the maximum likeli-
hood estimator (MLE) for spatial dependence parameter ¢ can
be obtained by first assuming ¢ as fixed and determining the
MLEs of 3 and o2 as

Blp) =X I-H)X) "X (I—-pH)Y [A14]

(@) =YA-H)[I-XX'I-H)'X) 'XU-X)]Y /n [Al5]

where the 7jth element of H is f(dlj) = C(k) dl,]_‘k, and all other
terms are as defined earlier.

Substituting Eq. [A14] and [A15] back into Eq. [A10], the
MLE for ¢ can be obtained as

L(p)=(n/2)In2n)+(n/2)— 1/ Z)i: In(#;)

i=1

+(n/2)In(6*(¢))— (1/2)In(1— 8,)

[A16]

where 61 ,i=1,2,.., nare the eigenvalues of the symmetric H
matrix.

The maximum likelihood ratio test statistic can be used to
test H: o =0vs. H: = 0:

G=2L)—Lp=0)]-x] [A17]

The maximum likelihood ratio test statistic can also be used
to test the composite hypotheses H: #'3 =0vs. H: £'3 =0

because
G=2A(n—p—q)/nll,—L, 1-X; [A18]

where (p+¢) and p are numbers of parameters in the full and
reduced models, respectively.

Spatial Prediction
The variance of the MLE of 3 can be estimated by

Var(®) = (X' I—H) 'X) 'o? [A19]

The predicted value can be obtained through

Y? = XB + (¢H)(Y — XB) [A20]
The variance of the predicted value is estimated using
Var(Y?) =FZF' [A21]

where  F=(I-¢H)X'Z'X)'X'Z")+¢H and
S=(0I—-pH) 'o?.

In Eq. [A20], Y7 is a vector of predicted mean values of log
of aboveground volume at a given age and a given set of loca-
tions; X is a matrix of predictor variables assembled from the
climate and STATSGO data sets based on locations, as well as
planting arrangements in terms of spacing, species composi-
tion, direction, and the expected health condition and survival
rates; 3 and ¢ are parameters estimated from previous data; H
is a matrix whose elements are functions of distance between
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the target locations and previous sites; and Y is the vector of
observed values for the response variable from the previous
data set. A confidence interval for the prediction depends on
all estimated parameters in the prediction equation, especially
the large-scale parameters (3 and spatial dependence parameter
¢. Accuracy of these parameter estimates will increase as more
data become available.
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