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ABSTRACT

Multiple-stemmed tree species are often used in agricultural settings, playing a signifi-
cant role in natural resource conservation and carbon sequestration. Biomass estimation,
whether for modeling growth under different climate scenarios, accounting for carbon
sequestered, or inclusion in naturai resource inventories, requires equations that can accu-
rately describe biomass in these species. Russian-olive (Elaeagnus angusafolia) is a common
tree species used in Great Plains sheiterbelts and has a growth form rypicai to open-grown,
multiple-stemmed tree species. Using shelterbelt-grown Russian-olive, we present a proce-

dure of choosing predictors, formulating models, and determining equations by optimizing
the accuracyin above-groundwoodybiomass estimates associatedwithlaborcosts foropen-
grown, multiple-stemmed tree species. Tlunk (a primary stem) diameter at breast height
and/or tree height were satisfactory for trunk biomass prediction but insufficient for deter-
mining branch (secondary stems and limbs) biomass, a major component of biomass in
these trees. Incorporating the diameters of the three largest stems into the branch biomass
equations improved the prediction satisfactoriiy. TWo sets of equations, each of which
includes two equations for trunk and branches, respectively, are presented. One set has
the cost-saving-preferred (CSP) equations having lower precision but only requiring easily
measured DBH variables of uunk and stems. The other set has the precision-preferred (PP)

equations that have better precision but at the added cost required for taking an additional
measurement of height and the inconvenient measurements of stem diameters at branch
bark ridge. Both sets of equations were used to estimate the biomass of the same repre-
sentative shelterbelts. The results indicated that the PP equations consistently gave better
precision for trunk, branches, and whoie tree than the CSP equations, but reduced the rel-
ative error in whole-tree biomass estimates by only 0.8-7.2%. Uitimateiy, the decision to
use the CSP or the PP equations wili depend on the desired precision level and./or available
budget. The procedure we have presented, along with the chosen predictors and formu-
lated models, provides a reference for estimating above-ground woody biomass of other
open-grolr/n, multiple-stemmed tree species in agricultural settings.
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1. Introduction

Multiple-stemmed tree species are an important component
in conservation plantings, such as fie1d windbreaks and
living snowfences, and are used throughout the Great Plains
(Cunnrngham, 1988) and other regions (Nichoias, 1988). A
good example of these multiple-stemmed tree species is
Russian-olive (Elaeagnus angustiJolia L., Fig. 1A). It has an
irregular globe shape (Fig. 1,{) and multiple stems (Fig" rB). Its
stems, branching out of a primary stem (trunk) near, at, and
even below the groundline (fig. 1C), distinguish Russian-olive
from most single-stemmed trees. And its obvious trunk and
the greater variability in stem diameters distinguish it from
shrubs. Planted extensively during the 1930s (Bagley and
Sutton, 2002), Russian-olive continues to be an important
component of shelterbelts, especially in the drier areas of
the Great Plains (Stannard et al., 2002). Biomass estimation of
these multiple-stemmed trees, whether for modeling gowth
under different climate scenarios [e.g., SEEDSCAPE (Guo, 2000;

Easterling et a1., 2001)], accounting for carbon sequestered
(Montagninr and Nair, 2004), or inclusion in naturai resource
inventories (Chojnacky and Rogers, 1999), requires equations
that can accurately describe biomass in these species, as well
as measurement protocol that can be easiiy and economically
executed.

The methodologies of developing biomass equations for
single-stemmed trees are well documented (Ter-Mikaelian
and KorzukhinECOMOD4577BIB27l997) and are generally
based on trunk diameter and,/or height measurements. Due
to their branchiness, multiple-stemmed species at a given

diameter and/or height have considerable variability in their
biomass. Various methods have been used to develop the
equations for these species; the most common being the
use of allometric relationships between biomass and diam-
eter at different heights. In equations for several species of

small multiple-stemmed trees (diameter <7 cm), Telfer (1969)

and Brown (1976) used diameter at groundline, Gngai and
Ohmann (7977) and Brand anci Smith (1985) used diameter
at a height of 15cm, and Roussopouios and Loomis (1979)

used diameter at a height of 7.37 m (breast height). For small
multiple-stemmed trees (trunk diameter <3.5 cm), understory
trees, and shrubs, other predictors such as crown diameter
(Ohmann et ai., 1976); crown percent cover (Ohmann et al.,
1981); stem number, crown volume, and shrub height (leek,
1970) were used in biomass equations"

Unfortunately, none of these equations are suitable for
multiple-stemmed trees species, especially those growing
under the more open-grown conditions common in agricul-
tural settings, such as shelterbelts, riparian forests, small
forest tracts, and sparse woodlands. with the greater light
exposure and less competition for water and nutrients in
these settings, trees tend to allocate a larger portion of growth
into canopy biomass than would generally occur in a forest
understory (Wrttwer er al., 1999). For Russian-olive occur-
ring in agricultural settings, trunk diameter of up to 33 cm
(our field data) and height of up to 9m (Dirr, 1983; tsagley

and Sutton, 2002) are weII beyond the limits of existing
equations for small trees [diameter <!2.7 cm (Smith, 1985)

or diameter <5cm (Alemdag, 1984)1. Multiple-stemmed trees
have greater variability in stem diameters than typical shrub
species (Hightshoe, 1988) and biomass equations for several
shrub species are not appiicable, either.

To estimate biomass in these open-grown, multiple-
stemmed tree species within agricultural settings, more
suitable relationships of biomass to measured characteristics
need to be developed" Using Russian-olive trees growing in
shelterbelts as a case study, we hypothesize that potential
predictors for biomass of open-grown Russian-olive trees
are diameter of the trunk at the groundline (trunk basai
diameter), diameter of the trunk at breast height (trunk DBH),

diameter of each stem at the branch bark ridge (stem basal

Fig. 1- A Russian-olive tree under open-grown conditions in Montana, USA (A: crown shapel B: multiple stems; C: stems
out of the groundline).
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diameter), diameter of each stem at breast height (stem
DBH), and tree height. We present a procedure of formulating
such a model [biomass function of predictors (independent
variables) with undetermined parametersl using chosen
predictors and determining an equation (biomass function
of predictors with statistically estimated parameters) by opti-
mizing the accuracy in estimates associated with the labor
costs, and thereby providing a reference for use with other
open-grown, multiple-stemmed tree species (e.g., Prunus

Americana Marshall, Malus baccata (t.) Borkh., and E. pungens

Thunb.) in agricultural settings.

2. Data collection

With the assistance of USDA Natural Resources Conservation
Service personnel, 13 shelterbelts containing Russian-olive
were identified in nine counties located in the plain regions
of eastern Montana, USA during leafless seasons in 2003 and
2004 (Thble 1). One plot in each shelterbelt was selected based
on uniformity, having a minimum length of 60 m and including
at least 30 Russian-olive trees. In order to standardize termi-
nology, the largest primary stem was designated as the trunk,
the larger secondary stems (diameter at the branch bark ridge
>2.5 cm) branching out from the trunk below breast height as

stems, and all other above-ground woody portions as limbs.
For each tree within a plot; trunk basal diameter, trunk DBH,

stem basal diameters. and stem DBH variables were measured
to the nearest millimeter. Tfee height was measured to the
nearest 2.5cm. Measurements ranged from 2.5 to 33.4cm in
trunk DBH and from 1.8 to 9.7 m in tree height. The character-
istics of the 1-3 shelterbelts are summarized in Table 1.

One to three trees from each plot, for a total of22 trees, were
destructively sampled for biomass. These trees ranged from
7.8 to 30.7 cm in ffunk DBH and from 2.5 to 8.9 m in height. Each

sampled tree was marked at breast height on the north side of
its trunk and stems, cut at the groundline, and separated into
trunk, stems, and limbs. The trunk was immediately weighed
to the nearest 0.5 kg on either a trailer scale system [three Road
Weigher (Model: RW Series) scales under a trailer] or a Salter
Electrosamson MAN364 scale depending on size. Individual
stems and ali limbs were similarly weighed.

Each trunk was divided into three sections of equal length
(l) and a moisture sample was taken from each section. The
middle diameter of each section (d) was measured to the
nearest millimeter for calculating the section volume @ld2/+)
that was used as the statistical weight of moisture content in
the section. The same protocol was used for each stem. The
limbs were visually grouped into the three basal diameter (d6)

classes: small (ds < 1cm), medium (1 cm < d6 5 2 cm), and large
(ds > 2 cm). From each class, three moisture samples were col-
lected separately from the base, middle, and top sections of
limbs. Each moisture sample was sealed in a plastic bag and
retumed to the laboratory where fresh and oven-dried (in an
air-forced oven at 75"C to a constant weight) weights were
taken for determining moisture content.

The moisture content of each trunk section was weighted
by its volume. The three weighted moisture contents of each
trunk were then averaged over the whole trunk volume to
represent the moisture content of that trunk. The moisture
content of a stem was simiiarlv estimated. The moisture con-
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tents of limb samples from the same trees were arithmetically
averaged to give a moisture content of all limbs from that
tree. The dry weights of the trunk, individual stems, and all
limbs were separately determined using their fresh weights
and moisture contents.

T1lro disks were cut from each trunk: (1) between its base
and 3 cm above; (2) between the breast height and 3 cm above.
TWo disks were similar$ cut from each stem. The trunk base
disk was used to determine tree age. The age of an annual ring
on a trunk base disk was its sequential order outward from its
center. The age of an annual ring on other disks was deter-
mined by referencing to the number of annual rings on the
trunk base disk. For example, the age of the nth ring outward
from the center on a stem disk was n plus the difference in the
number of annual rings between the stem disk and the trunk
base disk. TWo diameters of an annuai ring were measured to
the nearest 0.5 mm in north-south and east-west directions.
The two measurements were averaged to give the diameter at
age of the annual ring. All diameters that were measured from
a disk for different ages, except for the outerrnost one, were
the diameter inside the bark (DIB).

Since the diameter measured from a standing tree that
is used in many biomass equations is the diameter out-
side the bark (DOB), the measured DIB values for predicting
biomass at different ages must be adjusted for bark thick-
ness. This adjustment was done using the linear equation:
DOB=0.118+1.057DIB [PVE=99.8% where PVE is percentage
ofvariance explained by regression (Mayer and Butler. 1993)]

that was developed using data of 98 trunk and stem disks
destructively sampled from the trees.

3. Ghoosingpredictorsrformulating
models, and determining equations

Over 92% of the Russian-olive trees in the 13 plots had
multiple stems with three being most common (Fig. 2). Above-

ground woody biomass allocation of our sampled trees was
32.2+6.9% in trunk, 42.7t7.6% in stems, and 25.1 *8.2% in
limbs. However, each stem contained only 9.3+1.4% of the
total above-ground woody biomass. Although our field mea-
surements were designed to allow the calculation of individual
stem biomass, this adds unnecessary details and we combined
aII stems and limbs into a composite component designated as

branches. This component comprised approximately 67.8% of
whole-tree above-ground woodybiomass. The equations were
developed for the two components: trunk and branches.

A number ofpotential predictors couid be used as indepen-
dent variables in the biomass models for Russian-olive. For

example, a tree with three stems has the nine potential pre-
dictors: one height and eight diameters (trunk basal diameter,
trunk DBH, three stem basal diameters, and three stem DBH
variables). Using these predictors, we can formulate numerous
models; however, testing all possible models is impossible. Our
approach was to formulate as a simple model as possible and
to use as few predictors as possible using ease, reliabiliry and
economics to guide predictor selection and equation determi-
nation. Accordingly, predictors must be chosen in sequential
order of their importance in determining biomass. The most
important predictor is chosen first and used to formulate
the simplest model. If this model is inadequate as indicated
by PVE, additional predictors are sequentially added and the
resulting models are then tested untii PVE increases insignif-
icantly and approaches a constant. If different models with
the same predictors have equivalent accuracies, the simpiest
model will be selected for an optimum equation.

3.7. Tlunk

Potential predictors for trunk biomass are two trunk diameters
(basal diameter and DBH) and height. Our hypothesis is that the

two tjunk diameters are major predictors and. height is an auxil-
iary one, with the turo tru/rk diameters having equivalent abiliry in

1.0

i:-::1 Frequency distribution of stem
numbefs per Russian-olive tfee

- 
Cumulative ffequency dislributaon of
stem numbers oer Russian-oiive tree

+ Cross-sectional area aatio of trunk plus
the first i largesl slems to trr!nk plus
all stems al baeasl height

The number of stems pef tree for frequency distribution/
The seguential number (D of siems in their sizes for cross-sectional area ratio

Eig. 2 - Frequency distribution of stem numbers per Russian-olive tree and cross-sectional area ratio of trunk plus the first i
Iargest stems to trunk plus all stems atbreast height (1.37m) [the data for this figure are summarized from the 13 plots (see

rable 1)1.
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Sequential number Modelsa k=T fortrunk k=B forbranches PVE (%) percentage of variance explained by regression

Ttunk k=T Branches k = B

_b

86.9

90.5

so.s

(1)

(2)

(3)

@\

(s)

(5)

Mr(Doo): ak11D38u

Mp(D16) = ak2tDlb22

Me(Doo, h) : aagt(D|oh)ok32

Mk(D10, h) : apnt(Dtroh)ok42

Mt(Doo, h) : ars1D38s2hoks3

Mr(Dro, h) : ah61Dt162haa63

###';

###
>2.>

38.7

53.7

39.8

a 4111 (k = T or B, i=t,2, 3,. . ., and j = 1, 2, 3, . . .) is a parameter with its first subscript indicating the component of trunk (T) or branches (B); its
second, sequential number of the model with this parameter; and its third, a sequential number of the parameter in a model. A random term
is omitted for any model.

b The model was not furtler considered after analyses of Fig. 3 due to poor relationship of trunk biomass to trunk basal diameter (De6).
c The model was not further considered after analyses of the scatter plots (omitted) of branch biomass against trunk diameters due to obvious

poor relationship of branch biomass to either trunk diameter.

biomass predicion. Therefore, only one diameter rather than
two wiil be chosen as a predictor for trunk biomass. Height
will be added only if necessary. Either diameter more closely
related to trunk biomass can be chosen as a major predictor.
Accordingly, six potential trunk biomass models using a trunk
diameter and/or tree height are listed in Thble 2 (Ter-Mikaeiian
and Korzukhin, 1997). As shown in Fig. 3, trunk biomass is
more closely related to the trunk DBH than to the trunk basal
diameter. The former, therefore, is chosen as a majorpredictor.
Subsequently, models (1), (3), and (5) in Table 2 that use trunk
basal diameter were not further considered for the develop-
ment of trunk equations. If trunk DBH alone is used, the trunk
biomass can be expressed by the simplest model (2) for trunk
in Tabie 2. Using the NLIN procedure of SAS Institute lnc. (1990)
(this procedure was used throughout), model (2) was fitted to
our data of trunk biomass with a pVE of 86.9% (Table 2). By
including height @), two additional models were formulated
as models (4) and (6) for trunk in Table 2 with resulting pVE val-
ues of 90.6 and 90.8% (see Table 2), respectively. Although pVE

values were greater in these two models, model (2) requires
only trunk DBH (D1s) and does not have the added cost ofmea-
suring height. Moreover, since diameter can be more easily
related to age than diameter and height together, model (2)

then becomes the preferred modei both for age-related pre-
dictions and its ability to save labor while stili maintaining a

satisfactory level of precision.
If greater precision is required, modeis (a) and (6) for trunk

(Table 2) could be used. Although both models use the same
two predictors and have nearly the same PVE values, model
(6) requires more parameters (a151, a152, and a153). Estimating
more parameters uses additional degrees of freedom from the
samples, leaving fewer degrees of freedom for standard enor
estimation (Snedecor and Cochran, 1989). Accordingly, when
using model (5) the confidence limits for biomass estimation
might be wider than using model (4). The wider the confidence
limits are, the greater the relative error in estimation (ratio of
the absolute value of confidence limits to estimated mean).

To test this, equations based on models (a) and (6) for trunk
(Table 2) were used to estimate the trunk biomass in three
plots (09-03-01, 105-03-01, and 85-01-03, see Tbble 1) that were
representative of the sampled shelterbelts in terms of species
composition, row arrangement, and diameter range. Thirty
trees from each plot were used for this test. As expected,
the equation based on model (6) produced wider confidence
limits than the other for the same plot. Because the relative
error for biomass estimation based on model (4) was at least

120

(A) (B)

, 
 

'IA 1^l^^^
i A^" | ^ ^ ^ a

alaa. l^l^^ ^ I ^ ^ ^ ^ 
^

20 25 30 30 40 50

diameter at the groundline (cm)Trunk diameter at breast height (1.37 m) (cm) Trunk

Fig. 3 - Russian-olive trunk biomass against (A) trunk DBH (diameter at height of 1.37 m); (B) tnrnk basal diameter (diameter
at tlre groundline).
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0.5% smaller, the equation based on model (6) was dropped
and the one based on model (4) was adopted for biomass
estimation.

3.2. Branches

Potential predictors for branch biomass are trunk basal diam-
eter, trunk DBH, individual stem basal diameters, individual
stem DBH variables, and tree height. Our hypothesis forbranch
biomass prediction is that the major predictors arc the two trunk
diameters with stem diameters and. heightbeing auxiliary ones, with
the fuo diameters from the fiunk or the same stem having equiu-

alent ability in biomass prediction. Accordingly, a branch model
must include one of the two trunk diameters. Stem diame-
ters and/or height may or may not be included depending on
their significance in determiningbranch biomass. If a number
of stem diameters are included. these are all measured at a
consistent height.

Since, the two trunk diameters along with tree height are

the most commonly used predictors for branch biomass (Ter-

Mikaelian and Korzukhin,1997; Cho.lnacky and Rogers, 1999),

the adequacy of models using one or two of these three pre-
dictors needs to be tested first. If these models with trunk
diameter alone and trunk diameter with tree height prove to
be inadequate as indicated by PVE, stem diameters are then
incorporated into the models with trunk diameter and tested
again. If the prediction using a combination of trunk diameter
with stem diameters is improved, tree height would then be

used again and ancillary to this combination for final testing.

3.2.L. Branch models usinq a trunk diameter andlor tree
height
Using the same procedures as described for developing trunk
equations, six potential branch biomass modeis using a trunk
diameter and./or tree height are listed in Thble 2. Similar to
the development of rig. 3, we plotted branch biomass against
trunk basal diameter and trunk DBH, respectively. In both
cases (figures omitted), data were widely scattered, indicat-
ing that neither diameter alone could satisfactorily predict
branch biomass. Further, the value of adding tree height to
a branch biomass model to predict biomass can be assessed

using branch models (3) to (6) in Table 2. The maximum PVE

of all four modeis was oniy 53.7% (see Tbble 2), indicating a

need to also include individual stem diameters as potential
predictors.

3.2.2. Branch models using trunk diameter and stem
diameters
The maximum number of stems including trunk for the
Russian-olivetrees observedin ourplotswas 10 (Fig.2). If trunk
diameter and individual stem diameters are considered sepa-
rately in a model, the number of parameters needed increases
as does the number of samples required for their estimation.
For example, the simplest linear branch biomass (Ms) model
that can separately describe the determination of these diam-
eters in branch biomass is given by

10

Mo = \-ao,D.,-lJ-t"

where as; is a parameter and D1 is a DBH variable. Sub-

script B indicates the branch component; subscript j = 0, trunk
and j = 1, 2, ..., to, the sequentiai number of stems in diam-
eter size. The random error term is omitted in this model
and also in other models throughout this paper. This model,
including 11 diameters (one trunk DBH and 10 stem DBH vari-
ables) as predictors, uses 11 parameters (as;) to describe the
separate contributions of the diameters to determination in
branch biomass. As the complexity of the branch model grows,
the tradeoffs between greater precision and escalating costs
related to increased sampiing requirement need to be con-
sidered. Alternatively, by combiningtrunk diameter and stem
diameters as one independent variable in a model, the number
of parameters needed can be minimized.

The implications of combining trunk diameter and stem
diameters as an arithmetical sum, however, are less clear.
The sum of these diameters squared is linear$ proportional
to the cross-sectional area of the trunk and stems that is a

well-known predictor of biomass (Chiba, 1998). Assuming the
diameter of a larger stem contributes more than the diameter
of a smaller stem in determination of branch biomass. com-
bining trunk diameter with diameters of several of the largest
stems could provide a better estimate of branch biomass.
Thus, we considered the following model:

/ n \4872
fs ^lMs=aszr I ) Du{ | 0)t- 't
\r=u /

where asij is a parameter (the first subscript B indicates the
branch component; the second subscript i, the sequential
number of the model with this parameter; the third subscript
j, the sequential number of the parameter in this model); Dy,

diameter (the first subscript i = 0 or 1 indicates basal diameter
or DBH and the second subscript j = 0 or >0 indicates trunk or
the sequential number of stems in diameter size); and n=0,
1,, 2,.., the number of stems. This model expresses branch
biomass as an exponential function of a combined variable:
the sum of trunk diameter squared and the first n largest stem
diameters squared. According to our hypothesis for testing the
relationship of branch biomass to diameters and height, we
considered the four major combinations of subscripts i and j
for diameter variables in modei (7): (1) i = 0 for any j (all basal
diameters); (2) i= 1 for any j (all DBH variables); (3) i=0 for j=6
and i=1 for j>0 (trunk basal diameter and stem DBH vari-
ables); (a) i=1for j=0 and i=0 for j>0 (trunk DBH and stem
basal diameters). Given that the maximum number of stems
in the 22 destructiveiy sampled trees was six (r1= 6), there were
28 modeis derived from model (7) for our consideration. The
28 models were 6tted to our data and their PVE values were
plotted against the number of stems in Fig. 4.

The PVE values of the models using trunk basal diameter
along with stem basal diameters or stem DBH variables were
less than 56.6% (Fig. 4, lower two curves). In contrast, using
trunk DBH along with stem basal diameters or stem DBH vari-
ables gave higher PVE values (Fig" 4, upper two curves). The PVE

was79.9% for trunk DBH and the first three largest stem basal
diameters and74.8% for trunk DBH and the DBH variables of
the first three largest stems. In both cases, adding additional
stem diameters provided littie increase in PVE values.
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Fig. 4 - Percentages of variance explained by regression for Russian-olive brandr biomass (Ms) equations using a trunk
diameter along with the first n largest stem diameters [(1) diameter at breast height (1.37 m); (2) diameter of a stem at
brandr bark ridge; (3) diameter at the groundlinel.

The top curve in Fig. 2 shows that in the sum of the trunk
and stem diameters squared, 95.2% of. the sum came from
trunk plus the f,rst three largest stems and only 4.8% from
additional stems. This sum from the additional stems was
relatively small and considered negiigible, being contributed
by only 30% of the trees (Fig. 2). Therefore, using trunk DBH
plus the three largest stem basal diameters and trunk DBH
plus the three largest stem DBH variables are two reasonable
approaches to the development ofbranch equations. Although
the former approach gave PVE values greater than the latter
(Fig. 4), it costs more because measuring the needed stem basai
diameters is less convenient than measuring stem DBH. Con-
sidering that there were pros and cons with going with either
approach, we chose to keep both for further assessments that
include height.

3 .2.3 . Incorporating height into branch models using
trunk DBH and stem diameters
Analogous to trunk models (3) to (6) (see Tbble 2), tree height
was incorporated into model (7) to see if it improved branch
biomass estimation. The height-incorporated models were
tested as described earlier for trunk models (a) and (6). Using
the same diameters, PVE values for the height-incorporated
models were slightiy greater (0.57d or lower (2.7%) than the
values for the corresponding models derived from the origi-
nal model (7). Since the assessment of the height-incorporated
models with greater PVE values did not show improvement of
plot estimation by reducing relative errors, tree height was not
included in the final branch models.

4. Application of the developed equations

Using the procedure described above, a pair of equations
was developed for each of the two comDonents: trunk and

branches (see Thble 3). In each pair, one equation requires
DBH variabies only (trunk DBH for trunk or DBH variables
of trunk and the three largest stems for branches) and the
other requires an additional predictor fteight for trunk) or less

conveniently measured variables (stem basal diameters for
branches). The tradeoff between the two equations is having
one which uses easily measured predictors but has a rela-
tively lower PVE value while the other with a higher PVE value
has an additional cost incurred by the extra and inconve-
nient measurements required. The greater PVE an equation
has statistically, the better precision its estimates potentially
have (Mayer and Butler. 1993). Accordingiy, the equation with
greater PVE in each pair is classified as a precision-preferred
(PP) equation and the other as a cost-saving-preferred (CSP)

equation (Tbble 3). In each of the two classes, there are

two equations for trunk and branches, respectively, form-
ing a set of equations for whole tree. The equations can
be used to estimate the biomass of existing shelterbelts
and to predict the biomass of a sheiterbelt at different
ages.

4.7. Estimating thebiomass of existing shelterbelts

As examples, the data from the three plots that were used
to compare trunk model (4) to trunk model (6) in Table 2 in
Section 3.1 were also used to estimate the biomass of the
three shelterbelts. Substituting the plot data into each set
of equations in Thble 3, values for the three plots were esti-
mated for trunk, branches, and whole tree in kilograms per
100-m length (Tbble 4). Within a plot, the PP equations consis-
tently gave better precision (narrower 95% confidence limits)
for each component estimate than the CSP equations. How-
ever, relative errors in whole-tree biomass estimated using
the PP equations were only 0.8-1.2% lower than those using
the CSP eouations.

using trunk DBil' ' and stem basal diameiers
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Ttunk biomass, M1 (kg) Branch biomass, Me (kg)

Ranges in diameter and height

Precision-preferred

Cost-saving-preferred

7SDnS31cm,3<h<10m

Mr : 0.1368(Dioh)o 
7sse

Mr :0.3019D1J33

r80 s D?o * io;, < 1300cm2. r+o s io1, < 1100cm2

PVE 90.6%

PVE 86.9%

Ma = 6.572, ro-, (oi. * 
Por,) 

'-"

Ms:s.o67" r-,(Iol,)""

PVE79.7%

PVE74.7yo

D16 (cm) is diameter of trunk at breast height (1.37 m); D;; (cm), j > 0, diameter of the jth largest stem atbranch bark ridge (i = 0) or at breast height
(i = r); h (m), heighq PVE, percentage of variance expiained by regression.

As indicated by the 95% confident limits or relative error
in Tbble 4, the precision of biomass estimated using the same
equation for any component varied by shelterbelt. This was
expected as the precision of a biomass equation varies with
different values of diameters and/or tree height (Bates and
watts, 1988) and the ranges of tree sizes in the three plots were
very different (Table r). Since this precision at a given diameter
and tree height is determined by the number of trees mea-
sured (Snedecor and Cochran, 1989), measuring more trees
will increase precision (narrows the 95% confident limits and
reduces the relative error), but will require more labor. This
warrants calculating the minimum number of trees needed
to attain a certain levei of precision prior to going to the
field; this calculation being based on the desired relative error,
diameters, and heights. The desired relative error is given by
the precision requirement for estimation. As it is relatively
easier to obtain information on the range in trunk DBH val-
ues than for individuai trunk diameters, stem diameters, and
heights, we developed the frgures (Fig. 5.{ and B) forboth sets

of equations that can be used to approximate the number of
trees needed for freld measurements based on the range of
trunk DBH values and the desired relative error ofwhole-tree
biomass.

The figures were developed by again running the NLIN pro-
cedure ofSAS lnstitute Inc" (1990) for each equation in Table 3

using the data from the destructively sampled trees, followed
by data from the 13 plots (Tbble L). The resulting component
biomass estimates along with their variances were averaged

for each of the five ranges of trunk DBH values: 9-1.L, L4-16,
19-21,24-26, and 29-31 cm, representing the median values of
10, 15, 20, 25, or 30 cm for the five ranges, respectively. The for-
mula of Snedecor and Cochran (1989) for sample size was then
used to develop the relationship between the relative error in
whole-tree biomass estimates and the number of measured
trees (Fig. 5). For example, if the relative error is given to be

Iess than 5% for a whole-tree biomass estimate using the CSP

equations for trees over a trunk DBH range of 20-25cm, this
number is 65 (see fig. 5B). If the curves in Fig. 5 are not avail-
able for a range of trunk DBH in the shelterbelt to be measured,
this number can be interpolated between the curves.

4.2. Predicting the shelterbelt biomass at drfferent ages

For predicting the biomass of a shelterbelt at different ages,

the diameters and height in the equations in Table 3 need to be

related to age using freld data. Since the PP equations reduced
the relative errorby such a smail value (0.8-1.2% forwhole-tree
biomass, see Tbble 4) and require additional costs related to
height measurements, which by themselves brings in greater

variability with age, only the CSP equations were used for the

PIot numberb Cost-saving-preferred equations (CSP) Precision-preferred equations (PP)

Tfunk Branch Whole tree RX' (%) Ttunk Branch Whole tree RE (%)

09-03-01
105-03-1

85-01-O3

1938 * 159 3019 + 385

7773 + 742 2463 t 367
657 * r73 1208 + 425

4957 X.4r7
3636 * 388
1875 * 458

8.4

to.7
24.5

7.4

9.5

23.7

1905 * 139 2994 *336
1!27*t2L 2408+372
607*t47 1143t386

4898 + 353

3529 +334
7744 + 473

a The 95% confidence limits were calculated based on the standard deviations of individual tree biomass estimates that were outputted from
the NLIN procedure of SAS Institute Inc. (1990).

b Using the plot numbers, the characteristics of the three shelterbelts can be found in Table X.

" RE is relative error in a whole-tree biomass estimate.
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age-related biomass prediction. Accordingly, trunk DBH alone
and the sum ofthe trunk and three largest stem DBH variables
squared need to be separately related to age.

The shelterbelt represented by plot 7t-O4-O1. (see Table 1)

was 56 years old and had annual diameter data collected
from three harvested trees. For the three trees, the average

trunk DBH was 24.6cm and the average sum of the trunk
and three largest stem DBH variables squared was 970cm2.
The average trunk DBH was representative of the shelterbelt
(see Table 1). Therefore, the data from these three trees were
used to predict the biomass ofthe shelterbelt at different ages.

Both averages from the three trees at different ages were sep-
arately substituted into the CSP equations to give the biomass
of trunk and branches at ages from 10 to 56. Using these
data, the above-ground woody biomass values of a one-row,
2-m-spacing Russian-olive tree shelterbelt with different sur-
vival rates were plotted against age in Fig. 6. For exampie, the
biomass of this type shelterbelt at age of 50 is between 7.8 and
8.7 metric tonnes per 100-m length for a survival rate between
85 and 95%.

5. Discussions

5.1" Applicability of reported, mod,els to open-groutn,
multiple-stem med tree species

Biomass models for the species of single-stemmed trees,
understory multiple-stemmed trees, and shrubs were a

valuable source for our study as those for open-grown,
multiple-stemmed tree species in literature are very lim-
ited to non-existent. The models for single-stemmed trees
using trunk DBH and,/or height as predictors as per Ter-
Mikaelian and Korzukhin (1997) work well for trunk but not
for branches in our study trees (see 'Ihble 2). However, in these
trees, trunk biomass comprises only a minor portion (32/) of
the total above-ground woody biomass as compared to the
branch biomass (68%). The accuracy of the branch estimates
any equation will therefore geatly influence the accuracy
of the overall above-ground biomass estimates for these
species.
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Fig. 5 - Relative errors in a whole-tree biomass estimate for the five trunk DBH values of 10, 15, 2Or25, and 30cm against
the number of Russian-olive trees to be measured in a plot when (A) precession-preferred equations or (B)

cost-saving-preferred equations are used.

(A) Precision-preferred equations

(B) Cost-saving-preferred equations
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Fig. 5 - Above-ground woody biomass of a single-row Russian-olive shelterbelt at difierent ages in Philips county,
Montana, USA (spacing in a rour is 2m and soil is Telsad-foplin loam).

The biomass models of understory multiple-stemmed tree
species that use trunk basal diameter (Cho.lnacky anci Rogers"
1999), DBH (Roussopoulos and Loomis, 1979), or trunk diame-
ter at other heights (Grigal and Ohmann, 1977) are essentially
similar to those in Thble 2 for single-stemmed tree species
but fail to satisfactorily fit to our data for Russian-olive. In
open-grown, multipie-stemmed species, the individual stems
are generally smailer and have iess biomass than its main
trunk, but not as much as the stems of undersory multiple-
stemmed trees. As a result, trunk diameter alone may not be
able to explain branch biomass in our study species as well as

in understory muitiple-stemmed tree species. Accordingly, we
also assert that trunk diameter alone at other heights would
not be a good predictor, either.

The biomass models of shrub species mostly use crown
diameter (Ohmann et a1., 1976), shrub height, crown volume,
stem number (Peek, 1970), or crown percent cover (Ohmann
et ai., 1981). The dependence of branch biomass on crown
dimensions (crown diameter, tree height, and crown volume)
was preliminarily tested using the data of 13 trees measured
in 2@3, but resuits were insignificant. As discussed in the
introduction, an open-grown, multiple-stemmed tree gener-
ally has the greater variability in stem diameter than a typical
shrub. The biomass in its crown may not distribute spatially
as uniform as in a canopy of a shrub and its crown dimen-
sions may not have as good relationship to branch biomass
as to the shrub crown dimensions. Crown dimensions along
with a trunk diameter could be an altemative, although mea-
suring ali of the related variables is labor intensive and may
not be economically feasible. In the case of Russian-olive, as

with many of the other muitiple-stemmed tree species used in
windbreaks, the trees soon become taller than human height.
This height, along with the multiple stems in the lower portion
of the plant, makes it extremely difficult to measure crown
percent cover in these species. It was for these reasons that

we did not include shrub biomass models using crown percent
cover or test crown percent cover in our biomass predictions.

Apparently, none ofthe above models used a predictor that
would clearly explain the branch biomass in an open-grown,
multipie-stemmed tree species. The success of developing
branch equations for these tree species depends on using one
or more predictors that better explain the branch biomass.
Our branch equations were determined by comparing the 34
models (six in Tbbie 2 and 28 in Frg. 4) in terms of optimiz-
ing the accuracy in estimates associated with labor costs. In
the branch equations we then selected (Table 3), the predic-
tor is a composite predictor (sum of trunk DBH squared pius
three largest stem diameters separately squared). Based on
this predictor, our branch equations work reasonably better
for the tree species in this study. Representing 95.2% of the
cross-sectional area of trunk and stem components support-
ing all branches (Fig" 2), this predictor works weII to explain
branch biomass because "the plant weight above a given posi-
tion is in proportion to the stem cross-sectional area at that
position" (Chiba, 1998)"

5.2. Equations, models, and procedure

Our equations were developed using the data from 22 destruc-
tively sampled Russian-olive trees. Apparently, the sample
size was insufficient for the development of more widely
applicable equations. For wider application and greater accu-
racy, these equations will need to be caiibrated using data
from more destructively sampled Russian-olive trees over a
larger geographical area. This is particularly true for small size
trees (trunk DBH < 10cm) if the number of trees measured for
biomass estimation is inadequate (Fig. 5). This low accuracy is
a result of the insufficient number of our destructively sam-
pled trees for biomass and by the relatively low precision of
the equations in this range of trunk DBH"

" 7o is survival rate (number-ratio of
existing trees to initially planted trees)
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Even though the developed equations have limited appli-
cability in other regions, the models from which the equations
were developed and the procedure through which the equa-
tions were determined provide a reference to development of
biomass equations for other open-grown, multiple-stemmed
tree species in agricultural settings. Equations in Tbble 3 were
developed using trunk DBH and three Iargest stem diameters"
The use of three stem diameters may prove inadequate or
excessive for use with other multiple-stemmed species. We
designated the stem number (n) in model (7) as a variable
rather than a constant in order to provide flexibility in accom-
modating other open-grown, multiple-stemmed tree species.

The procedure is a reasoning process of choosing predictors
that are easy to measure and iikely to have good relationship
to biomass, formulating models that may potentially be used
for biomass equations, and determining equations that opti-
mize a balance of accurary and labor costs. This procedure
can be followed for other open-grown, multiple-stemmed tree
species.

5.3. Tlunkbasal diameter and trunk DBH for biomass
prediction

Although we hypothesized that trunkbasal diameter and DBH

would have the same degree of significant relationship to
biomass, Figs. 3 and 4 show this is not the case. Since diam-
eter is derived from field-measured circumference, this lack
of significant relationship between trunk basal diameter and
biomass may be due to the greater irregularity of trunk circum-
ference at groundline than at breast height; thereby producing
a less representative measure of the average diameter within
the circumference.

The inconsistenry between our hypothesis and the data
in Fig. 4 may also be due in part to trunk basai diameter
squared being a much larger value than trunk DBH squared,
in this case resulting in a ratio of 3.0. tikewise, the ratio of the
average trunk basal diameter squared to the average sum of
stem basal diameters squared is 3.0 and to the average sum
of stem DBH variables squared is 5.2 indicating that trunk
basal diameter squared dominates the diameters squared in
model (7). Because the two parameters (as71andas72)in model
(7) describe the determinations of trunk diameter and stem
diameters together in biomass, this dominance may distort
the relationship of stem diameters to branch biomass.

As such, possible branch biomass models able to separate
the determination of trunk basal diameter from stem diame-
ters in branch biomass are given by

/ " \oB83
Ms:aserD6gs,{rri I *'

\i:' /

and

/ " \aBe4
Ms = ase1Dfffis2 * ass3l )-pi I tgl-"l Z/ 

"\j=1 /

where the two parameters: ds11 arrd aBi2 (i=8 or 9) describe
the determination of trunk basal diameter in branch biomass

and the parameters: ag13 and/or asla describe the determi-
nation of stem diameters in branch biomass" To evaluate
these models, the PVE of all 36 models that can be gener-

ated from models (8) and (9) [For i=0 or 1 andn=L,2,...,
or 6, 12 models from model (8) and 12 models from model
(9); and for ase3 = I or 4se4 = f , model (9) generates additional
12 modelsl were examined. The maximum PVE was 61.4%

which was greater than those calculated for model (7) using
trunk basal diameter plus stem diameters (Fig" a). This indi-
cates that the determination of stem diameters in branch
biomass in model (7) was distorted by trunk basal diame-
ter. Nonetheless, PVE values of models (8) and (9) are still
much smaller than those of the models from which the branch
equations in ?able 3 were developed, indicating a less signif-
icant relationship of trunk basal diameter to branch biomass
than trunk DBH. The iess significant relationship, although
less supportive to our hypothesis, does not invalidate our
equations as the validity of the hypothesis is based on most
of the trees (Cholnacky and Rogers, 1999) and was therefore
used to reasonably initiate the equation development in this
study.

5.4. Additional error from use of branch equations

Our branch equations use trunk DBH and the three largest
stem diameters. If a tree has more than three stems similar
in size, the three largest stems may be incorrectly identified
based on visualization in the field, causing an additional error
in biomass estimates beyond equation precision. This error
should be negligible if the stems are similar in their sizes.

While only 30% of the trees in our samples had more than
three stems (Frg. 2), the maximum of this error (using the
forth largest diameter instead of the third largest one) was
estimated using the branch equations in two ways: (1) by sub-
stituting trunk DBH and up-to-three largest stem diameters
into the equations; (2) by substituting trunk DBH, up-to-two
largest stem diameters, and the fourth largest stem diameter,
if any, into the equations. Relative to the plot branch biomass
estimated normally, the maximum error in plot branch
biomass estimated in the second way was 1.2%, contributing
0.8% of the relative error in plot whole-tree biomass. Given the
low occurrence that the third largest stem is confused with
the fourth one for all trees in a plot, this relative error should
be negligible.

6. Summary and conclusion

Discussions have been initiated on how agroforestry and
other tree-based buffer plantings might be incorporated
into carbon accounting tools for agricultural lands, such
as COMET VR (USDA NRCS, 2005) and C-Lock (Zimmerman
et a1., 2005). Modeling efforts, such as SEEDSCAPE, are

trSring to predict gowth and succession of woody plant
species under different climate and management scenar-
ios (Easterling et a1", 2001; Cuo et al., 2004). Both types
of efforts require biomass equations that can accurately
reflect these species under the more open-grown condi-
tions in these agricultural settings. The effort reported
here presents a procedure for developing equations that
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can more accurately estimate biomass of the open-grown,
multiple-stemmed tree species currently used in these plant-
ings. Using destructively and non-destructively sampled data
from 13 shelterbelts, we determined that trunk DBH and./or
height were satisfactory for trunk biomass prediction in
Russian-olive. but insufficient to determine branch biomass
because of its greater variability at a given diameter and./or
height. Incorporating the diameters of several of the largest
stems into the models improved branch biomass prediction
satisfactorily.

The procedure produced two sets of equations: cost-
saving-preferred (CSP) and precision-preferred (PP) (see

Table 3). Each set includes two equations for trunk and
branches, respectively. The CSP equations use only con-
veniently measured DBH variables of trunk and stems as

predictors; requiring less labor and cost but having little lower
precision than PP equations. The PP equations have better pre-
cision than CSP, but require labor and costs for the additional
predictor of tree height and less convenient measurements
of stem basal diameters. while the PP equations consistently
gave better precision (narrower 95% confidence limits and
smaller relative error) in estimatingbiomass in representative
shelterbelts (Table 4), the relative errors in whole-tree biomass
were only slightly lower (0.8-1.2%) than those using the CSP

equations. The extra cost associated with the PP equations
may not therefore be justified. The CSP equations also have
the advantage of being more easily used to predict the biomass
at different ages (Fig. 6). Ultimately, which set of equations
will be used depends on the desired accurary and./or available
budget.

Although the specific application of the equations devel-
oped in this research is limited to open-grown Russian-olive
trees in Montana, the models and procedure for these
equations have valuable applications to other open-grown,
multipie-stemmed tree species. Using the procedure laid out
for shelterbelt-grown Russian-olive trees, equations and pre-
dictors can be modified accordingly for application with other
open-grown, multiple-stemmed tree species in agricultural
settings.
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