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Abstract

Root-pruning is generally recommended as an appropriate treatment to reduce competition for soil water and/or
nutrients and suppression of crop yield in areas adjacent to windbreaks. Several recent studies suggest, however,
that factors other than soil water might be causing yield reduction at the interface. For two consecutive years, we
evaluated root-pruning effects on soil water at the windbreak/crop interface under both cropped (soybean [Gly-
cine max (L) Merr.] variety ‘Iroquois’, 1997) and non-cropped (1998) conditions in Mead, Nebraska, USA. Volu-
metric soil water content near the windbreaks was systematically measured at various soil depths, distances from
the windbreak, and windbreak exposures using Time Domain Reflectometry (TDR). Overall differences in soil
water content between root-pruned and non-pruned plots in soybean were smaller in magnitude at all distances in
both the west (windbreak on the east side) and the east (windbreak on the west side) exposures in 1997, com-
pared with the non-cropped condition in the south exposure in 1998. With a soybean crop in 1997, volumetric
soil water content in the east exposure averaged 2.3% greater in the top 30 cm of the soil profile at a distance of
0.75H (H = windbreak height) into the field from the windbreak when compared to the non-pruned treatment. In
the west exposure, however, the differences were undetectable at corresponding distance and depth. The increase
in soybean yield in root-pruned plots corresponded well with the observed differences in soil water content at
various distances, especially in the east exposure. Under a non-cropped condition in 1998, soil water content in
the root-pruned plots was significantly greater than the non-pruned plots in the top 45-cm profile, averaging 3.3%
at 0.75H and 2.2% at 1.0H. Beyond 1.0H, the increase was not significant. These results agree with the previ-
ously reported range of crop yield suppression near windbreaks, indicating that soil water competition between
the crop and windbreak is highly related to, and probably plays a leading role in yield suppression within the
competition zone.

Introduction

Field windbreaks constitute an important component
of sustainable cropping systems around the world.
With the ever-increasing demand for food production,
the limitation on arable land resources, the global
change in climate, and deterioration of the environ-
ment, windbreak technology provides a vital tool for

sustainable agricultural systems (Bagley 1988; Burel
1996; Brandle et al. 2000). Field windbreaks reduce
wind speed in the zone behind (leeward) the wind-
break. As a result, the potential threat of wind ero-
sion is reduced and microclimate conditions for crop
production are enhanced (Van Eimern et al. 1964;
Rosenberg 1979; McNaughton 1988). Windbreaks
take a portion of the land out of crop production and
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entail an initial investment for establishment. How-
ever, widespread research and overwhelming evi-
dence indicate that windbreaks lead to a net increase
in total crop yield and crop quality (Stockeler 1962;
Brandle et al. 1984; Kort 1988; Baldwin 1988). As a
result, the net economic return is positive, input costs
are reduced, and environmental conditions are im-
proved (Brandle et al. 2000).

Although the vast majority of crop studies have
indicated a positive response to windbreaks, there ap-
pears to be a general reluctance by producers to di-
vert even a small proportion of their field to wind-
breaks. One reason for this reluctance comes from the
variable yield reports in the literature. Another is re-
lated to the competition at the interface between the
windbreak and the crop (Ong 1991; Ong and Huxley
1996). Although yield suppression exists only within
distances extending to 1.0–1.5 times the height of the
windbreak (Kort 1988), and yield enhancement be-
yond this distance more than compensates for this
suppression (Brandle et al. 1984, 1992), farmers still
cite competition as a major reason not to include
windbreaks in their farming systems (Rasmussen and
Shapiro 1990). Windbreak root-pruning is an effective
way to address farmer’s concerns because it alleviates
yield suppression in both alley cropping and field
windbreak systems over a wide range of geographi-
cal regions (Stockeler 1962; Lindquist 1971; Naugh-
ton and Capel 1982; Ong 1991).

Kowalchuk and de Jong (1995) reported that com-
petition for soil water, rather than nutrients, consti-
tuted the major reason for crop yield suppression of
spring wheat in western Saskatchewan in years when
growing season rainfall was below normal, but when
soil water was abundant the effect was barely notice-
able. Lyles et al. (1984) compared root-pruning vari-
ous types (species) of single-row field windbreaks in
Kansas and found significant differences in soil water
content adjacent to different windbreak species, espe-
cially during fallow years. They further reported that
winter wheat yield increased up to 60% following
root-pruning. Ssekabembe et al. (1994) reported that
black locust (Robina pseudoacacia L) hedgerows de-
creased soil water content between tree rows by 8%
to 32% depending on soil type. In contrast, no major
differences in soil water content were detected if the
tree rows were separated from the cropping area us-
ing underground partitions.

Rasmussen and Shapiro (1990) reported that root-
pruning increased both soybean yield (32% at 7.5 m
from the windbreak) and corn yield (18% at 7.5 m

from the windbreak) when all root-pruning treatments
were compared with non-pruned plots. Soil sampling
for gravimetric water content at various distances
from the windbreaks revealed no differences among
treatments at three sampling depths and three dis-
tances from the windbreak. They attributed the lack
of differences to above-normal precipitation.

The mixed results from previous attempts to quan-
tify competition for soil water by windbreaks may
have resulted from the confounding effect caused by
concurrent crop transpiration, and differences in sam-
pling frequency and numbers. Another factor may
have been measurement methodology.

Gravimetric sampling was used for measuring soil
water content in most of these studies (Stockeler
1962; Lindquist 1971; Lyles et al. 1984; Rasmussen
and Shapiro 1990; Ssekabembe et al. 1994). While
direct soil sampling is one of the most accurate meth-
ods, there are some obvious limitations, including
limited effective sampling volume per sample, small
sample numbers, soil disturbance, and the impossibil-
ity of repeated measurements. These limitations make
gravimetric determination problematic for use in ex-
periments that require frequent measurements. For
these reasons, most previous studies have drawn con-
clusions from a limited number of sample events with
a relatively small number of soil samples per treat-
ment (Lyles et al. 1984; Rasmussen and Shapiro
1990; Korwar and Radder 1994).

In recent years, TDR has developed into one of the
more reliable methods for indirectly measuring volu-
metric soil water content (Pearcy et al. 1989). Its
working principles and field applications are well-
documented (Topp et al. 1984; Dasberg and Nadler
1987). In addition, its ease of use, large effective
sensing volume per sample, and ability to provide re-
peated measurement, made TDR the method of
choice for our study.

We hypothesized that tree root-pruning would in-
crease the amount of soil water available to the crop
within the windbreak competition zone and conse-
quently enhance crop biomass and yield. However,
increased crop biomass can consume the additional
soil water saved by restricting extraction of available
soil water by roots of the windbreak tree. Conse-
quently, the effect of root-pruning on soil water con-
tent may, or may not, be detectable by measuring soil
water content depending on the balance of soil water
supply and demand, time of measurement, and stage
of crop development.
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The objectives of this study were to determine the
spatial distribution of soil water at the windbreak/crop
interface, the effect of tree root-pruning on the sea-
sonal dynamics of soil water content, and to compares
the results under cropped and non-cropped condi-
tions.

Materials and experimental design

Field conditions and experimental layout for 1997

The study was conducted at the University of Nebras-
ka-Lincoln Agricultural Research and Development
Center (ARDC) near Mead, Nebraska, USA (41°29�
N, 96°30� W, and 354 m above sea level). The soil
was a typical Argiudoll (Sharpsburg silty clay loam),
recently reclassified in the Aksarben series (National
Cooperative Soil Service, NRCS 1997). The experi-
mental fields were essentially flat with slopes less
than 2%.

Three windbreak systems, each with windbreaks
along the east, west, and south sides of the field, were
used in 1997. Each windbreak consisted of two rows
of trees. Within-row spacing was 2 m and between-
row spacing was 4 m. One row consisted of alternat-
ing pairs of green ash (Fraxinus pennsylvanica L.)
and Austrian pine (Pinus nigra Arnold). The other
row consisted of alternating pairs of green ash and
eastern redcedar (Juniperus virginiana L.). Planted in
1966, the windbreak systems averaged 12 m in
height. On 9, May 1997 [DOY (Day Of Year) 129],
soybean [Glycine max (L) Merr.] variety ‘Iroquois’
was planted in rows 76 cm apart, parallel to the wind-
breaks. No irrigation was applied.

A strip-split-plot design was used with root-prun-
ing and distances from the tree line as the whole plot
and split-plot factors. Within each windbreak system,
tree/crop interfaces at both the east and west side of a
windbreak were subdivided into four pairs of two
plots perpendicular to the tree row. One plot from
each of the four pairs was randomly selected and root-
pruned to a depth of 0.75 m with a single 0.75-meter-
long ripper knife at 0.6H from the first tree row (H =
windbreak height). Within each plot, soil water sam-
pling locations were systematically arranged along
the centerline perpendicular to the windbreak at dis-
tances of 0.5H, 0.75H, 1.0H, and 1.25H. At each sam-
pling location, two pairs (30-cm and 45-cm long) of
TDR waveguides were vertically installed using a pi-
lot tool, giving an integrated value of volumetric soil

water content over a 30 cm or 45-cm profiles, respec-
tively. Volumetric soil water content was measured 7
times at approximately biweekly intervals from DOY
155 (June 4) to DOY 255 (September 12) with a por-
table TDR system (Trase, Model 6050X1, Soil water
Equipment Corp., CA). Precipitation was measured at
5H from the nearest windbreak in each of the three
windbreak systems. In a companion study (Nieto
1998), soybean leaf area index was measured using a
Licor LAI 2000 Plant Canopy Analyzer (Licor Inc.,
Lincoln, NE). Biomass was determined at vegetative
stage V-6 and reproductive stage R7 (Ritchie et al.
1988). Grain yield at harvest was determined at each
soil water measurement location.

Field conditions and experimental layout for 1998

In 1998, the soil water content patterns were reevalu-
ated using an east-west oriented two-row windbreak
under non-cropped conditions. The windbreak was 32
years old, 11-m tall, and 240-m long. Trees in the
south row consisted of eastern redcedar alternated
with Scots pine (Pinus sylvestris L.) on a 2-m within-
row spacing. The north row was composed entirely
of eastern redcedar on a 2-m within-row spacing. Be-
tween row spacing was 4 m. A 40-m-wide strip along
the south of the windbreak was kept free of vegeta-
tion during the entire study period. At each end of the
windbreak a 30-m buffer zone was left to reduce end
effects. The remaining area was subdivided into four
paired plots (as replications) perpendicular to the tree
row. Within each replication, one plot was randomly
selected for root-pruning while the other served as a
control (non-pruned). Windbreak sections within the
four selected plots were root-pruned to a depth of
0.75 m at 6.6 m (0.6H) from the southern tree row. In
each of the eight plots, two sets of TDR waveguides
(30 cm and 45 cm) were vertically installed at five
locations along the centerline perpendicular to the
windbreak at relative distances of 0.5H, 0.75H, 1.0H,
1.25H, and 1.5H. Volumetric soil water content was
measured 32 times between June and September with
the portable TDR system for the 0–30 cm and 0–45
cm soil profiles.

Precipitation was measured at each of the five dis-
tances corresponding to soil water sampling points in
four replications using plastic rain gauges (Forestry
Supplier Inc.) Twenty-two rain events were recorded
during the entire study period.
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Statistical analysis

Soil water content was the dependent variable and
root-pruning, distance from the tree line, and depth of
the soil profile, as well as their two- and three-term
interactions were examined for fixed effects. With
replication as a random variable, the SAS MIXED
Procedure was used for the computation of least
square means and separation of differences between
treatment components and their interactions (SAS In-
stitute 1996).

Given the large differences in soil water content
associated with windbreak orientation, separate statis-
tical analyses were conducted on an exposure basis
for both 1997 and 1998. With replications as a ran-
dom factor, the mean soil water content for each treat-
ment factor (pruning, distance, and depth) as well as
their high level interactions at 0.75H and 1.0H were
separated using the LSMEANS statement with the
SAS MIXED Procedure. Degrees of freedom for each
least square mean were approximated using Satterth-
wait’s method. Samples of soybean leaf area index,
biomass, and yield components were taken at corre-
sponding locations to soil water measurement in each
replication. SAS MIXED Procedure was used sepa-
rating treatment main effects and that of their inter-
actions (Nieto 1998).

Results and discussion

1997

Under a soybean crop in 1997, soil water content
profile in the west exposure was consistently greater
than in the east exposure (P � 0.07). The volumetric
soil water content averaged over all seven measure-
ments (DOY 155, 169, 188, 199, 233, 247, 255) was
2.2% higher in the west exposure due primarily to the
higher soil water contents of the 0–30 cm and 0–45
cm profiles at 0.75H (Figure 1). Date of measurement
had a significant effect on soil water content profile
(P < 0.0001), but no significant interaction was found
between measuring date and exposure.

Temporal variation in soil water of the 45-cm pro-
file was closely related to the weather conditions pre-
ceding the time of sampling and the stage of crop
development. For the first set of measurements in
early June, the overall soil water content was greater
because water accumulated during the non-crop-sea-
son was still available and transpiration from the

young crop plants was low. As crop development pro-
ceeded, leaf area index increased, and hence water
uptake increased as evidenced by the decline of mean
soil water content during July and early August. By
mid- to late-September, the vegetative growth and
pod-fill of the soybean plants slowed down and finally
ceased, causing an overall decline in water consump-
tion. Subsequent precipitation recharged the soil pro-
file resulting in an overall increase in soil water con-
tent (Figure 1).

Another temporal trend for both exposures was the
consistently greater mean soil water content in the top
45-cm soil profile as compared to the top 30-cm pro-
file (Figures 2A vs. 2B and 2C vs. 2D) (P < 0.0001).
In the west exposure (Figures 2C and 2D) soil water
content for the top 30-cm profile averaged 26.4% in
contrast to 29.5% for the top 45-cm profile (P <
0.001). The corresponding mean soil water contents
for the two profile depths on the east exposure were
24.6% and 26.7% (P < 0.001) (Figures 2A and 2B),
respectively. While the mean soil water content in the
45-cm profile reflected soybean water extraction pat-
terns at different stages of development, temporal
fluctuations observed for the 30-cm profile were most
likely due to a greater concentration of fine roots of
the crop (Casper and Jackson 1997) as well as more
frequent rainfall recharge in the upper soil profile
layer.

Figure 1. Temporal trend of the mean soil water profile in the
45-cm profile over all measurement locations when soybean crop
was involved in Mead, Nebraska, USA in 1997. Error bars repre-
sent standard errors for the mean soil waters.
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Root-pruning effects on soil water content in
different exposures
Root-pruning had different effects on soil water con-
tent in the two windbreak exposures under cropped
conditions in 1997. In the west exposure, no signifi-
cant moisture profile differences were found at any
distance or profile depth in root-pruned plots com-
pared to corresponding locations in the non-pruned
plots throughout the season (Figures 2C and 2D).
Overall soil water contents for both root-pruned and
non-pruned plots were almost identical (P � 0.75).
Although mean soil water content at 0.75H for root-
pruned plots was 1.2% and 0.3% higher in the 0–30
cm and 0–45 cm profiles, respectively, than that of the
non-pruned plots, neither was statistically significant
at the 5% level. At 1.0H and 1.25H the effect of root-
pruning was undetectable over either profile (Figures
2C and 2D). As expected, distance from the wind-
break had a significant effect (P � 0.03). For all

measurement dates, soil water content in the profile
increased with distance from the tree line in both root-
pruned and non-pruned plots. If extraction of water
by tree roots contributed to the steeper gradient in
non-pruned plots, microclimate variation might be
more responsible for the observed soil water gradient
in root-pruned plots. Such microclimate variations in-
clude windbreak shading and crown effects on rain-
fall distribution.

The east exposure exhibited similar soil water pat-
terns to that of the west exposure in terms of distance
and depth, but root-pruning caused a complicated ef-
fect of interactions (Figures 2A and 2B). Root prun-
ing by distance interaction was stronger compared to
those in the west exposure (P < 0.07). A close look at
the pruning by distance by depth interaction (P �
0.18) indicates that at a distance of 0.75H, mean soil
water contents for the top 30-cm and 45-cm profiles
were 2.3% and 2.0% greater in root-pruned plots than

Figure 2. Mean soil water profiles as a function of windbreak exposure, pruning treatment, relative distance from the windbreak, and depth
of the soil (30 cm and 45 cm) in Mead, Nebraska, USA in 1997. Data include all seven sampling dates; H = windbreak height; Error bars
represent standard errors for the mean values.
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in the non-pruned plots. By t-test, their associated
probability levels were 0.03 and 0.06, respectively. At
1.0H and 1.25H distances, the corresponding differ-
ences dropped to 1.6% and –0.6% for the 30-cm pro-
file compared to 0.2% and 0.7% for the 45-cm profile,
and neither difference was statistically significant.

Soil water differences between exposures
The differences in soil water content between expo-
sures may have resulted from windbreak shading and
consequent differences in leaf area index and crop
biomass. Close to the windbreak in the west exposure,
total biomass and leaf area index (LAI) at different
development stages (V6 & R7) and final yield were
lower than for the east exposure (Table 1). Larger
biomass would translate into higher water consump-
tion through crop transpiration, resulting in lower soil
water content in the east exposure throughout the
growing season. Compared to the west exposure, the
better soybean growth performance in the east expo-
sure nearer the windbreak (0.5H and 0.75H distances)
may have resulted from a more favorable diurnal light
pattern (Rosenberg et al. 1983). Moisture stress is
relatively less severe during the early morning than
in the early afternoon because of lower air tempera-
tures. Less moisture stress, coupled with favorable
light conditions create better growth conditions and
may result in better use of available soil water for
biomass accumulation in the east exposure. In con-
trast, the west exposure had favorable light conditions
beginning later in the morning and mostly in the af-
ternoon when air temperatures were often higher than
optimum and there was a greater potential for plant
moisture stress (Nieto 1998). In addition, plants close
to the windbreak in the west exposure were shaded
during the morning when temperatures were more fa-
vorable. Consequently, favorable temperature and
light conditions were not synchronized in the west

exposure and may account for lower yields. Lower
crop production would mean lower water consump-
tion, which, in turn, may translate into higher soil
water content.

Root-pruning and soybean yield
Leaf area index, biomass, yield, and yield compo-
nents for soybean were significantly increased as a
result of root-pruning (Table 1). Overall soybean
yields in root-pruned plots were 81 kg ha−1 and 154
kg ha−1 greater in the west and east windbreak expo-

Table 1. Soybean mean leaf area index (LAI), mean biomass at V6 and R7 (t ha−1), mean grain yield (t ha−1), and mean yield component
(pods per plant) as a function of root pruning (Prun: Pruned plots; Non-P: Non-pruned plots) and relative distance from the windbreaks
during 1997 growing season.

Distance/Treatment LAI Biomass (V6) Biomass (R7) Grain Yield Pods/Plant

Prun Non-P Prun Non-P Prun Non-P Prun Non-P Prun Non-P

0.5H 1.17 0.88 0.35 0.26 1.91 1.91 715.3 567.4 18.6 12.8

0.75H 2.09 1.70* 0.93 0.78* 4.26 3.53n 2180.4 1767.0* 31.8 26.3*

1.50H 3.15 3.14n 1.33 1.31n 7.25 6.85n 3098.4 2982.7n 38.5 36.6n

* Significantly less than those observed at corresponding locations in the root-pruned plots at the 5% level. n Not significantly different from
those observed at corresponding locations in the root-pruned plots at the 5% level. V6: Soybean phenological stage of sixth node. R7: Soy-
bean physiological maturity.

Figure 3. Rainfall distribution as measured in the south exposure
from June 12 (DOY 163) to October 24 (DOY 297)(A), and the
accumulative precipitation at different relative distances from the
windbreak (B) in Mead, Nebraska, USA in 1998. H = windbreak
height.
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sures than in the corresponding non-pruned plots. At
distances of 0.75H, yield was up to 192 kg ha−1 and
874 kg ha−1 greater, corresponding to 12.2% and
40.8% in the west and east windbreak exposures, re-
spectively. At distances of 1.50H, the yield responses
to root-pruning were not statistically significant at the
5% level in either windbreak exposure. These soy-
bean yield responses corresponded well with the mea-
sured soil water content patterns with respect to root-
pruning, distance from the tree line, and windbreak
orientation. The similar patterns for soil water content
and soybean yield suggest that soil water extraction
by the trees was responsible for the crop yield sup-
pression at the windbreak/crop interface. They also
indicate that the degree of windbreak/crop competi-
tion for soil water was a function of windbreak ori-
entation as well as distance from the windbreak. In
this particular study, the reduction in soil water con-
tent due to extraction by windbreaks was most severe
within a distance of 1.0H and was more prominent in
the east than in the west exposures.

1998

Distribution of precipitation at the interface
Daily rainfall distribution by distance for the 22 rain
events recorded from June to October are shown in
Figure 3. Because no significant differences were ob-
served beyond 1.0H distances, the average precipita-
tion values recorded at distances of 1.0H, 1.25H, and
1.5H were used as the reference for comparing pre-
cipitation reductions at 0.5H and 0.75H. Statistical
analysis indicated that cumulative rainfall at 0.5H and
0.75H was 14% (P < 0.001) and 2.9% (P < 0.05) less,
respectively, than the average at 1.0H, 1.25H, and
1.5H distances.

Of the 22 rain events, mean rainfall at 0.5H was
below the average for the 1.0H, 1.25H, and 1.5H sam-
pling locations for 10 events (P < 0.05), while the
other 12 events showed no significant differences be-
tween distances. Darnhofer et al. (1989) suggested
that rainfall modification by windbreaks usually oc-
curs within one-tree height of the windbreak, depend-
ing on wind direction. The majority of the events
during this study occurred with southwesterly or
southeasterly winds, which have less effect on south-

Table 2. Comparison of daily mean soil water (%) and the associated probability levels between root-pruned and non-pruned plots in the top
45-cm profile at various relative distances from the windbreak in 1998. H = windbreak height, T is T-Value, and Pr < ¦ t ¦ represents the
probability of t statistics greater than the observed T-Value.

DOY Distance Non-pruned Pruned Difference SE Pr < ¦ t ¦

224 0.75H 26.84 29.44 2.59 1.72 0.1382

1.00H 28.66 31.19 2.53 1.72 0.1483

1.25H 29.86 31.10 1.24 1.72 0.4739

225 0.75H 26.77 29.86 3.09 1.82 0.0968

1.00H 28.81 31.28 2.46 1.82 0.1825

1.25H 30.13 31.68 1.55 1.82 0.3979

226 0.75H 26.62 28.66 2.04 1.62 0.2136

1.00H 29.63 32.10 2.46 1.62 0.1351

1.25H 29.53 32.23 2.71 1.62 0.1014

227 0.75H 26.79 29.73 2.93 1.71 0.0927

1.00H 28.88 31.24 2.35 1.71 0.1745

1.25H 31.61 33.08 1.46 1.71 0.3948

254 0.75H 26.04 29.88 3.84 1.23 0.004***

1.00H 28.42 29.95 1.53 1.23 0.2204

1.25H 30.68 32.07 1.39 1.23 0.2624

255 0.75H 25.93 29.99 4.06 1.24 0.002***

1.00H 28.84 30.72 1.88 1.24 0.1356

1.25H 30.72 31.68 0.95 1.24 0.4456

256 0.75H 26.15 29.77 3.62 1.34 0.01***

1.00H 28.73 31.44 2.71 1.34 0.0498**

1.25H 31.97 32.36 0.40 1.34 0.8306

** Significant at 5% level; *** Significant at 1% level. SE = Standard error.
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facing than north-facing interfaces. Because the 0.5H
distance was located inside the pruning line and usu-
ally does not contribute to yield production, precipi-
tation was considered to play a marginal role in soil
water content at the other distances during the 1998
field experiment. Nevertheless, the windbreak edge
effect on precipitation could intensify and extend
deep into the field depending on the windbreak height
and orientation with respect to the dominant wind di-
rection during rain events and on how much lateral
movement of soil water occurred.

Soil water content in the pruned and non-pruned
treatments
Mean daily soil water contents in the root-pruned
plots were on average 2.04–4.06%, 1.53–2.71%, and
0.4–1.75% greater at the 0.75H, 1.0H, and 1.25H lo-
cations, respectively, than in the corresponding non-
pruned plots. For some days of measurement, the dif-
ferences in soil water content at the 0.75H distance
were statistically significant at the 5% level while
those at the 1.0H and 1.25H locations were not sig-
nificant (Table 2). Between June and September, the
mean soil water content in both pruned and non-
pruned treatments followed a similar trend in both the
30-cm and 45-cm profiles (Figure 4). No treatment
differences in soil water content were detected in the
30-cm profile. These results differed from those in
1997 and were most likely related to windbreak ori-
entation and lack of a crop cover. On the other hand,
mean soil water contents in the 45-cm profile in the
root-pruned plots were consistently greater at the
0.75H and 1.0H locations than at the corresponding
locations in the non-pruned plots. But, the effect of
root pruning was not as significant at the 1.25H dis-
tance.

The effect of root pruning on soil water content in
the 30-cm and 45-cm profiles may be related to dif-
ferences in cultivation and/or bare soil evaporation.
The spring cultivation in 1998 may have disturbed the
upper layer of the soil, reducing the number of fine
tree roots and making it less likely that the windbreak
thoroughly exploited this region of the profile. Fine
roots immediately below the cultivation zone may
have remained undisturbed in the non-pruned treat-
ment, leading to a significant decline in soil water
content caused by the extraction of windbreak roots.
This hypothesis was supported by observations of the
vertical distribution of tree roots in four, 75-cm-deep
access pits dug at each 0.75H locations, which
showed that fine root densities were greater in the

30–45 cm soil layer than in the top 30-cm profile.
With no crop cover and no other vegetation, soil
evaporation from the upper profile could become a
dominant factor that could easily overshadow the
treatment effect, especially as the time since the last
rainfall event increased.

Daily soil water content for the period from Au-
gust 13 (DOY 225) through September 13, 1998
(DOY 256) illustrates the similarity of the 0.5H and
1.5H distances for pruned and non-pruned plots (Fig-
ures 5A and 5B). Root-pruning showed a limited ef-
fect on soil water dynamics at 1.5H and 0.5H. Be-
cause the 0.5H location was inside the pruning line,
it appears that the bulk of the tree root system may
not extend out to distances of 1.5H in the adjacent
field. The soil profile at the 0.5H location, on the
other hand, was most likely occupied by an extensive
tree root system capable of exhausting available soil
water and maintaining soil water content at low level
for most of the time except immediately follow rain-
fall events capable of fully recharge the soil profile.
Between distances of 0.75H and 1.5H, however, the
moisture gradient in non-pruned plots dropped nearly

Figure 4. Mean soil water as a function of pruning treatment, rela-
tive distance from the windbreak, and depth of the soil profile in
the south exposure in Mead, Nebraska, USA in 1998. Means cal-
culated with SAS mixed procedure for all measurements taken over
the entire season. Error bars represent standard errors for the
means. H = windbreak height.
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3% more than at corresponding distances in the root-
pruned plots. The average soil water content at the
0.75H location for root-pruned plots was 3.3% higher
than non-pruned plots (P < 0.05). As a result, for the
majority of dates, soil water contents in root-pruned
plots at the 0.75H distance were similar to levels at
1.25H in the non-pruned plots. At 1.0H the difference
declined to 2.2% (P < 0.1). Beyond the range of one-
tree height the differences were smaller and statisti-
cally non-significant.

Strong bare soil evaporation could have dampened
or even overwhelmed the effect of root-pruning on
soil water content, especially for measurements taken
in the upper soil profile and/or under persistent
drought conditions. With no crop cover in 1998, we
examined the effect of root-pruning only to the south
of the windbreak where bare soil evaporation was
highest among all four windbreak directions due to
high net radiation and dominant south and southwest
wind at the test location. Consequently, the magnitude
of soil water enhancement due to root pruning found
in this study could be more pronounced if directions
other than the south were included.

Conclusions

The two-year study under cropped or non-cropped
conditions indicated that root-pruning of windbreaks
altered the spatial distribution of soil water in the root
zone within the windbreak/crop interface. Root-prun-
ing decreased extraction of available soil water by the
windbreak trees and prompted an increase in crop
biomass, which, in turn, induced an increase in water
consumption through crop transpiration. The reparti-
tioning of available soil water between the windbreak
and the adjacent crop may not be reflected in a net
increase of soil water content in the root-pruned zone
as assumed in previous studies, but rather in the in-
crease in the biomass of the adjacent crop.

When a soybean crop was involved, a statistically
significant increase in soil water content (2.3%, P <
0.03) in root-pruned plots was detected only in the top
30-cm profile at the 0.75H distance in the east expo-
sure. The differences in the 30-cm profile at other
measurement locations and in the 45-cm profile were
less obvious or undetectable for most times during the
growing season. Soybean leaf area index, biomass,
and grain yield, on the other hand, increased substan-
tially as a consequence of root-pruning. When the
confounding effect of crop transpiration was removed

Figure 5. Mean soil water as a function of relative distance from the windbreak and date of measurement in the top 45-cm soil profile of the
non-pruned (A) and pruned plots (B) in Mead, Nebraska, USA in 1998. Contour lines represent mean soil water. Inverse distance weighting
was used for interpolation between sampling points. H = windbreak height.
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by excluding crop vegetation, soil water content in
the root-pruned plots was consistently higher than
non-pruned plots and the magnitude of differences
was greater than that of the cropped condition. The
most significant soil water increase in root-pruned
plots occurred in the 45 cm (3.3% at 0.75H and 2.2%
at 1.0H) rather than in the 30-cm soil profile as ob-
served when a soybean crop was involved possibly
because of the strong effect by direct soil evaporation.

Both cropped and non-cropped experiments indi-
cated that severe competition for soil water between
the windbreak and the crop existed up to 1.0H from
the tree line, which in turn led to a significant yield
reduction in this competition zone. In root-pruned
plots, soybean yield increased up to 48% while soil
water content was 3.3% higher at the 0.75H distance
when crop transpiration was excluded. We suggest
that this result occurred because root-pruning reduced
or eliminated the soil water gradient immediately be-
yond the pruning line and diverted additional avail-
able soil water from the windbreak to the crop.

Soil water competition was the major reason for
yield suppression at the windbreak/crop interface, as
evidenced by the increment of crop biomass and yield
components and by a significant increase in soil wa-
ter content when crop transpiration was excluded.
Thus, root-pruning can effectively reduce yield sup-
pression at the windbreak/crop interface.
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