

Eastern Montana (EM) Variant Overview of the Forest Vegetation Simulator

October 2021

Beartooth Mountain Range, Custer National Forest (Jason McGaughey, FS-R1)

Eastern Montana (EM) Variant Overview of the Forest Vegetation Simulator

Authors and Contributors:

The FVS staff has maintained model documentation for this variant in the form of a variant overview since its release in 1981. The original author was Ralph Johnson. In 2008, the previous document was replaced with this updated variant overview. Gary Dixon, Christopher Dixon, Robert Havis, Chad Keyser, Stephanie Rebain, Erin Smith-Mateja, and Don Vandendriesche were involved with this major update. Robert Havis cross-checked information contained in this variant overview with the FVS source code. In 2009, Gary Dixon, expanded the species list and made significant updates to this variant overview.

FVS Staff. 2008 (revised October 5, 2021). Eastern Montana (EM) Variant Overview – Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 63p.

Table of Contents

Authors and Contributors:	ii
1.0 Introduction	1
2.0 Geographic Range	2
3.0 Control Variables	3
3.1 Location Codes	3
3.2 Species Codes	4
3.3 Habitat Type, Plant Association, and Ecological Unit Codes	5
3.4 Site Index	5
3.5 Maximum Density	6
4.0 Growth Relationships	8
4.1 Height-Diameter Relationships	8
4.2 Bark Ratio Relationships	9
4.3 Crown Ratio Relationships	10
4.3.1 Crown Ratio Dubbing	10
4.3.2 Crown Ratio Change	13
4.3.3 Crown Ratio for Newly Established Trees	14
4.4 Crown Width Relationships	14
4.5 Crown Competition Factor	16
4.6 Small Tree Growth Relationships	17
4.6.1 Small Tree Height Growth	18
4.6.2 Small Tree Diameter Growth	23
4.7 Large Tree Growth Relationships	24
4.7.1 Large Tree Diameter Growth	25
4.7.2 Large Tree Height Growth	34
5.0 Mortality Model	39
5.1 SDI-Based Mortality Model	39
5.2 Prognosis-Type Mortality Rate	40
6.0 Regeneration	44
7.0 Volume	47
8.0 Fire and Fuels Extension (FFE-FVS)	49
9.0 Insect and Disease Extensions	50
10 O Literature Cited	51

1	1.0 Appendices	. 54
	11.1 Appendix A. Distribution of Data Samples	54
	11.2 Annendix B. Habitat Codes	56

Quick Guide to Default Settings

Parameter or Attribute	Default Setting				
Number of Projection Cycles	1 (10 if using FVS GUI)				
Projection Cycle Length	10 years				
Location Code (National Forest)	108 – Custer National Forest				
Plant Association Code	260 (PSME/PHME)				
Slope	5 percent				
Aspect	0 (no meaningful aspect)				
Elevation	55 (5500 feet)				
Latitude / Longitude	Latitude	Longitude			
All location codes	46	111			
Site Species	Varies by habitat type				
Site Index	Varies by species and habitat type				
Maximum Stand Density Index	Species Specific				
Maximum Basal Area	Varies by habitat type				
Volume Equations	National Volume Estimator Library	1			
Merchantable Cubic Foot Volume Sp	pecifications:				
Minimum DBH / Top Diameter	LP	All Other Species			
All other location codes	6.0 / 4.5 inches	7.0 / 4.5 inches			
Stump Height	1.0 foot	1.0 foot			
Merchantable Board Foot Volume S	pecifications:				
Minimum DBH / Top Diameter	LP	All Other Species			
All other location codes	6.0 / 4.5 inches	7.0 / 4.5 inches			
Stump Height	1.0 foot 1.0 foot				
Sampling Design:	Sampling Design:				
Basal Area Factor	40 BAF				
Small-Tree Fixed Area Plot	1/300 th Acre				
Breakpoint DBH	5.0 inches				

1.0 Introduction

The Forest Vegetation Simulator (FVS) is an individual tree, distance independent growth and yield model with linkable modules called extensions, which simulate various insect and pathogen impacts, fire effects, fuel loading, snag dynamics, and development of understory tree vegetation. FVS can simulate a wide variety of forest types, stand structures, and pure or mixed species stands.

New "variants" of the FVS model are created by imbedding new tree growth, mortality, and volume equations for a particular geographic area into the FVS framework. Geographic variants of FVS have been developed for most of the forested lands in United States.

The Eastern Montana (EM) variant has the distinction of being the first variant calibrated for a geographic area outside of Northern Idaho. It was developed in 1980 by Ralph Johnson, who worked for Region 1 in State and Private Forestry and covers all forested lands east of the continental divide in Montana. Since its initial development, many of the functions have been adjusted and improved as more data has become available and model technology has advanced. In 2009 this variant was expanded from its 8 original species to 19 species.

To fully understand how to use this variant, users should also consult the following publication:

Essential FVS: A User's Guide to the Forest Vegetation Simulator (Dixon 2002)

This publication may be downloaded from the Forest Management Service Center (FMSC), Forest Service website. Other FVS publications may be needed if one is using an extension that simulates the effects of fire, insects, or diseases.

2.0 Geographic Range

The EM variant was fit to data representing forest types in central and eastern Montana. Data used in initial model development came from forest inventories, silviculture stand examinations, and permanent plots from the Northern Region of the Forest Service. Distribution of data samples for species fit from this data are shown in Appendix A.

The EM variant covers forest areas in central and eastern Montana. The suggested geographic range of use for the EM variant is shown in figure 2.0.1.

Figure 2.0.1 Suggested geographic range of use for the EM variant.

3.0 Control Variables

FVS users need to specify certain variables used by the EM variant to control a simulation. These are entered in parameter fields on various FVS keywords available in the FVS interface or they are read from an FVS input database using the Database Extension.

3.1 Location Codes

The location code is a 3-digit code where, in general, the first digit of the code represents the USDA Forest Service Region Number, and the last two digits represent the Forest Number within that region. In some cases, a location code beginning with a "7" or "8" is used to indicate an administrative boundary that doesn't use a Forest Service Region number (for example, other federal agencies, state agencies, or other lands).

If the location code is missing or incorrect in the EM variant, a default forest code of 108 (Custer National Forest) will be used. Location codes recognized in the EM variant are shown in tables 3.1.1 and 3.1.2.

Table 3.1.1 Location codes used in the EM variant.

Location Code	Location		
102	Beaverhead National Forest		
108	Custer National Forest		
109	Deerlodge National Forest		
111	Gallatin National Forest		
112	Helena National Forest		
115	Lewis and Clark National Forest		

Table 3.1.2 Bureau of Indian Affairs reservation codes used in the EM variant.

Location Code	Location
7101	Cheyenne River Reservation (mapped to 108)
7102	Fort Berthold Reservation (mapped to 108)
7103	Spirit Lake Reservation (mapped to 108)
7107	Lake Traverse Reservation (mapped to 108)
7108	Standing Rock Reservation (mapped to 108)
7109	Turtle Mountain Off-Reservation Trust Land (mapped to 108)
7301	Blackfeet Indian Reservation (mapped to 115)
7302	Crow Reservation (mapped to 108)
7303	Fort Belknap (mapped to 115)
7304	Fort Peck Indian Reservation (mapped to 115)
7305	Northern Cheyenne Indian Reservation (mapped to 108)
7307	Rocky Boy's Reservation (mapped to 115)

3.2 Species Codes

The EM variant recognizes 17 species, plus two other composite species categories. You may use FVS species codes, Forest Inventory and Analysis (FIA) species codes, or USDA Natural Resources Conservation Service PLANTS symbols to represent these species in FVS input data. Any valid western species code identifying species not recognized by the variant will be mapped to a similar species in the variant. The species mapping crosswalk is available on the FVS website variant documentation webpage. Any non-valid species code will default to the "other hardwood" category.

Either the FVS sequence number or species code must be used to specify a species in FVS keywords and Event Monitor functions. FIA codes or PLANTS symbols are only recognized during data input and may not be used in FVS keywords. Table 3.2.1 shows the complete list of species codes recognized by the EM variant.

When entering tree data, users should substitute diameter at root collar (DRC) for diameter at breast height (DBH) for woodland species (Rocky Mountain juniper).

Table 3.2.1 Species codes used in the EM variant.

Species	Species	FIA	PLANTS		
Number	Code	Code	Symbol	Scientific Name ¹	Common Name ¹
1	WB	101	PIAL	Pinus albicaulis	whitebark pine
2	WL	073	LAOC	Larix occidentalis	western larch
3	DF	202	PSME	Pseudotsuga menziesii	Douglas-fir
4	LM	113	PIFL2	Pinus flexilis	limber pine
5	LL	072	LALY	Larix lyallii	subalpine larch
6	RM	066	JUSC2	Juniperus scopulorum	Rocky Mountain juniper
7	LP	108	PICO	Pinus contorta	lodgepole pine
8	ES	093	PIEN	Picea engelmannii	Engelmann spruce
9	AF	019	ABLA	Abies lasiocarpa	subalpine fir
10	PP	122	PIPO	Pinus ponderosa	ponderosa pine
11	GA	544	FRPE	Fraxinus pennsylvanica	green ash
12	AS	746	POTR5	Populus tremuloides	quaking aspen
				Populus balsamifera ssp.	
13	CW	747	POBAT	trichocarpa	black cottonwood
14	BA	741	POBA2	Populus balsamifera	balsam poplar
				Populus deltoides ssp.	
15	PW	745	PODEM	monolifera	plains cottonwood
16	NC	749	POAN3	Populus angustifolia narrowleaf cottonwo	
17	PB	375	BEPA	Betula papyrifera	paper birch
18	OS	299	2TN		other softwood ²
19	ОН	998	2TB		other hardwood ²

¹Set based on the USDA Forest Service NRM TAXA lists and the USDA Plants database.

²Other categories use FIA codes and NRM TAXA codes that best match the other category.

3.3 Habitat Type, Plant Association, and Ecological Unit Codes

Habitat type codes that are recognized in the EM variant are listed in Appendix B table 11.2.1. If the habitat type code is blank or not recognized, the default 260 (PSME/PHMA) will be used. Habitat type is used for all forests in this variant.

Habitat types used in this variant are also mapped to one of the original 30 habitat types used to develop the Northern Idaho (NI) variant. This mapping is shown in Appendix B table 11.2.2. This mapping facilitates setting default values for some of the variables and enables this variant to use some of the NI variant equations and coefficients.

3.4 Site Index

Site index is used in some of the growth equations for the EM variant. Users should always use the same site curves that FVS uses, which are shown in table 3.4.1. If site index is available, a single site index for the whole stand can be entered, a site index for each individual species in the stand can be entered, or a combination of these can be entered.

Table 3.4.1 Site index reference curves for species in the EM variant.

		BHA or			
Species	Reference	TTA*	Base Age		
DF	Monserud, (1985)	ВНА	50		
WB, WL, LM,					
LP, OS	Alexander, Tackle, and Dahms (1967)	TTA	100		
ES, AF	Alexander, (1967)	ВНА	100		
PP	Meyer, (1961.rev)	TTA	100		
AS, PB	Edminster, Mowrer, and Shepperd (1985)	ВНА	80		
RM	Any juniper 100 year base total age curve	TTA	100		
GA, CW, BA,					
PW, NC, OH	Any hardwood 100 year base total age curve	TTA	100		
LL Does not use site index					
* Equation is b	ased on total tree age (TTA) or breast height age (BHA)				

If site index is missing or incorrect, the default site species and site index values are assigned as shown in table 3.4.1 from the NI habitat mapping index shown in Appendix B table 11.2.2.

Table 3.4.1 Default site index values by species and site species by NI habitat mapping index in the EM variant.

NI	Site Index										
Habitat Mapping Index	WB, WL, OS	PP	DF	LP	ES	AF	LM, LL	RM	AS, PB	GA, CW, BA, PW, NC, OH	Site Species
1	35	46	26	46	46	46	25	6	36	44	PP
2	51	68	44	68	68	68	29	8	43	57	PP

NI	Site Index										
Habitat Mapping Index	WB, WL, OS	PP	DF	LP	ES	AF	LM, LL	RM	AS, PB	GA, CW, BA, PW, NC, OH	Site Species
3	57	76	49	76	76	76	35	10	51	76	DF
4	60	80	51	80	78	80	35	10	50	62	DF
5	48	64	41	75	64	64	32	9	44	72	DF
6	55	73	47	73	73	73	34	10	49	72	DF
7	45	67	39	72	61	61	35	10	48	71	DF
8	38	67	33	70	51	51	32	9	46	67	DF
9	44	59	38	63	59	59	27	7	41	55	DF
10	60	80	51	80	80	80	39	11	55	86	ES
11	64	85	42	80	85	85	37	9	46	67	ES
12	47	62	40	62	68	62	32	11	52	80	DF
13	47	62	40	62	68	62	36	12	59	95	DF
14	47	62	40	62	68	62	41	12	58	93	DF
15	47	62	40	62	68	62	41	12	58	93	DF
16	47	62	40	62	68	62	41	12	58	93	DF
17	47	62	40	62	68	62	43	13	60	98	DF
18	47	62	40	62	68	62	38	11	54	84	AF
19	47	62	40	62	68	62	39	11	55	86	AF
20	53	70	46	74	75	70	32	9	46	67	AF
21	50	67	43	76	68	67	36	10	49	73	AF
22	57	76	49	76	78	76	34	10	52	80	AF
23	49	65	42	68	80	76	34	10	52	80	DF
24	57	76	42	68	80	76	32	9	46	67	AF
25	49	65	42	68	80	76	36	10	52	80	DF
26	49	65	42	65	67	65	36	10	52	80	AF
27	47	62	30	35	64	62	36	10	52	80	AF
28	41	55	36	51	53	55	26	7	38	49	AF
29	26	35	23	35	45	35	22	6	33	36	DF
30	60	80	51	80	78	80	26	7	38	49	DF

3.5 Maximum Density

Maximum stand density index (SDI) and maximum basal area (BA) are important variables in determining density related mortality and crown ratio change. Maximum basal area is a stand level metric that can be set using the BAMAX or SETSITE keywords. If not set by the user, a default value is calculated from maximum stand SDI each projection cycle. Maximum stand density index can be set for each species using the SDIMAX or SETSITE keywords. If not set by the user, a default value is assigned as discussed below.

The default maximum SDI is set based on the user-specified, or default, habitat type code or a user specified basal area maximum. If a user specified basal area maximum is present, the maximum SDI for all species is computed using equation {3.5.1}; otherwise, the maximum SDI for all species is assigned from habitat type as shown in Appendix B, table 11.2.2. Maximum stand density index at the stand level is a weighted average, by basal area, of the individual species SDI maximums.

 ${3.5.1} SDIMAX_i = BAMAX / (0.5454154 * SDIU)$

where:

SDIMAXi is the species-specific SDI maximum

BAMAX is the user-specified basal area maximum

SDIU is the proportion of theoretical maximum density at which the stand reaches

actual maximum density (default 0.85, changed with the SDIMAX keyword)

4.0 Growth Relationships

This chapter describes the functional relationships used to fill in missing tree data and calculate incremental growth. In FVS, trees are grown in either the small tree sub-model or the large tree sub-model depending on their diameter.

4.1 Height-Diameter Relationships

Height-diameter relationships in FVS are primarily used to estimate tree heights missing in the input data, and occasionally to estimate diameter growth on trees smaller than a given threshold diameter. In the EM variant, height-diameter relationships are a logistic functional form, as shown in equation {4.1.1} (Wykoff and others, 1982). The equation was fit to data of the same species used to develop other FVS variants. Coefficients for equation {4.1.1} are shown are shown in table 4.1.1.

When heights are given in the input data for 3 or more trees of a given species, the value of b_1 in equation $\{4.1.1\}$ for that species is recalculated from the input data and replaces the default value shown in table 4.1.1. In the event that the calculated value is less than zero, the default is used.

$$\{4.1.1\} HT = 4.5 + \exp(b_1 + b_2 / (DBH + 1.0))$$

where:

HT is tree height

DBH is tree diameter at breast height

 $b_1 - b_2$ are species-specific coefficients shown in table 4.1.1

Table 4.1.1 Coefficients for the logistic Wykoff equation {4.1.1} in the EM variant.

Species		
Code	Default b₁	b ₂
WB	4.1539	-4.212
WL	4.1539	-4.212
DF	4.4161	-6.962
LM	4.1920	-5.1651
LL	4.76537	-7.61062
RM	3.2	-5.0
LP	4.5356	-5.692
ES	4.7537	-8.356
AF	4.5788	-7.138
PP	4.4140	-8.907
GA	4.4421	-6.5405
AS	4.4421	-6.5405
CW	4.4421	-6.5405
BA	4.4421	-6.5405

Species		
Code	Default b ₁	b ₂
PW	4.4421	-6.5405
NC	4.4421	-6.5405
PB	4.4421	-6.5405
OS	4.1539	-4.212
ОН	4.4421	-6.5405

4.2 Bark Ratio Relationships

Bark ratio estimates are used to convert between diameter outside bark and diameter inside bark in various parts of the model. The equation is shown in equation $\{4.2.1\}$ and coefficients $\{b_1 \text{ and } b_2\}$ for this equation by species are shown in table 4.2.1.

 $\{4.2.1\}$ BRATIO = $b_1 + (b_2 / DBH)$

Note: if a species has a b₂ value equal to 0, then BRATIO = b₁

where:

BRATIO is species-specific bark ratio (bounded to $0.80 \le BRATIO \le 0.99$)

DBH is tree diameter at breast height (bounded to $DBH \ge 1.0$) b₁ and b₂ are species-specific coefficients shown in table 4.2.1

Table 4.2.1 Coefficients for bark ratio equation {4.2.1} in the EM variant.

Species			
Code	b ₁	b ₂	Equation Source
WB	0.934	0	NI western hemlock
WL	0.934	0	NI western hemlock
DF	0.867	0	NI Douglas-fir
LM	0.969	0	NI western redcedar
LL	0.937	0	NI subalpine fir
RM*	0.9002	-0.3089	
LP	0.969	0	NI lodgepole pine
ES	0.956	0	NI Engelmann spruce
AF	0.937	0	NI subalpine fir
PP	0.890	0	NI ponderosa pine
GA	0.892	-0.086	CR cottonwood
AS	0.950	0	UT aspen
CW	0.892	-0.086	CR cottonwood
BA	0.892	-0.086	CR cottonwood
PW	0.892	-0.086	CR cottonwood
NC	0.892	-0.086	CR cottonwood
PB	0.950	0	UT aspen
OS	0.934	0	NI western hemlock
ОН	0.892	-0.086	CR cottonwood

4.3 Crown Ratio Relationships

Crown ratio equations are used for three purposes in FVS: (1) to estimate tree crown ratios missing from the input data for both live and dead trees; (2) to estimate change in crown ratio from cycle to cycle for live trees; and (3) to estimate initial crown ratios for regenerating trees established during a simulation.

4.3.1 Crown Ratio Dubbing

In the EM variant, crown ratios missing in the input data are predicted using different equations depending on tree species and size. Live trees less than 1.0" in diameter and dead trees of all sizes for whitebark pine, western larch, Douglas-fir, limber pine, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine, quaking aspen, paper birch, and other softwood use equations {4.3.1.1} and {4.3.1.2}. Live trees less than 3.0" in diameter and dead trees of all sizes for subalpine larch use equations {4.3.1.1} and {4.3.1.2}. Equation coefficients are found in table 4.3.1.1.

$$\{4.3.1.1\} X = R_1 + R_2 * DBH + R_3 * HT + R_4 * BA + R_5 * PCCF + R_6 * HT_{Avg} / HT + R_7 * HT_{Avg} + R_8 * BA * PCCF + R_9 * MAI + N(0,SD)$$

$$\{4.3.1.2\}$$
 CR = 1 / $(1 + \exp(X + N(0,SD)))$ where absolute value of $(X + N(0,SD)) < 86$

where:

CR is crown ratio expressed as a proportion (bounded to 0.05 < CR < 0.95)

DBH is tree diameter at breast height

HT is tree height

BA is total stand basal area

PCCF is crown competition factor on the inventory point where the tree is established

HT_{Ava} is average height of the 40 largest diameter trees in the stand

MAI is stand mean annual increment

N(0,SD) is a random increment from a normal distribution with a mean of 0 and a

standard deviation of SD

 $R_1 - R_9$ are species-specific coefficients shown in table 4.3.1

Table 4.3.1 Coefficients for the crown ratio equation {4.3.1} in the EM variant.

	Species Code						
Coefficien	WB, WL,						
t	LM, LP, PP	LL	DF, ES, AF	AS, PB	os		
R_1	-1.66949	-0.89014	-0.426688	-0.426688	-2.19723		
R_2	-0.209765	-0.18026	-0.093105	-0.093105	0		
R_3	0	0.02233	0.022409	0.022409	0		
R ₄	0.003359	0.00614	0.002633	0.002633	0		
R ₅	0.011032	0	0	0	0		
R ₆	0	0	-0.045532	-0.045532	0		

	Species Code							
Coefficien	WB, WL,							
t	LM, LP, PP	LL	DF, ES, AF	AS, PB	os			
R ₇	0.017727	0	0	0	0			
R ₈	-0.000053	0	0.000022	0.000022	0			
R ₉	0.014098	0	-0.013115	-0.013115	0			
SD	0.5*	0.8871	0.6957	0.9310	0.2			

^{*}SD for LP = 0.6124; SD for PP = 0.4942

For whitebark pine, western larch, Douglas-fir, limber pine, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine, quaking aspen, paper birch, and other softwood live trees 1.0" in diameter or larger, a Weibull-based crown model developed by Dixon (1985) as described in Dixon (2002) is used to predict missing crown ratio. To estimate crown ratio using this methodology, the average stand crown ratio is estimated from the stand density index using equation {4.3.1.3}. Weibull parameters are then estimated from the average stand crown ratio using equations in equation set {4.3.1.4}. Individual tree crown ratio is then set from the Weibull distribution, equation {4.3.1.5} based on a tree's relative position in the diameter distribution and multiplied by a scale factor, shown in equation {4.3.1.6}, which accounts for stand density. Crowns estimated from the Weibull distribution are bounded to be between the 5 and 95 percentile points of the specified Weibull distribution. Equation coefficients for each species for these equations are shown in table 4.3.1.2.

$$\{4.3.1.3\}$$
 ACR = $d_0 + d_1 * RELSDI * 100.0$

where: $RELSDI = SDI_{stand} / SDI_{max}$

{4.3.1.4} Weibull parameters A, B, and C are estimated from average crown ratio

 $A = a_0$

 $B = b_0 + b_1 * ACR (B \ge 1)$

 $C = c_0 + c_1 * ACR \quad (C > 2)$

 $\{4.3.1.5\}\ Y = 1-\exp(-((X-A)/B)^C)$

 $\{4.3.1.6\}$ SCALE = 1 - 0.00167 * (SCCF - 100)

where:

ACR is predicted average stand crown ratio for the species

SDI_{stand} is stand density index of the stand SDI_{max} is maximum stand density index

A, B, C are parameters of the Weibull crown ratio distribution
X is a tree's crown ratio expressed as a percent / 10

Y is a trees rank in the diameter distribution (1 = smallest; ITRN = largest)

divided by the total number of trees (ITRN) multiplied by SCALE

SCALE is a density dependent scaling factor (bounded to 0.3 < SCALE < 1.0)

CCF is stand crown competition factor

 a_0 , b_{0-1} , c_{0-1} , and d_{0-1} are species-specific coefficients shown in table 4.3.2

Table 4.3.2 Coefficients for the Weibull parameter equations {4.3.1.3} and {4.3.1.4} in the EM variant.

Species		Model Coefficients							
Code	a_0	b ₀	b_1	C ₀	C ₁	d_0	d ₁		
WB, WL	0	0.11035	1.10085	0.02774	0.35524	5.68625	-0.04470		
DF	0	0.14652	1.09052	1.04746	0.39752	5.92714	-0.03346		
LM	1	-0.82631	1.06217	3.31429	0	6.19911	-0.02216		
LP	0	-0.00359	1.12728	2.60377	0	5.05870	-0.03307		
ES	0	0.67059	0.99349	-4.25938	1.35687	7.41093	-0.03467		
AF	0	0.73693	0.98414	-4.16681	1.33779	7.36476	-0.03761		
PP	0	0.02663	1.11477	2.95048	0	5.61047	-0.03557		
AS, PB	0	-0.08414	1.14765	2.77500	0	4.01678	-0.01516		
OS	0	0.11035	1.10085	0.02774	0.35524	5.68625	-0.04470		

Equation {4.3.1.7} is used to predict missing crown ratio missing in live trees 3.0" in diameter or larger for subalpine larch.

 $\{4.3.1.7\} \ln(CR) = HAB - 0.00190 * BA + 0.23372 * \ln(DBH) - 0.28433 * \ln(HT) + 0.001903 * PCT$ where:

CR is predicted crown ratio expressed as a proportion

HAB is a habitat-dependent coefficient shown in table 4.3.1.3

BA is total stand basal area

DBH is tree diameter at breast height

HT is tree height

PCT is the subject tree's percentile in the basal area distribution of the stand

Table 4.3.1.3 HAB values by habitat class for equation {4.3.1.7} in the EM variant.

		Habitat Class								
Species										
Code	1	1 2 3 4 5 6 7 8 9 10								
LL	0.09453	-0.0774	0.07113	0.2039	0.06176	0.1513	0.09086	0.1580	0.09229	0.01551

Table 4.3.1.4 Habitat class by mapped NI habitat code, Appendix B table 11.2.2, for HAB values in equation {4.3.1.7} in the EM variant.

Mapped NI Habitat Code	Habitat Class
130	2
170	2
250	2
260	2
280	2
290	2
310	2
320	2
330	2

Mapped NI Habitat Code	Habitat Class
420	2
470	2
510	2
520	2
530	3
540	4
550	4
570	4
610	4
620	5
640	6
660	6
670	7
680	6
690	1
710	8
720	1
730	9
830	10
850	10
999	6

Rocky Mountain juniper, green ash, black cottonwood, balsam poplar, plains cottonwood, narrowleaf cottonwood, and other hardwood use equation {4.3.1.8} or {4.3.1.9} to estimate crown ratio for live and dead trees missing crown ratios in the inventory. Rocky Mountain juniper uses equation {4.3.1.8}; the remaining species use equation {4.3.1.9}.

$$\{4.3.1.8\}$$
 $CR = [-0.59373 + (0.67703 * HF)] / HF$
 $\{4.3.1.9\}$ $CR = [5.17281 + (0.32552 * HF) - (0.01675 * BA)] / HF$

where:

CR is crown ratio expressed as a proportion (bounded to 0.05 < *CR* < 0.95)

BA is total stand basal area

HF is end of cycle tree height (*HT* + height growth)

4.3.2 Crown Ratio Change

Crown ratio change is estimated after growth, mortality and regeneration are estimated during a projection cycle. Crown ratio change is the difference between the crown ratio at the beginning of the cycle and the predicted crown ratio at the end of the cycle. Crown ratio predicted at the end of the projection cycle is estimated for live whitebark pine, western larch, Douglas-fir, limber pine, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine, quaking aspen, paper birch and other softwood using the Weibull distribution, equations (4.3.1.3)-(4.3.1.6). Live Rocky Mountain juniper uses equation (4.3.1.8). Live green

ash, black cottonwood, balsam poplar, plains cottonwood, narrowleaf cottonwood, and other hardwood use equation 4.3.1.9. For live subalpine larch trees greater than 3" in dbh, crown change is predicted using equation {4.3.1.7}. Crown change is checked to make sure it doesn't exceed the change possible if all height growth produces new crown. Crown change is further bounded to 1% per year for the length of the cycle to avoid drastic changes in crown ratio.

4.3.3 Crown Ratio for Newly Established Trees

Crown ratios for newly established trees during regeneration are estimated using equation {4.3.3.1}. A random component is added in equation {4.3.3.1} to ensure that not all newly established trees are assigned exactly the same crown ratio.

$$\{4.3.3.1\}$$
 CR = $0.89722 - 0.0000461 * PCCF + RAN$

where:

CR is crown ratio expressed as a proportion (bounded to $0.2 \le CR \le 0.9$)

PCCF is crown competition factor on the inventory point where the tree is established

RAN is a small random component

4.4 Crown Width Relationships

The EM variant calculates the maximum crown width for each individual tree based on individual tree and stand attributes. Crown width for each tree is reported in the tree list output table and used for percent canopy cover (PCC) calculations in the model. Crown width is calculated using equations $\{4.4.1\} - \{4.4.6\}$, and coefficients for these equations are shown in table 4.4.1. The minimum diameter and bounds for certain data values are given in table 4.4.2. Equation numbers in table 4.4.1 are given with the first three digits representing the FIA species code, and the last two digits representing the equation source.

```
\{4.4.1\} \  \, \text{Bechtold } (2004); \  \, \text{Equation } 01 \\ DBH \geq MinD: \  \, CW = a_1 + (a_2 * DBH) + (a_3 * DBH^2) \\ DBH < MinD: \  \, CW = [a_1 + (a_2 * MinD) * (a_3 * MinD^2)] * (DBH / MinD) \\ \{4.4.2\} \  \, \text{Bechtold } (2004); \  \, \text{Equation } 02 \\ DBH \geq MinD: \  \, CW = a_1 + (a_2 * DBH) + (a_3 * DBH^2) + (a_4 * CR\%) + (a_5 * BA) + (a_6 * HI) \\ DBH < MinD: \  \, CW = [a_1 + (a_2 * MinD) + (a_3 * MinD^2) + (a_4 * CR\%) + (a_5 * BA) + (a_6 * HI)] * \\ (DBH / MinD) \\ \{4.4.3\} \  \, \text{Crookston } (2003); \  \, \text{Equation } 03 \\ DBH \geq MinD: \  \, CW = [a_1 * \exp[a_2 + (a_3 * \ln(CL)) + (a_4 * \ln(DBH)) + (a_5 * \ln(HT)) + (a_6 * \ln(BA))]] \\ DBH < MinD: \  \, CW = [a_1 * \exp[a_2 + (a_3 * \ln(CL)) + (a_4 * \ln(MinD) + (a_5 * \ln(HT)) + (a_6 * \ln(BA))]] \\ * (DBH / MinD) \\ \{4.4.4.4 \  \, \text{Crookston } (2005); \  \, \text{Equation } 04
```

 $DBH \ge MinD$: $CW = a_1 * DBH^a_2$

 $DBH < Min: CW = [a_1 * MinD^a_2] * (DBH / MinD)$

{4.4.5} Crookston (2005); Equation 05

 $DBH \ge MinD$: $CW = (a_1 * BF) * DBH^a_2 * HT^a_3 * CL^a_4 * (BA + 1.0)^a_5 * (exp(EL))^a_6$

 $DBH < MinD: CW = [(a_1 * BF) * MinD^a_2 * HT^a_3 * CL^a_4 * (BA + 1.0)^a_5 * (exp(EL))^a_6] * (DBH / MinD)$

{4.4.6} Donnelly (1996); Equation 06

 $DBH \ge MinD$: $CW = a_1 * DBH^a_2$

DBH < MinD: $CW = [a_1 * MinD^a_2] * (DBH / MinD)$

where:

BF is a species-specific coefficient based on forest code (BF = 1.0 in the NI variant)

CW is tree maximum crown width

CL is tree crown length

CR% is crown ratio expressed as a percent DBH is tree diameter at breast height

HT is tree height

BA is total stand basal area

EL is stand elevation in hundreds of feet

MinD is the minimum diameter
HI is the Hopkins Index

HI = (ELEVATION - 5449) / 100) * 1.0 + (LATITUDE - 42.16) * 4.0 + (-116.39 - 1.0 +

LONGITUDE) * 1.25

 $a_1 - a_6$ are species-specific coefficients shown in table 4.4.1

Table 4.4.1 Coefficients for crown width equations $\{4.4.1\} - \{4.4.6\}$ in the EM variant.

Species	Equation						
Code	Number*	a_1	a_2	a ₃	a ₄	a ₅	a ₆
WB	10105	2.2354	0.6668	-0.11658	0.16927	0	0
WL	07303	1.02478	0.99889	0.19422	0.59423	-0.09078	-0.02341
DF	20203	1.01685	1.48372	0.27378	0.49646	-0.18669	-0.01509
LM	11301	4.0181	0.8528	0	0	0	0
LL	07204	2.2586	0.68532	0	0	0	0
RM	06405	5.1486	0.73636	-0.46927	0.39114	-0.05429	0
LP	10803	1.03992	1.58777	0.30812	0.64934	-0.38964	0
ES	09303	1.02687	1.28027	0.2249	0.47075	-0.15911	0
AF	01903	1.02886	1.01255	0.30374	0.37093	-0.13731	0
PP	12203	1.02687	1.49085	0.1862	0.68272	-0.28242	0
GA	74902	4.1687	1.5355	0	0	0	0.1275
AS	74605	4.796	0.64167	-0.18695	0.18581	0	0
CW	74902	4.1687	1.5355	0	0	0	0.1275

Species Code	Equation Number*	a ₁	a ₂	a ₃	a ₄	a ₅	a ₆
ВА	74902	4.1687	1.5355	0	0	0	0.1275
PW	74902	4.1687	1.5355	0	0	0	0.1275
NC	74902	4.1687	1.5355	0	0	0	0.1275
PB	37506	5.8980	0.4841	0	0	0	0
OS	26405	3.7854	0.54684	-0.12954	0.16151	0.03047	-0.00561
ОН	74902	4.1687	1.5355	0	0	0	0.1275

^{*}Equation number is a combination of the species FIA code (###) and source (##).

Table 4.4.2 MinD values and data bounds for equations {4.4.1} – {4.4.6} in the EM variant.

Species Code	Equation Number*	MinD	EL min	<i>EL</i> max	<i>HI</i> min	<i>HI</i> max	CW max
WB	10105	1.0	n/a	n/a	n/a	n/a	40
WL	07303	1.0	n/a	n/a	n/a	n/a	40
DF	20203	1.0	n/a	n/a	n/a	n/a	80
LM	11301	5.0	n/a	n/a	n/a	n/a	25
LL	07204	1.0	n/a	n/a	n/a	n/a	33
RM	06405	1.0	n/a	n/a	n/a	n/a	36
LP	10803	0.7	n/a	n/a	n/a	n/a	40
ES	09303	1.0	n/a	n/a	n/a	n/a	40
AF	01903	0.1	10	85	n/a	n/a	30
PP	12203	2.0	n/a	n/a	n/a	n/a	46
GA	74902	5.0	n/a	n/a	-26	-2	35
AS	74605	1.0	n/a	n/a	n/a	n/a	45
CW	74902	5.0	n/a	n/a	-26	-2	35
BA	74902	5.0	n/a	n/a	-26	-2	35
PW	74902	5.0	n/a	n/a	-26	-2	35
NC	74902	5.0	n/a	n/a	-26	-2	35
PB	37506	1.0	n/a	n/a	n/a	n/a	25
OS	26405	1.0	10	79	n/a	n/a	45
ОН	74902	5.0	n/a	n/a	-26	-2	35

4.5 Crown Competition Factor

The EM variant uses crown competition factor (CCF) as a predictor variable in some growth relationships. Crown competition factor (Krajicek and others 1961) is a relative measurement of stand density that is based on tree diameters. Individual tree CCF_t values estimate the percentage of an acre that would be covered by the tree's crown if the tree were open-grown. Stand CCF is the summation of individual tree (CCF_t) values. A stand CCF value of 100 theoretically indicates that tree crowns will just touch in an unthinned, evenly spaced stand. Crown competition factor for an individual tree is calculated using equation {4.5.1}. All species coefficients are shown in table 4.5.1.

{4.5.1} CCF equations for individual trees

 $DBH \ge d''$: $CCF_t = R_1 + (R_2 * DBH) + (R_3 * DBH^2)$

0.1'' < DBH < d'': $CCF_t = R_4 * DBH ^R_5$

 $DBH \le 0.1$ ": $CCF_t = 0.001$

where:

 CCF_t is crown competition factor for an individual tree

DBH is tree diameter at breast height

 $R_1 - R_5$ are species-specific coefficients shown in table 4.5.1

d is 10.0" for green ash, black cottonwood, balsam poplar, plains cottonwood,

narrowleaf cottonwood, and other hardwood; 1.0" for all other species

Table 4.5.1 Coefficients for CCF equation {4.5.1} in the EM variant.

Species		Мо	del Coefficie	ents	
Code	R ₁	R_2	R ₃	R ₄	R ₅
WB	0.0186	0.0146	0.00288	0.009884	1.6667
WL	0.0392	0.0180	0.00207	0.007244	1.8182
DF	0.0388	0.0269	0.00466	0.017299	1.5571
LM	0.01925	0.01676	0.00365	0.009187	1.7600
LL	0.03	0.0216	0.00405	0.011402	1.7560
RM	0.01925	0.01676	0.00365	0.009187	1.7600
LP	0.01925	0.01676	0.00365	0.009187	1.7600
ES	0.03	0.0173	0.00259	0.007875	1.7360
AF	0.0172	0.00876	0.00112	0.011402	1.7560
PP	0.0219	0.0169	0.00325	0.007813	1.7780
GA	0.03	0.0215	0.00363	0.011109	1.7250
AS	0.03	0.0238	0.00490	0.008915	1.7800
CW	0.03	0.0215	0.00363	0.011109	1.7250
BA	0.03	0.0215	0.00363	0.011109	1.7250
PW	0.03	0.0215	0.00363	0.011109	1.7250
NC	0.03	0.0215	0.00363	0.011109	1.7250
РВ	0.03	0.0238	0.00490	0.008915	1.7800
OS	0.0204	0.0246	0.0074	0.011109	1.7250
ОН	0.03	0.0215	0.00363	0.011109	1.7250

4.6 Small Tree Growth Relationships

Trees are considered "small trees" for FVS modeling purposes when they are smaller than some threshold diameter. The threshold diameter is set to 1.0" for green ash, black cottonwood, balsam poplar, plains cottonwood, narrowleaf cottonwood, and other hardwood, and is set to 3.0" for all other species in the EM variant except Rocky Mountain juniper. Rocky Mountain

juniper uses the small-tree relationships to predict height and diameter growth for trees of all sizes.

The small tree model is height-growth driven, meaning height growth is estimated first and diameter growth is estimated from height growth. These relationships are discussed in the following sections.

4.6.1 Small Tree Height Growth

The small-tree height growth equations in the EM variant predict 5-year height growth (*HTG*) for whitebark pine, western larch, Douglas-fir, limber pine, subalpine larch, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine, and other softwood, and 10-year height growth for Rocky Mountain juniper, green ash, quaking aspen, black cottonwood, balsam poplar, plains cottonwood, narrowleaf cottonwood, paper birch, and other hardwood. Different equation forms are used for different species.

Height growth for whitebark pine, western larch, Douglas-fir, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine, and other softwood in the EM variant is estimated as a function of crown ratio, and point crown competition factor using equation {4.6.1.1}. Coefficients for this equation are shown in table 4.6.1.1.

$$\{4.6.1.1\}$$
 HTG = $\exp[c_1 + (c_2 * \ln(CCF))] + CR * \exp[c_3 + (c_4 * \ln(CCF))]$

where:

HTG is estimated 5-year height growth

CCF is point crown competition factor (bounded to $25 \le CCF \le 300$) is a tree's live crown ratio (compacted) expressed as a percent

 $c_1 - c_4$ are species-specific coefficients shown in table 4.6.1.1

Table 4.6.1.1 Coefficients for equation {4.6.1.1} in the EM variant.

Species	Model Coefficients						
Code	C ₁	C ₂	C ₃	C ₄			
WB	1.17527	-0.42124	-2.56002	-0.58642			
WL	1.17527	-0.42124	-2.56002	-0.58642			
DF	-4.35709	0.67307	-2.49682	-0.51938			
LP	-0.90086	0.16996	-1.50963	-0.61825			
ES	-0.55052	-0.02858	-2.26007	-0.67115			
AF	-4.35709	0.67307	-2.49682	-0.51938			
PP	0.405	0	-1.50963	-0.61825			
OS	1.17527	-0.42124	-2.56002	-0.58642			

The remaining species in the EM variant use small-tree height growth equations taken from other variants.

Height growth for subalpine larch is estimated using equation {4.6.1.2) which is the subalpine fir equation from the Northern Idaho variant.

$$\{4.6.1.2\} HTG = \exp[x]$$

X = -0.2785 + HAB + 1.0667 + 0.3740 * ln(HT) - 0.00391 * CCF - 0.22957 * BAL + 0.22157 * SL * cos(ASP) - 0.12432 * SL * sin(ASP) - 0.10987 * SL

where:

HTG is estimated 5-year height growth

HAB is a habitat type dependent intercept shown in table 4.6.1.2, mapped as shown

in table 4.6.1.3 and Appendix B table 11.2.2

CCF is stand crown competition factor

BAL is total basal area in trees larger than the subject tree

ASP is stand aspect
SL is stand slope
HT is tree height

 $c_1 - c_2$ are species-specific coefficients shown in table 4.6.1.1

Table 4.6.1.2 HAB values by habitat class for equation {4.6.1.2} in the EM variant.

	Habitat Class							
Code	1	1 2 2 4 5						
Coue	.		3	4	5			
LL	-0.2146	-0.0941	-0.4916	-0.3582	0.0			

Table 4.6.1.3 Habitat class by mapped NI habitat code, Appendix B table 11.2.2, for HAB values in equation {4.6.1.2} in the EM variant.

Mapped NI Habitat Code	Habitat Class
130	4
170	4
250	4
260	4
280	4
290	4
310	4
320	4
330	4
420	4
470	4
510	4
520	3
530	2
540	5
550	5
570	5
610	5
620	1
640	4

Mapped NI Habitat Code	Habitat Class
660	4
670	4
680	4
690	4
710	4
720	4
730	1
830	3
850	3
999	4

Height growth for limber pine is estimated using equation {4.6.1.3} which is from the Tetons variant.

$$\{4.6.1.3\}$$
 HTG = exp[1.17527 - (0.42124 * ln(TPCCF))] + CR * exp[-2.56002 - (0.58642 * ln(TPCCF))]

where:

HTG is estimated 5-year height growth

TPCCF is total crown competition factor on the inventory point where the tree is

established (bounded to $25 \le TPCCF \le 300$)

CR is a tree's live crown ratio (compacted) expressed as a percent

For Rocky Mountain juniper, potential 10-year height growth is estimated using equation {4.6.1.4}. The reduction proportion due to stand density (*PCTRED*) is computed with equation {4.6.1.5} and the reduction proportion due to crown ratio (*VIGOR*) is computed with equation {4.6.1.6}, to determine an estimated 10-year height growth as shown in equation {4.6.1.7}. These equations are from the Utah variant.

$$\{4.6.1.4\}$$
 POTHTG = $(SI / 10.0) * ((SI * 1.5) - HT) / (SI * 1.5)$

$$\{4.6.1.5\}$$
 PCTRED = $1.1144 - 0.0115*Z + 0.4301E-04*Z^2 - 0.7222E-07*Z^3 + 0.5607E-10*Z^4 - 0.1641E-13*Z^5$

$$Z = HT_{Avq} * (CCF / 100)$$

$$\{4.6.1.6\}\ VIGOR = 1 - [(1 - ((150 * CR^3 * exp(-6 * CR)) + 0.3)) / 3]$$

where:

HTG is estimated 10-year height growthPOTHTG is potential 10-year height growth

PCTRED is reduction in height growth due to stand density (bounded: 0.01 < PCTRED <

1.0)

*HT*_{Avg} is average height of the 40 largest diameter trees in the stand *HT* is total tree height at the beginning of the projection cycle

CR is a tree's live crown ratio (compacted) expressed as a proportion

CCF is stand crown competition factor

VIGOR is reduction in height growth due to tree vigor (bounded to VIGOR < 1.0)

SI is species site index bounded by (SITELO + 0.5) and SITEHI

SITELO is lower end of the site range for this species shown in table 4.6.1.4

SITEHI is upper end of the site range for this species shown in table 4.6.1.4

Green ash, black cottonwood, balsam poplar, plains cottonwood, narrowleaf cottonwood, and other hardwood use the cottonwood species equations from the Central Rockies variant. Potential height growth is estimated using equation {4.6.1.8}, and then adjusted based on stand density (*PCTRED*) and crown ratio (*VIGOR*) as shown in equations {4.6.1.5} and {4.6.1.9} respectively, to determine an estimated height growth as shown in equation {4.6.1.7}.

$$\{4.6.1.8\}$$
 POTHTG = SITE / $(15.0 - 4.0 * (SI - SITELO)) / (SITEHI - SITELO))$

$$\{4.6.1.9\}\ VIGOR = (150 * CR^3 * exp(-6 * CR)) + 0.3$$

where:

POTHTG is potential 10-year height growth

CR is a tree's live crown ratio (compacted) expressed as a proportion

VIGOR is reduction in height growth due to tree vigor (bounded to VIGOR < 1.0)

SI is species site index bounded by (SITELO + 0.5) and SITEHI

SITE is species site index

SITELO is lower end of the site range for this species shown in table 4.6.1.4

SITEHI is upper end of the site range for this species shown in table 4.6.1.4

Height growth for quaking aspen and paper birch is obtained from an aspen height-age curve (Shepperd 1995). Because Shepperd's original curve seemed to overestimate height growth, the EM variant reduces the estimated height growth by 25 percent (shown in equation {4.6.1.10}). A height is estimated from the trees' current age, and then its current age plus 10 years. Height growth is the difference between these two height estimates adjusted to account for cycle length and any user defined small-tree height growth adjustments for aspen. This equation estimates height growth in centimeters so FVS also converts the estimate from centimeters to feet. An estimate of the tree's current age is obtained at the start of a projection using the tree's height and solving equation {4.6.1.10} for age.

 $\{4.6.1.10\}$ HTG = $(26.9825 * A^1.1752) * 0.375 * <math>(1 + [(SI - SITELO) / (SITEHI - SITELO)]$

where:

HTG is estimated 10-year height growth for the cycleSI is species site index bounded by SITELO and SITEHI

SITELO is lower end of the site range for this species shown in table 4.6.1.4

SITEHI is upper end of the site range for this species shown in table 4.6.1.4

A is tree age

If the site index for the species is less than or equal to the lower site limit, it is set to the lower limit + 0.5 for the calculation of RELSI. Similarly, if the site index for the species is greater than the upper site limit, it is set to the upper site limit for the calculation of RELSI.

Table 4.6.1.4 SITELO and SITEHI values for equations {4.6.1.8} and {4.6.1.10} in the EM variant.

Species Code	SITELO	SITEHI
RM	5	15
GA	30	120
AS	30	70
CW	30	120
BA	30	120
PW	30	120
NC	30	120
PB	30	70
ОН	30	120

For all species, a small random error is then added to the height growth estimate. The estimated height growth is then adjusted to account for cycle length, user defined small-tree height growth adjustments, and adjustments due to small tree height model calibration from the input data.

Height growth estimates from the small-tree model are weighted with the height growth estimates from the large tree model over a range of diameters (X_{min} and X_{max}) in order to smooth the transition between the two models. For example, the closer a tree's DBH value is to the minimum diameter (X_{min}), the more the growth estimate will be weighted towards the small-tree growth model. The closer a tree's DBH value is to the maximum diameter (X_{max}), the more the growth estimate will be weighted towards the large-tree growth model. If a tree's DBH value falls outside of the range given by X_{min} and X_{max} , then the model will use only the small-tree or large-tree growth model in the growth estimate. The weight applied to the growth estimate is calculated using equation $\{4.6.1.11\}$, and applied as shown in equation $\{4.6.1.12\}$. The range of diameters for each species is shown in table 4.6.1.5.

```
{4.6.1.11}
```

 $DBH \leq X_{\min}: XWT = 0$

 $X_{\min} < DBH < X_{\max}$: $XWT = (DBH - X_{\min}) / (X_{\max} - X_{\min})$

 $DBH > X_{max}: XWT = 1$

 $\{4.6.1.12\}$ Estimated growth = [(1 - XWT) * STGE] + [XWT * LTGE]

where:

XWT is the weight applied to the growth estimates

DBH is tree diameter at breast height

 X_{max} is the maximum *DBH* is the diameter range X_{min} is the minimum *DBH* in the diameter range

STGE is the growth estimate obtained using the small-tree growth model LTGE is the growth estimate obtained using the large-tree growth model

Table 4.6.1.5 X_{min} and X_{max} values for equation {4.6.1.11} in the EM variant.

	T		
Species			
Code	X _{min}	X _{max}	
WB	1.5	3.0	
WL	1.5	3.0	
DF	1.5	3.0	
LM	1.5	3.0	
LL	2.0	10.0	
RM	90.0	99.0	
LP	1.5	3.0	
ES	1.5	3.0	
AF	1.5	3.0	
PP	1.5	3.0	
GA	0.5	2.0	
AS	2.0	4.0	
CW	0.5	2.0	
BA	0.5	2.0	
PW	0.5	2.0	
NC	0.5	2.0	
РВ	2.0	4.0	
OS	1.5	3.0	
ОН	0.5	2.0	

4.6.2 Small Tree Diameter Growth

As stated previously, for trees being projected with the small tree equations, height growth is predicted first, and then diameter growth. So both height at the beginning of the cycle and height at the end of the cycle are known when predicting diameter growth. For most species in the EM variant, small tree diameter growth for trees over 4.5 feet tall is calculated as the difference of predicted diameter at the start of the projection period and the predicted diameter at the end of the projection period, adjusted for bark ratio. By definition, diameter growth is zero for trees less than 4.5 feet tall.

For whitebark pine, western larch, Douglas-fir, limber pine, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine, and other softwood, small-tree diameter is estimated using equation {4.6.2.1} or {4.6.2.2}, and coefficients shown in table 4.6.2.1.

$$\{4.6.2.1\} \ DBH = [b_1 * (HT - 4.5) * CR + b_2 * (HT - 4.5) * PCCF + b_3 * CR + b_4 * (HT - 4.5)] + 0.3$$

$$\{4.6.2.2\} \ DBH = b_1 + (b_2 * HT) + (b_3 * CR) + (b_4 * PCCF)$$

where:

DBH is tree diameter at breast height

HT is tree height

CR is a tree's live crown ratio (compacted) expressed as a percent

PCCF is crown competition factor on the inventory point where the tree is established

 $b_1 - b_4$ are species-specific coefficients shown in table 4.6.2.1

Table 4.6.2.1 Coefficients (b_1 - b_4) for equations {4.6.2.1} and {4.6.2.2} in the EM variant.

Species		Model Coefficients						
Code	Equation Used	b ₁	b ₂	b ₃	b ₄			
WB	{4.6.2.1}	0.000231	-0.00005	0.001711	0.17023			
WL	{4.6.2.1}	0.000231	-0.00005	0.001711	0.17023			
DF	{4.6.2.2}	-0.28654	0.13469	0.002736	0.00036			
LM	{4.6.2.1}	0.000231	-0.00005	0.001711	0.17023			
LP	{4.6.2.2}	-0.41227	0.16944	0.003191	-0.0022			
ES	{4.6.2.2}	0.04125	0.17486	-0.00237	-0.0007			
AF	{4.6.2.2}	-0.15906	0.15323	0	0			
PP	{4.6.2.1}	0.000335	-0.0002	0.002621	0.15622			
OS	{4.6.2.1}	0.000231	-0.00005	0.001711	0.17023			

For green ash, quaking aspen, black cottonwood, balsam poplar, plains cottonwood, narrowleaf cottonwood, paper birch, and other hardwood these two predicted diameters are estimated using the species-specific height-diameter relationships discussed in section 4.1.

For subalpine larch, these two predicted diameters are estimated using equations {4.6.2.3} – {4.6.2.6}.

$$\{4.6.2.3\}$$
 DHAT = $0.0658 * (HT - 4.5)^{1.3817} + DADJ$

$$\{4.6.2.5\}$$
 RELH = $(HT - 4.5) / (AH - 4.5)$

$$\{4.6.2.6\}$$
 DELMAX = $(AH / 36) * (0.01232 * CCF - 1.75)$

where:

DHAT is estimated tree diameter at breast height

HT is tree height

DADJ is an adjustment factor to correct for bias, relative tree size, and stand density

RELH is relative tree height (bounded $0 \le RELHT \le 1$)

AH is average height of the 40 largest diameter trees

DELMAX is an adjustment factor based on relative tree size and stand density (bounded

DELMAX < 0)

CCF is stand crown competition factor

Rocky Mountain juniper uses equation {4.6.2.7} to estimate the diameters.

$$\{4.6.2.7\}$$
 DHAT = $(HT - 4.5) * 10 / (SI - 4.5)$

where:

DHAT is estimated tree diameter at breast height

HT is tree height

SI is species site index

4.7 Large Tree Growth Relationships

Trees are considered "large trees" for FVS modeling purposes when they are equal to, or larger than, some threshold diameter. This threshold diameter is set to 3.0" for most species in the EM variant. For green ash (11), black cottonwood (13), balsam poplar (14), plains cottonwood (15), narrowleaf cottonwood (16) and other hardwood (19) the threshold diameter is 1.0". Rocky Mountain juniper (6) only uses the small-tree relationships to predict height and diameter growth for trees of all sizes.

The large-tree model is driven by diameter growth meaning diameter growth is estimated first, and then height growth is estimated from diameter growth and other variables. These relationships are discussed in the following sections.

4.7.1 Large Tree Diameter Growth

The large tree diameter growth model used in most FVS variants is described in section 7.2.1 in Dixon (2002). For most variants, instead of predicting diameter increment directly, the natural log of the periodic change in squared inside-bark diameter (ln(DDS)) is predicted (Dixon 2002; Wykoff 1990; Stage 1973; and Cole and Stage 1972). For variants predicting diameter increment directly, diameter increment is converted to the DDS scale to keep the FVS system consistent across all variants.

For whitebark pine, western larch, Douglas-fir, limber pine, subalpine larch, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine, and other softwood, the EM variant predicts diameter growth using equation {4.7.1.1.}. Coefficients for this equation are shown in tables 4.7.1.1 - 4.7.1.6.

```
 \{4.7.1.1\} \ln(DDS) = b_1 + (b_2 * EL) + (b_3 * EL^2) + (b_4 * \sin(ASP) * SL) + (b_5 * \cos(ASP) * SL) + (b_6 * SL) + (b_7 * SL^2) + (b_8 * \ln(DBH)) + (b_9 * \ln(BAL)) + (b_{10} * CR) + (b_{11} * CR^2) + (b_{12} * BAL / (\ln(DBH + 1.0))) + (b_{13} * CCF^2) + (b_{14} * \ln(CCF)) + (b_{15} * PCCF * DUM_1) + (b_{16} * PCCF * DUM_2) + (b_{17} * DBH^2) + (b_{18} * 0.01 * CCF) + (b_{19} * SI) + HAB
```

where:

DDS EL ASP	is the predicted periodic change in squared inside-bark diameter is stand elevation in hundreds of feet is stand aspect (for limber pine, Rocky Mountain juniper, aspen and paper birch, $ASP = -0.7854$)
SL	is stand slope for limber pine and subalpine larch; is stand slope / 10 for whitebark pine, western larch, Douglas-fir, lodgepole pine, Engelmann spruce, subalpine fir, and ponderosa pine; is equal to 0 for other softwood
CR	is a tree's live crown ratio (compacted) expressed as a proportion
DBH	is tree diameter at breast height
BAL	is total basal area in trees larger than the subject tree (<i>BAL</i> /100. is used as the variable for limber pine and subalpine larch)
CCF	is stand crown competition factor
PCCF	is crown competition factor on the inventory point where the tree is established
HAB	is a plant association code dependent coefficient shown in tables 4.7.1.5 and 4.7.1.6

 DUM_{1-2} are dummy variables depending on whether or not the stand is managed:

 $DUM_1 = 0$, $DUM_2 = 1.0$ for unmanaged stands $DUM_1 = 1.0$, $DUM_2 = 0$ for managed stands

SI is species specific site index

b₁ is a location and species specific coefficient shown in tables 4.7.1.2 and 4.7.1.3

 b_2 - b_{16} are species-specific coefficients shown in table 4.7.1.1

 b_{17} is a location and species specific coefficient shown in tables 4.7.1.1 and 4.7.1.4 b_{18} is a location and species specific coefficient shown in table 4.7.1.1 and 4.7.1.7

 b_{19} is a species specific coefficient shown in table 4.7.1.1

Table 4.7.1.1 Coefficients (b_2 - b_{19}) for equation 4.7.1.1 in the EM variant.

	Species Code										
Coefficient	WB	WL	DF	LP	ES	AF	PP	OS			
b ₂	-0.00565	-0.00565	-0.00196	-0.01234	0.08677	-0.00885	-0.07453	-0.00565			
b_3	0	0	0	0	-0.00072	-0.00002	0.0006	0			
b ₄	-0.01606	-0.01606	0.06124	-0.00393	0.03982	0.01463	0.20328	-0.01606			
b ₅	0.00270	0.00270	-0.04290	-0.02355	-0.15989	-0.20925	0.06497	0.00270			
b ₆	-0.20011	-0.20011	-0.39500	-0.21964	0.06898	-0.03350	-0.95238	-0.20011			
b ₇	0	0	0	0	-0.34251	-0.11164	0.61813	0			
b ₈	0.80110	0.80110	0.82617	0.75719	0.83323	0.89571	0.58932	0.80110			
b ₉	0.00064	0.00064	0.00216	0.00556	0.00443	0.00350	0.00710	0.00064			
b ₁₀	1.02878	1.02878	1.41015	1.43611	1.10040	1.30934	1.94874	1.02878			
b ₁₁	-0.45448	-0.45448	-0.55362	-0.44926	0	-0.17348	-0.88761	-0.45448			
b ₁₂	-0.00328	-0.00328	-0.00889	-0.01282	-0.01281	-0.00764	-0.02316	-0.00328			
b ₁₃	0	0	0.000003	0.000002	0.000002	-0.000003	0.000005	0			
b ₁₄	-0.25717	-0.25717	-0.11974	-0.12332	0	0	0	-0.25717			
b ₁₅	0	0	-0.00211	-0.00120	-0.00155	-0.00164	-0.00297	0			
b ₁₆	0	0	-0.00232	-0.00145	-0.00123	-0.00232	-0.00254	0			
b ₁₇	0	0	**	-0.000402	-0.000034	0	**	0			
b ₁₈	0	0	0	0	0	0	0	0			
b ₁₉	0	0	0	0	0	0	0	0			

Table 4.7.1.1 Continued Coefficients (b_2 - b_{19}) for equation 4.7.1.1 in the EM variant.

	Species Code						
Coefficient	LM	LL					
b ₂	0	0.06313					
b ₃	0	-0.000676					
b ₄	-0.01752	-0.06862					
b ₅	-0.609774	-0.12473					
b ₆	-2.05706	0.30070					
b ₇	2.113263	-0.62224					
b ₈	0.213947	0.86240					

	Species Code							
Coefficient	LM	LL						
b ₉	-0.358634	0						
b ₁₀	1.523464	0.52044						
b ₁₁	0	0.86236						
b ₁₂	0	-0.51270						
b ₁₃	0	0						
b ₁₄	0	0						
b ₁₅	0	0						
b ₁₆	0	0						
b ₁₇	-0.0006538	-0.000283						
b ₁₈	-0.199592	*						
b ₁₉	0.001766	0						

^{*}See table 4.7.1.7, as indexed by values in tables 4.7.1.6 and 11.2.2

Table 4.7.1.2 b_1 values by location class for equation $\{4.7.1.1\}$ in the EM variant.

		Species Code								
Location Class	WB	WL	DF	LM	LL	LP	ES	AF	PP	os
1	1.5675	1.5675	1.10349	1.568742	0	1.75497	-2.45844	0.46110	3.57069	1.5675
2	0	0	1.55392	0	0	1.89439	-2.14138	-0.16517	3.45044	0
3	0	0	1.04495	0	0	1.63227	-2.55288	0.35319	3.67551	0
4	0	0	1.27679	0	0	1.65474	-2.42650	0.64719	0	0
5	0	0	0	0	0	1.51043	0	0.40140	0	0
6	0	0	0	0	0	0	0	0.33757	0	0

Table 4.7.1.3 Location class by species and forest code for assigning b_1 values in equation $\{4.7.1.1\}$ in the EM variant.

		Species Code								
Location Code	WB	WL	DF	LM	LL	LP	ES	AF	PP	os
102 - Beaverhead	1	1	1	1	1	1	1	1	1	1
108 - Custer	1	1	2	1	1	2	2	2	2	1
109 - Deerlodge	1	1	3	1	1	3	3	3	3	1
111 - Gallatin	1	1	4	1	1	2	2	4	3	1
112 - Helena	1	1	3	1	1	4	3	5	2	1
115 - Lewis and Clark	1	1	1	1	1	5	4	6	2	1

Table 4.7.1.4 Douglas-fir and ponderosa pine b_{17} values by location code for equation $\{4.7.1.1\}$ in the EM variant.

Location	Species Code					
Code	DF PP					
102	-0.000251	-				

^{**}See table 4.7.1.4

		0.000248
		-
108	0	0.000991
		-
109	-0.000412	0.000248
		-
111	-0.000251	0.000248
		-
112	0	0.000248
		-
115	-0.000412	0.000248

Table 4.7.1.5 HAB values by habitat class for equation {4.7.1.1} in the EM variant.

Habitat	Species Code								
Class	WB	WL	DF	LP	ES	AF	PP	OS	
1	0	0	0	0	0	0	0	0	
								-	
	-	-	-	-		0.1296	-	0.2084	
2	0.20842	0.20842	0.20240	0.06686	0.23303	7	0.19356	2	
			-		-	0.3376	-	0.0154	
3	0.01545	0.01545	0.03260	0.00921	0.01746	8	0.07999	5	
				-		0.2594		0.2974	
4	0.29742	0.29742	0.05559	0.17011	0.11129	0	0.03500	2	
			-	-		0.4865	-		
5	0	0	0.12847	0.11806	0.19065	7	0.13880	0	
			_	-			-		
6	0	0	0.07100	0.22504	0.40362	0	1.04929	0	
			-				-		
7	0	0	0.31860	0.06528	0	0	0.32378	0	
8	0	0	0	0.14340	0	0	0	0	

Table 4.7.1.5 Continued *HAB* values by habitat class for equation {4.7.1.1} in the EM variant.

Habitat	Species Code				
Class	LM	П			
1	0	-0.96389			
2	0	-0.72415			
3	0	-0.57308			
4	0	-0.82218			
5	0	-1.24093			
6	0	-1.10746			
7	0	0			
8	0	0			

Table 4.7.1.6 Habitat class by plant association code and species in the EM variant.

EM	Species Code							
Habitat Code	WB	WL	DF	LP	ES	AF	PP	os
10	4	4	5	1	4	3	1	4
65	4	4	5	7	4	2	1	4
70	3	3	7	6	4	2	1	3
74	3	3	4	1	4	2	1	3
79	3	3	4	2	4	2	1	3
91	3	3	7	6	4	2	1	3
92	2	2	7	6	4	2	1	2
93	2	2	3	8	4	2	1	2
95	2	2	5	7	4	2	1	2
100	2	2	5	1	4	2	1	2
110	2	2	5	1	4	2	1	2
120	2	2	6	8	4	2	1	2
130	2	2	4	3	4	2	2	2
140	2	2	4	8	4	2	2	2
141	2	2	4	2	4	2	2	2
161	2	2	4	1	4	2	3	2
170	2	2	4	8	4	2	3	2
171	2	2	4	1	4	2	2	2
172	2	2	4	3	4	2	3	2
180	2	2	4	1	4	2	4	2
181	2	2	4	1	4	2	5	2
182	2	2	4	1	4	2	4	2
200	4	4	4	8	4	2	1	4
210	4	4	4	8	4	2	2	4
220	4	4	2	3	5	2	2	4
221	4	4	4	3	1	2	2	4
230	4	4	5	2	4	2	6	4
250	3	3	5	7	5	2	3	3
260	3	3	3	3	6	5	3	3
261	4	4	3	7	6	5	4	4
262	4	4	4	1	3	5	4	4
280	3	3	5	1	4	2	4	3
281	3	3	5	2	4	2	4	3
282	3	3	3	3	5	2	4	3
283	3	3	7	1	5	2	4	3
290	4	4	5	3	4	2	4	4
291	3	3	5	3	4	2	4	3
292	3	3	5	1	4	2	4	3
293	3	3	7	1	4	2	4	3

EM	Species Code							
Habitat								
Code	WB	WL	DF	LP	ES	AF	PP	OS
310	3	3	5	7	3	5	5	3
311	3	3	4	3	3	5	5	3
312	3	3	4	7	3	5	5	3
313	3	3	5	1	4	5	5	3
315	3	3	5	1	4	5	5	3
320	3	3	2	2	4	5	5	3
321	4	4	6	3	2	5	5	4
322	3	3	5	3	5	5	5	3
323	3	3	3	1	6	5	5	3
330	4	4	3	2	4	5	7	4
331	4	4	3	2	4	5	7	4
332	4	4	3	2	4	5	7	4
340	4	4	3	3	5	5	7	4
350	3	3	7	7	4	2	7	3
360	3	3	7	6	4	5	7	3
370	2	2	7	1	4	5	3	2
371	2	2	5	1	4	5	3	2
400	3	3	5	2	4	4	7	3
410	3	3	6	7	5	4	7	3
430	3	3	6	3	5	4	7	3
440	2	2	6	8	5	4	7	2
450	3	3	6	8	4	4	7	3
460	3	3	5	7	5	4	7	3
461	2	2	5	7	4	4	7	2
470	3	3	5	7	4	4	7	3
480	3	3	3	8	2	4	7	3
591	3	3	7	6	2	4	7	3
610	3	3	3	8	1	3	7	3
620	3	3	3	6	4	3	7	3
624	3	3	6	1	4	3	7	3
625	3	3	6	7	1	3	7	3
630	3	3	3	3	2	3	7	3
632	3	3	3	6	4	1	7	3
640	3	3	3	2	5	3	7	3
641	3	3	3	3	5	2	7	3
642	3	3	3	2	5	2	7	3
650	3	3	5	2	3	2	7	3
651	2	2	6	2	4	2	7	2
653	2	2	6	2	2	2	7	2

EM	Species Code							
Habitat								
Code	WB	WL	DF	LP	ES	AF	PP	OS
654	2	2	5	7	2	4	7	2
655	3	3	5	2	4	2	7	3
660	3	3	5	3	2	4	7	3
661	2	2	5	1	4	4	7	2
662	2	2	4	7	4	3	7	2
663	3	3	3	2	2	3	7	3
670	3	3	5	2	3	2	7	3
674	3	3	5	2	4	2	7	3
690	1	1	7	5	4	2	7	1
691	3	3	7	1	4	2	7	3
692	3	3	7	2	3	2	7	3
700	3	3	5	7	4	3	7	3
710	3	3	6	8	4	3	7	3
720	3	3	6	2	4	4	7	3
730	3	3	5	4	3	2	7	3
731	3	3	5	2	4	3	7	3
732	3	3	5	5	4	2	7	3
733	2	2	5	2	2	3	7	2
740	3	3	5	1	2	4	7	3
750	3	3	4	3	2	3	7	3
751	3	3	6	3	6	3	7	3
770	3	3	1	1	5	3	7	3
780	3	3	5	1	4	3	7	3
790	4	4	3	1	4	3	7	4
791	3	3	3	3	3	5	7	3
792	2	2	5	1	5	3	7	2
810	3	3	5	6	4	2	7	3
820	2	2	5	6	3	2	7	2
830	3	3	5	6	4	2	7	3
832	2	2	5	6	4	2	7	2
850	3	3	5	2	4	2	7	3
860	2	2	5	6	4	2	7	2
870	2	2	5	6	4	2	7	2
900	3	3	4	6	6	5	7	3
910	3	3	4	5	6	5	7	3
920	3	3	4	3	6	5	7	3
930	3	3	4	6	6	5	7	3
940	3	3	4	3	6	5	7	3
950	4	4	4	7	6	5	7	4

Table 4.7.1.6 Continued Habitat class and b_{18} coefficient index by NI mapping index (Appendix B table 11.2.2) and species in the EM variant.

NI	Species Code				
Mappin g Index			b ₁₈ Index		
gillacx	LM	LL	LL		
1	1	6	3		
2	1	6	3		
3	1	6	3		
4	1	6	3		
4	1	6	3		
6	1	6	3		
7	1	6	3		
8	1	6	3		
9	1	6	3		
10	1	6	3		
11	1	6	3		
12	1	6	3		
13	1	1	1		
14	1	2	1		
15	1	3	1		
16	1	3	1		
17	1	4	1		
18	1	3	1		
19	1	1	1		
20	1	6	3		
21	1	6	1		
22	1	6	1		
23	1	6	2		
24	1	6	2		
25	1	6	1		
26	1	6	3		
27	1	1	1		
28	1	5	1		
29	1	5	3		
30	1	6	3		

Table 4.7.1.7 Subalpine larch *CCF* coefficient, equation 4.7.1.1, as determined by the b₁₈ Index value by NI habitat mapping index, table 4.7.1.6

b ₁₈ Index	LL Coefficient
1	-0.01598
2	-0.04477
3	-0.07392

Large-tree diameter growth for Rocky Mountain juniper is predicted using equations from the UT variant identified in equation set {4.7.1.2}. Diameter at the end of the growth cycle is predicted first. Then diameter growth is calculated as the difference between the diameters at the beginning of the cycle and end of the cycle, adjusted for bark ratio. While not shown here, this diameter growth estimate is eventually converted to the *DDS* scale.

$$\{4.7.1.2\}$$
 DF = $0.25897 + 1.03129 * DBH - 0.0002025464 * BA + 0.00177 * SI$

$$DG = (DF - DBH) * BRATIO$$

where:

DF is tree diameter outside-bark at the end of the cycleDBH is tree diameter outside-bark at the start of the cycle

BA is total stand basal area
 SI is species site index
 DG is tree diameter growth
 BRATIO is species-specific bark ratio

Large-tree diameter growth for quaking aspen and paper birch is predicted using the aspen equation from the UT variant identified in equation set {4.7.1.3}. Diameter growth is predicted from a potential diameter growth equation that is modified by stand density, average tree size and site. While not shown here, this diameter growth estimate is eventually converted to the DDS scale.

```
\{4.7.1.4\} POTGR = \{0.4755 - 0.0000038336 * DBH^4.1488\} + \{0.0451 * CR * DBH^0.67266\}
```

```
MOD = 1.0 - \exp(-FOFR * GOFAD * ((310-BA)/310)^0.5)

FOFR = 1.07528 * (1.0 - \exp(-1.89022 * DBH / QMD))
```

 $GOFAD = 0.21963 * (QMD + 1.0)^0.73355$

PREDGR = POTGR * MOD * (.48630 + 0.01258 * SI)

where:

POTGR is potential diameter growth
DBH is tree diameter at breast height

CR is crown ratio expressed as a percent divided by 10

MOD is a modifier based on tree diameter and stand density

FOFR is the relative density modifier GOFAD is the average diameter modifier

BA is total stand basal area bounded BA < 310

QMD is stand quadratic mean diameter PREDGR is predicted diameter growth

SI is species site index

Large-tree diameter growth for green ash, black cottonwood, balsam poplar, plains cottonwood, narrowleaf cottonwood, and other hardwood is predicted using equations from the CR variant identified in equation set {4.7.1.5}. Diameter at the end of the growth cycle is predicted first. Then diameter growth is calculated as the difference between the diameters at the beginning of the cycle and end of the cycle, adjusted for bark ratio. While not shown here, this diameter growth estimate is eventually converted to the *DDS* scale.

$$\{4.7.1.6\}$$
 DF = 0.24506 + 1.01291 * DBH - 0.00084659 * BA + 0.00631 * SI
DG = (DF - DBH) * BRATIO

where:

DF is tree diameter at breast height at the end of the cycle (bounded $DBH \le DF \le$

36")

DG is tree diameter growth

DBH is tree diameter at breast height at the start of the cycle

BA is total stand basal area
SI is species site index

BRATIO is species-specific bark ratio

DDS is the predicted periodic change in squared inside-bark diameter

4.7.2 Large Tree Height Growth

The height growth functions used for the original 8 species in the EM variant are not similar to those reported by Wykoff (1986). For these 8 species, a potential height growth is calculated for a tree and then reduced to reflect suppression effects. This technique is described in specific terms in Wensel and others (1978) and Richie and Hann (1986). These authors constructed site curves and then height growth curves with modifiers off the same data. In the EM variant, the site curves referenced are those described in section 3.4.

Potential 10-year height growth can then be calculated by incrementing the approximate age (or more appropriately called an effective age), by 10 years and solving for a new height. Potential height growth is the difference in the heights at two points in time. For a specific site, this would be the best growth expected, if the tree is to follow the site or height growth curve. This potential growth is reduced for suppression and other tree characteristics, and adjusted to the projection cycle length.

Potential height growth is calculated by using equations $\{4.7.2.1\} - \{4.7.2.4\}$. Whitebark pine, western larch, lodgepole pine, and other softwood use equation $\{4.7.2.1\}$. Douglas-fir uses equation $\{4.7.2.2\}$. Engelmann spruce and subalpine fir use equation $\{4.7.2.3\}$ and ponderosa pine uses equation $\{4.7.2.4\}$ to calculate potential height growth. Two modifiers are calculated using equations $\{4.7.2.5\}$ and $\{4.7.2.6\}$ are applied to the potential height growth to obtain a final height growth (equation $\{4.7.2.7\}$).

Note: *MOD2* is from a paper by Richie and Hahn (1986) for height growth in the Oregon Cascades. The relationship is assumed to be consistent with tree growth in the Northern Rockies.

```
{4.7.2.1} Used for whitebark pine, Western larch, lodgepole pine, and other softwood
            POTHTG = -2.3733 + 0.0016 * (EFAG10^2 - EFAGE^2) + (0.149 * SI100) - (0.00005 * SI100 *
                                                 (EFAG10^2 - EFAGE^2)
            EFAGE = (-B + TEM^0.5) / (C * 2.0)
            TEM = B^2 - (4 * A * C) bounded to be > 0.0
            A = 9.72443 - (0.11375 * SI_{100}) - HT
            B = -0.23733 + (0.0149 * SI_{100})
            C = 0.0016 - (0.00005 * SI_{100})
            EFAG10 = EFAGE + 10.0
{4.7.2.2} Used for Douglas-fir
            POTHTG = (42.397 * (SI_{50} - 4.5)^{0.3197}) / [1.0 + exp(9.7278 - 1.2934 * ln(EFAG10) - (ln(SI_{50}))] / [1.0 + exp(9.7278 - 1.2934 * ln(EFAG10))] / [1
                                                -4.5) * 1.0232))] -(HT - 4.5)
            EFAG10 = 10 + \exp[(TERM + 1.0232 * \ln(SI_{50} - 4.5) - 9.7278) / -1.2934]
            TERM = In[(42.397 * (SI_{50} - 4.5)^0.3197) / ((SI_{50} - 4.5) - 1)]
{4.7.2.3} Used for Engelmann spruce and subalpine fir
            POTHTG = [SI_{100} * (1 - 0.931764 * exp(-0.01679 * EFAG10))^1 .43345] - HT
            EFAG10 = 10 + (TERM / -0.01679)
            TERM = ln[(1 - (HT / SI_{100})^0.69762) / 0.931764]
{4.7.2.4} Used for ponderosa pine
            POTHTG = [(3.635794 * SI_{100} ^0.916307) / (1 + exp(6.09478 - 0.96483 * ln(EFAG10) - 0.96483 * ln(EFAG100) 
                                                0.277025 * ln(SI_{100}))] - HT
            EFAG10 = 10 + \exp[(TERM - 6.09478 + 0.277025 * \ln(SI_{100})) / -0.96483]
            TERM = In[((3.635794 * SI_{100}^{0.916307}) / HT) - 1]
\{4.7.2.5\} MOD1 = 0.706 * (1 - \exp(-10.19 * CR)) * (1 - \exp(-1.8158 * DG))^0.944 + (0.0265 * HT)
\{4.7.2.6\} MOD2 = exp(2.54119 * ((RELHT^{0.250537}) - 1.0))
{4.7.2.7} HTG = POTHTG * MOD1 * MOD2
where:
POTHTG
                                                is potential height growth
                                                 are species site index values based on a 50-year and 100-year base age,
SI<sub>50</sub>, SI<sub>100</sub>
                                                 respectively
HΤ
                                                is tree height
CR
                                                is a tree's live crown ratio (compacted) expressed as a proportion
                                                 is diameter growth for the cycle
DG
RELHT
                                                is tree height divided by average height of the 40 largest diameter trees in the
                                                 stand
```

MOD1, MOD2 are height growth modifiers

HTG is estimated height growth for the cycle

EFAGE is estimated effective age of the tree at the start of the projection cycle

EFAG10 is EFAGE plus 10 years

A, B, C, TEM,

TERM are intermediate variables used in the calculations

Subalpine larch uses equation set {4.7.2.8} to estimate large tree height growth. This is the subalpine fir equation from the Northern Idaho variant.

 $\{4.7.2.8\}$ HTG = exp[x] + .4809

$$X = HAB - 0.5478 + b_1 * HT^2 - 0.1997 * ln(DBH) + 0.23315 * ln(HT) + b_2 * ln(DG)$$

where:

HTG is estimated height growth for the cycle (bounded to be \geq 0.1 foot) HAB is a plant association code dependent intercept shown in table 4.7.2.1

HT is tree height at the beginning of the cycle

DBH is tree diameter at breast height DG is diameter growth for the cycle

b₁, b₂ are habitat-dependent coefficients shown in table 4.7.2.1

Table 4.7.2.1 Coefficients (b_1 , b_2 , and HAB) by NI mapping index (Appendix B table 11.2.2) for the subalpine larch height-growth equation in the EM variant.

NI Mapping	Coefficient				
Index	b ₁	b ₂	HAB		
1, 2, 21, 27-30	-13.358E-5	0.62144	2.03035		
3-9	-3.809E-5	1.02372	1.72222		
10, 11	-3.715E-5	0.85493	1.19728		
12, 19, 20, 22,					
23	-2.607E-5	0.75756	1.81759		
13	-5.200E-5	0.46238	2.14781		
14	-1.605E-5	0.49643	1.76998		
15-18	-3.631E-5	0.37042	2.21104		
24-26	-4.460E-5	0.34003	1.74090		

Limber pine, green ash, quaking aspen, black cottonwood, balsam poplar, plains cottonwood, narrowleaf cottonwood, paper birch, and other hardwood use Johnson's SBB (1949) method (Schreuder and Hafley, 1977) for predicting height growth. Height increment is obtained by subtracting current height from the estimated future height. If tree diameter is greater than ($C_1 + 0.1$), or tree height is greater than ($C_2 + 4.5$), where C_1 and C_2 are shown in table 4.7.2.2, parameters of the SBB distribution cannot be calculated and height growth is set to 0.1. Otherwise, the SBB distribution "Z" parameter is estimated using equation {4.7.2.9}.

$$\{4.7.2.9\} Z = [C_4 + C_6 * FBY2 - C_7 * (C_3 + C_5 * FBY1)] * (1 - C_7^2)^-0.5$$

 $FBY1 = In[Y1/(1 - Y1)]$

```
FBY2 = \ln[Y2/(1 - Y2)]

Y1 = (DBH - 0.1) / C_1

Y2 = (HT - 4.5) / C_2
```

where:

HT is tree height at the beginning of the cycle

DBH is tree diameter at breast height at the beginning of the cycle (bounded to be >

0.2 inch)

 $C_1 - C_7$ are coefficients based on species and crown ratio class shown in table 4.7.2.2

The equation for limber pine is from the Tetons (TT) variant. The equation for quaking aspen is from the Utah (UT) variant, and is also used for green ash, black cottonwood, balsam poplar, plains cottonwood, narrowleaf cottonwood, paper birch, and other hardwood.

For green ash, quaking aspen, black cottonwood, balsam poplar, plains cottonwood, narrowleaf cottonwood, paper birch, and other hardwood, equation {4.7.2.10} is used to eliminate known bias in this methodology.

$$\{4.7.2.10\}$$
 Z = Z + $\{0.1 - 0.10273 * Z + 0.00273 * Z^2\}$ bounded $Z \ge 0$

For all 9 species using the SBB methodology, if the Z value is 2.0 or less, it is adjusted for all younger aged trees using equation $\{4.7.2.11\}$. This adjustment is done for trees with an estimated age greater than 10 years and less than 40 years, and a diameter less than 9.0 inches. After this calculation, the value of Z is bounded to be 2.0 or less for trees meeting these criteria.

```
\{4.7.2.11\} Z = Z * (0.3564 * DG) * CLOSUR * K

CCF \ge 100: CLOSUR = PCT / 100

CCF < 100: CLOSUR = 1

CR \ge 75\%: K = 1.1

CR < 75\%: K = 1.0
```

where:

DG is diameter growth for the cycle

PCT is the subject tree's percentile in the basal area distribution of the stand

CCF is stand crown competition factor

CR is tree crown ratio expressed as a percent

Estimated height 10 years into the future is calculated using equation {4.7.2.12}, and finally, 10-year height growth is calculated by subtraction using equation {4.7.2.13} and adjusted to the cycle length.

```
\{4.7.2.12\} H10 = [(PSI / (1 + PSI)) * C_2] + 4.5

PSI = C8 * [(D10 - 0.1) / (0.1 + C1 - D10)]^C9 * [exp(K)]

K = Z * [(1 - C7^2)^(0.5 / C6)]

\{4.7.2.13\}

for H10 > HT: HTG = H10 - HT

for H10 \le HT: HTG = 0.1
```

where:

H10 is estimated height of the tree in ten yearsHT is tree height at the beginning of the cycle

D10 is estimated diameter at breast height of the tree in ten years

HTG is estimated 10-year height growth

 $C_1 - C_9$ are coefficients based on species and crown ratio class shown in table 4.7.2.3

Table 4.7.2.3 Coefficients in the large tree height growth model, by crown ratio, for species using the Johnson's SBB height distribution in the EM variant.

		GA, AS, CW, BA,
Coefficient*	LM	PW, NC, PB, OH
C ₁ (CR < 24)	37.0	30.0
C ₁ (25 <u><</u> CR <u><</u> 74)	45.0	30.0
C ₁ (75 <u><</u> CR <u><</u> 100)	45.0	35.0
C ₂ (<i>CR</i> ≤ 24)	85.0	85.0
C ₂ (25 <u><</u> CR <u><</u> 74)	100.0	85.0
C ₂ (75 <u><</u> CR <u><</u> 100)	90.0	85.0
C ₃ (<i>CR</i> ≤ 24)	1.77836	2.00995
C ₃ (25 <u><</u> CR <u><</u> 74)	1.66674	2.00995
C ₃ (75 <u><</u> CR <u><</u> 100)	1.64770	1.80388
C ₄ (<i>CR</i> < 24)	-0.51147	0.03288
C ₄ (25 <u><</u> CR <u><</u> 74)	0.25626	0.03288
C ₄ (75 <u><</u> CR <u><</u> 100)	0.30546	-0.07682
C ₅ (<i>CR</i> < 24)	1.88795	1.81059
C ₅ (25 <u><</u> CR <u><</u> 74)	1.45477	1.81059
C ₅ (75 <u><</u> CR <u><</u> 100)	1.35015	1.70032
C ₆ (CR < 24)	1.20654	1.28612
C ₆ (25 <u><</u> CR <u><</u> 74)	1.11251	1.28612
C ₆ (75 <u><</u> CR <u><</u> 100)	0.94823	1.29148
C ₇ (CR < 24)	0.57697	0.72051
C ₇ (25 <u><</u> CR <u><</u> 74)	0.67375	0.72051
C ₇ (75 <u><</u> CR <u><</u> 100)	0.70453	0.72343
C ₈ (<i>CR</i> ≤ 24)	3.57635	3.00551
C ₈ (25 <u><</u> CR <u><</u> 74)	2.17942	3.00551
C ₈ (75 <u><</u> CR <u><</u> 100)	2.46480	2.91519
C ₉ (<i>CR</i> ≤ 24)	0.90283	1.01433
C ₉ (25 <u><</u> CR <u><</u> 74)	0.88103	1.01433
C ₉ (75 <u><</u> CR <u><</u> 100)	1.00316	0.95244

^{*}CR represents percent crown ratio

Rocky Mountain juniper uses the equations described in the small tree height growth model (see section 4.6.1) to calculate height growth for all sized trees.

5.0 Mortality Model

In the EM variant, a blend of two different types of mortality models are used depending upon the species. The original 8 species in this variant, whitebark pine, western larch, Douglas-fir, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine, and other softwood, use mortality models based on Stand Density Index; the remaining species use the Prognosis-type mortality model. These models are described in detail in sections 7.3.1 and 7.3.2 of Essential FVS: A User's Guide to the Forest Vegetation Simulator (Dixon 2002, abbreviated EFVS).

In the SDI-based mortality model there are two mortality rates. The first is background mortality which accounts for occasional tree deaths in stands when the stand density is below a specified level. The second is density-related mortality which determines mortality rates for individual trees based on their relationship with the stand's maximum stand density.

In the Prognosis-type mortality model there is only one mortality rate calculated.

5.1 SDI-Based Mortality Model

The equation used to calculate background mortality for whitebark pine, western larch, Douglas-fir, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine, and other softwood, is shown in equation {5.1.1}, and this is then adjusted to the length of the cycle by using a compound interest formula as shown in equation {5.1.2}. Coefficients for these equations are shown in table 5.1.1.

$$\{5.1.1\} RI = [1 / (1 + \exp(p_1 + p_2 * DBH + p_3 * DBH^2))] * 0.5$$

 $\{5.1.2\} RIP = 1 - (1 - RI)^Y$

where:

RI is the proportion of the tree record attributed to mortality RIP is the final mortality rate adjusted to the length of the cycle

DBH is tree diameter at breast height

Y is length of the current projection cycle in years p_1 and p_2 are species-specific coefficients shown in Table 5.1.1

Table 5.1.1 Coefficients used in the background mortality equation (5.1.1) in the EM variant.

Species			
Code	p ₁	p ₂	p ₃
WB	5.45676	-0.0118233	0
WL	5.26043	-0.0097092	0
DF	5.55086	-0.0129121	0
LP	3.87794	0.3078	-0.0174
ES	6.41265	-0.0127328	0
AF	5.88697	-0.0333752	0
PP	5.58766	-0.0052485	0

OS	7.47709	-0.0395156	0

When density-related mortality is in effect, mortality is determined based on the trajectory developed from the relationship between stand SDI and the maximum SDI for the stand. The equation used to calculate density-related mortality for whitebark pine, western larch, Douglasfir, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine, and other softwood, is shown in equation $\{5.1.3\}$, and adjusted to the length of the cycle as shown.

$$\{5.1.3\}$$
 RN = 1 - $(1 - ((T - TN10)/T))^{(1/Y)}$

where:

RN is the final mortality rate adjusted to the length of the cycle

T is trees per acre at the start of a projection cycle

TN10 is trees per acre at the end of a projection cycle as determined by the stand

development trajectory

Y is length of the current projection cycle in years

5.2 Prognosis-Type Mortality Rate

In the EM variant, limber pine, subalpine larch, Rocky Mountain juniper, green ash, quaking aspen, black cottonwood, balsam poplar, plains cottonwood, narrowleaf cottonwood, paper birch, and other hardwood use the Prognosis-type mortality model (Hamilton 1986). Two mortality rates are independently calculated and then weighted to form the final mortality rate applied to an individual tree record.

The first mortality rate estimate, *RA*, predicts individual tree mortality based on habitat type, species, diameter, diameter increment, estimated potential diameter increment, stand basal area, and a trees' diameter relative to the average stand diameter. The equation used to calculate the first mortality rate for these species is shown in equation set {5.2.1}.

$$\{5.2.1\} \ \ RA = [1 \ / \ (1 + \exp(X))] \ ^* \ RADJ$$

$$X = (b_0 + 2.76253 + 0.22231 \ ^* \ VDBH + -0.0460508 \ ^* \ VBA + 11.2007 \ ^* \ G + 0.246301$$

$$^* \ RDBH + ((-0.55442 + 6.07129 \ ^* \ G) \ / \ DBH))$$
 Bounded $-70 \le X \le 70$
$$DBH > 5.0": \ G = 0.90 \ / \ (0.20 + (0.05 \ ^* \ ^* \ ^*)) \ ^* \ DG$$

$$RADJ = (1 - (\ (0.20 + (0.05 \ ^* \ ^* \ ^*)) \ ^* \ DG$$

$$RADJ = (1 - (\ (0.20 + (0.05 \ ^* \ ^* \ ^*)) \ ^* \ DG$$

$$RADJ = (1 - (\ (0.20 + (0.05 \ ^* \ ^* \ ^* \ ^*)) \ ^* \ DG$$

where:

RA is the estimated annual mortality rate

RADJ is a factor based on Reineke's (1933) Stand Density Index that accounts for

expected differences in mortality rates on different habitat types and National

Forests

DBH is tree diameter at breast height

BA	is total stand basal area
RDBH	is the ratio of tree DBH to the arithmetic mean stand d.b.h.
DG	is periodic annual d.b.h. increment for the previous growth period
G	is periodic annual d.b.h. increment for the previous growth period adjusted for differences in potential annual d.b.h. increment indexed by habitat type and
	National Forest
1	is a diameter growth index value determined by habitat type and location code for <i>I</i> values of trees with <i>DBH</i> > 5.0", see table 5.2.2
	for I values of trees with DBH \leq 5.0", see table 5.2.3
b_0	is a species-specific coefficient shown in table 5.2.1

Table 5.2.1 Values of the b_0 coefficient by species used in mortality equation $\{5.2.1\}$ in the EM variant.

Species	
Code	b_0
LM	0
LL	0.2118
RM	0
GA	0
AS	0
CW	0
BA	0
PW	0
NC	0
PB	0
ОН	0

Table 5.2.2 Index, I, values by forest and NI mapping index (Appendix B table 11.2.2) for trees with DBH > 5.0" in the EM variant.

NI	N	National Forest Location Code				
Mapping Index	102	108	109	111	112	115
1	7	7	7	7	7	7
2	6	6	6	6	7	7
3	6	6	6	6	7	7
4	6	6	6	6	7	7
5	6	6	6	6	6	6
6	6	6	6	6	7	7
7	5	5	5	5	5	5
8	6	6	6	6	6	6
9	5	5	5	5	7	7
10	6	6	6	6	6	6
11	6	6	6	6	6	6

NI	N	National Forest Location Code				
Mapping						
Index	102	108	109	111	112	115
12	6	6	6	6	7	7
13	6	6	6	6	7	7
14	8	8	8	8	9	9
15	7	7	7	7	9	9
16	7	7	7	7	8	8
17	7	7	7	7	9	9
18	7	7	7	7	8	8
19	7	7	7	7	8	8
20	5	5	5	5	5	5
21	3	3	3	3	3	3
22	4	4	4	4	5	5
23	3	3	3	3	4	4
24	4	4	4	4	5	5
25	4	4	4	4	5	5
26	6	6	6	6	7	7
27	5	5	5	5	5	5
28	1	1	1	1	2	2
29	1	1	1	1	4	4
30	6	6	6	6	7	7

Table 5.2.3 Index, I, values by forest and NI mapping index (Appendix B table 11.2.2) for trees with DBH < 5.0" in the EM variant.

NI	N	National Forest Location Code					
Mapping Index	102	108	109	111	112	115	
1	30	30	30	30	31	31	
2	29	29	29	29	29	29	
3	29	29	29	29	30	30	
4	29	29	29	29	31	31	
5	28	28	28	28	29	29	
6	28	28	28	28	30	30	
7	27	27	27	27	29	29	
8	31	31	31	31	33	33	
9	27	27	27	27	31	31	
10	27	27	27	27	30	30	
11	28	28	28	28	29	29	
12	31	31	31	31	34	34	
13	32	32	32	32	34	34	
14	32	32	32	32	35	35	
15	31	31	31	31	34	34	

NI	N	National Forest Location Code				
Mapping Index	102	108	109	111	112	115
16	31	31	31	31	34	34
17	32	32	32	32	35	35
18	31	31	31	31	33	33
19	31	31	31	31	33	33
20	25	25	25	25	27	27
21	23	23	23	23	23	23
22	24	24	24	24	26	26
23	23	23	23	23	26	26
24	24	24	24	24	27	27
25	24	24	24	24	26	26
26	27	27	27	27	31	31
27	26	26	26	26	26	26
28	18	18	18	18	19	19
29	16	16	16	16	23	23
30	27	27	27	27	31	31

The second mortality rate estimate, *RB*, is dependent on the proximity of stand basal area to the site maximum (see section 3.5), and the rate of basal area increment. As stand basal area approaches the maximum for the site, *RB* approaches 1. The calculation of *RB* is described by Wykoff and others (1982) and Dixon (2002).

The mortality rate applied to a tree record is a weighted average of *RA* and *RB* with the weight also dependent on the proximity of stand basal area to the maximum for the site. This is also described by Wykoff and others (1982), and in section 7.3 of the Essential FVS guide (Dixon 2002), and is not shown here. The combined estimate is adjusted to the length of the cycle using a compound interest formula as shown in equation {5.2.2}.

$$\{5.2.2\}\ RT = 1 - (1 - RC)^Y$$

where:

RT is the mortality rate applied to an individual tree record for the growth period
 RC is the combined estimate of the annual mortality rate for the tree record
 Y is length of the current projection cycle in years

For Rocky Mountain juniper equation {5.2.2} is modified by 80%; for limber pine, green ash, quaking aspen, black cottonwood, balsam poplar, plains cottonwood, narrowleaf cottonwood, paper birch, and other hardwood equation {5.2.2} is modified by 40%.

6.0 Regeneration

The EM variant contains a full establishment model which is explained in section 5.4.2 of the Essential FVS Users Guide (Dixon 2002). In short, the full establishment model automatically adds regeneration following significant stand disturbances and adds ingrowth periodically during the simulation. Users may also input regeneration and ingrowth into simulations manually through the establishment model keywords as explained in section 5.4.3 of the Essential FVS Users Guide (Dixon 2002). The following description applies to entering regeneration and ingrowth through keywords.

The regeneration model is used to simulate stand establishment from bare ground, or to bring seedlings and sprouts into a simulation with existing trees. In the EM variant, sprouts are automatically added to the simulation following harvest or burning of known sprouting species (see table 6.0.1 for sprouting species).

Table 6.0.1 Regeneration parameters by species in the EM variant.

Species Code	Sprouting Species	Minimum Bud Width (in)	Minimum Tree Height (ft)	Maximum Tree Height (ft)
WB	No	0.4	1	23
WL	No	0.3	1	27
DF	No	0.3	1	21
LM	No	0.3	1	27
LL	No	0.3	0.5	18
RM	No	0.3	0.5	6
LP	No	0.4	1	24
ES	No	0.3	0.5	18
AF	No	0.3	0.5	18
PP	No	0.5	1	17
GA	Yes	0.2	3	16
AS	Yes	0.2	6	16
CW	Yes	0.2	3	16
BA	Yes	0.2	3	16
PW	Yes	0.2	3	16
NC	Yes	0.2	3	16
PB	Yes	0.2	6	16
OS	No	0.2	0.5	22
ОН	No	0.2	3	16

One sprouting record is created for green ash and paper birch; two sprouting records are created for quaking aspen; and logic rule {6.0.1} is used to determine the number of sprouting records for root suckering species. The trees-per-acre represented by each sprout record is determined using the general sprouting probability equation {6.0.2}. See table 6.0.2 for species-specific sprouting probabilities, number of sprout records created, and reference information.

Users wanting to modify or turn off automatic sprouting can do so with the SPROUT or NOSPROUT keywords, respectively. Sprouts are not subject to maximum and minimum tree heights found in table 6.0.1 and do not need to be grown to the end of the cycle because estimated heights and diameters are end of cycle values.

{6.0.1} For root suckering hardwood species

 $DSTMP_i \le 5$: NUMSPRC = 1

 $5 < DSTMP_i \le 10$: NUMSPRC = NINT(-1.0 + 0.4 * DSTMP_i)

 $DSTMP_i > 10: NUMSPRC = 3$

 $\{6.0.2\}\ TPA_s = TPA_i * PS$

 $\{6.0.3\}$ PS = $(TPA_i/(ASTPAR * 2)) * ((ASBAR / 198) * (40100.45 - 3574.02 * RSHAG^3 - 3.5208 * RSHAG^5 + 0.011797 * RSHAG^7))$

where:

DSTMP_i is the diameter at breast height of the parent tree

NUMSPRC is the number of sprout tree recordsNINT rounds the value to the nearest integer

TPA_s is the trees per acre represented by each sprout record

*TPA*_i is the trees per acre removed/killed represented by the parent tree

PS is a sprouting probability (see table 6.0.2)

ASBAR is the aspen basal area removed
ASTPAR is the aspen trees per acre removed

RSHAG is the age of the sprouts at the end of the cycle in which they were created

Table 6.0.2 Sprouting algorithm parameters for sprouting species in the EM variant.

Species Code	Sprouting Probability	Number of Sprout Records	Source
	0.8 for DBH <		
GA	12",	1	Ag. Handbook 654
	0.5 for DBH > 12"		
AS	{6.0.3}	2	Keyser 2001
CW	0.9	{6.0.1}	Gom and Rood 2000
CVV	0.9	το.υ.1	Steinberg 2001
	0.8 for DBH <		
BA	25",	{6.0.1}	Ag. Handbook 654
	0.5 for DBH > 25"		
PW	0.9	{6.0.1}	Taylor 2001
NC	0.8	{6.0.1}	Simonin 2001
			Hutnik and Cunningham
PB	0.7	1	1965
			Bjorkbom 1972

Regeneration of seedlings may be specified by using PLANT or NATURAL keywords. Height of the seedlings is estimated in two steps. First, the height is estimated when a tree is 5 years old

(or the end of the cycle – whichever comes first) by using the small-tree height growth equations found in section 4.6.1. Users may override this value by entering a height in field 6 of the PLANT or NATURAL keywords; however the height entered in field 6 is not subject to minimum height restrictions and seedlings as small as 0.05 feet may be established. The second step also uses the equations in section 4.6.1, which grow the trees in height from the point five years after establishment to the end of the cycle.

Seedlings and sprouts are passed to the main FVS model at the end of the growth cycle in which regeneration is established. Unless noted above, seedlings being passed are subject to minimum and maximum height constraints and a minimum budwidth constraint shown in table 6.0.1. After seedling height is estimated, diameter growth is estimated using equations described in section 4.6.2. Crown ratios on newly established trees are estimated as described in section 4.3.1.

Regenerated trees and sprouts can be identified in the treelist output file with tree identification numbers beginning with the letters "ES".

7.0 Volume

Volume is calculated for three merchantability standards: total stem cubic feet, merchantable stem cubic feet, and merchantable stem board feet (Scribner Decimal C). Volume estimation is based on methods contained in the National Volume Estimator Library maintained by the Forest Products Measurements group in the Forest Management Service Center (Volume Estimator Library Equations 2009). The default volume merchantability standards and equation numbers for the EM variant are shown in tables 7.0.1-7.0.3.

Table 7.0.1 Default volume merchantability standards for the EM variant.

Merchantable Cubic Foot Volume Specifications:								
Minimum DBH / Top Diameter	LP	All Other Species						
All location codes	6.0 / 4.5 inches	7.0 / 4.5 inches						
Stump Height	1.0 foot	1.0 foot						
Merchantable Board Foot Volume Specification	ons*:							
Minimum DBH / Top Diameter	LP	All Other Species						
All location codes	6.0 / 4.5 inches	7.0 / 4.5 inches						
Stump Height	1.0 foot	1.0 foot						

^{*} Board foot volume is not calculated for green ash (11), black cottonwood (13), balsam poplar (14), plains cottonwood (15), narrowleaf cottonwood (16), paper birch (17), or other hardwood (19) when using the default equations.

Table 7.0.2 Volume equation defaults for each species, at specific location codes, with model name.

Common Name	Location Code	Equation Number	Reference
whitebark pine	102, 108, 109, 111, 112, 115	100FW2W012	Flewelling's 2-Point Profile Model
western larch	102, 108, 109, 111, 112, 115	I00FW2W073	Flewelling's 2-Point Profile Model
Douglas-fir	102, 108, 109, 111, 112, 115	I00FW2W202	Flewelling's 2-Point Profile Model
limber pine	102, 108, 109, 111, 112, 115	I00FW2W073	Flewelling's 2-Point Profile Model
subalpine larch	102, 108, 109, 111, 112, 115	I00FW2W019	Flewelling's 2-Point Profile Model
Rocky Mountain juniper	102, 108, 109, 111, 112, 115	102DVEW106	Kemp Equation
lodgepole pine	102, 108, 109, 111, 112, 115	I00FW2W108	Flewelling's 2-Point Profile Model
Engelmann spruce	102, 108, 109, 111, 112, 115	I00FW2W093	Flewelling's 2-Point Profile Model
subalpine fir	102, 108, 109, 111, 112,	I00FW2W019	Flewelling's 2-Point Profile

		Equation	
Common Name	Location Code	Number	Reference
	115		Model
ponderosa pine	102, 109, 111, 112, 115	I00FW2W122	Flewelling's 2-Point Profile Model
ponderosa pine	108	203FW2W122	Flewelling's 2-Point Profile Model
green ash	102, 108, 109, 111, 112, 115	101DVEW740	Kemp Equation
quaking aspen	102, 108, 109, 111, 112, 115	102DVEW746	Kemp Equation
black cottonwood	102, 108, 109, 111, 112, 115	102DVEW740	Kemp Equation
balsam poplar	102, 108, 109, 111, 112, 115	101DVEW740	Kemp Equation
plains cottonwood	102, 108, 109, 111, 112, 115	102DVEW740	Kemp Equation
narrowleaf cottonwood	102, 108, 109, 111, 112, 115	102DVEW740	Kemp Equation
paper birch	102, 108, 109, 111, 112, 115	101DVEW375	N. Central Station Equation
other softwood	102, 108, 109, 111, 112, 115	100FW2W260	Flewelling's 2-Point Profile Model
other hardwood	102, 108, 109, 111, 112, 115	200DVEW746	Kemp Equation

Table 7.0.3 Citations by Volume Model

Model Name	Citation
Flewelling 2-	Unpublished. Based on work presented by Flewelling and Raynes. 1993.
Point Profile	Variable-shape stem-profile predictions for western hemlock. Canadian
Model	Journal of Forest Research Vol 23. Part I and Part II.
Komp	Kemp, P.D. 1958. Unpublished report on file at USDA, Forest Service, Rocky
Kemp Equations	Mountain Research Station, Interior West Resource Inventory, Monitoring,
Equations	and Evaluation Program, Ogden, UT.
N. Central	Hahn, Jerold T. 1984. Tree Volume and Biomass Equations for the Lake States.
Station	Research Paper NC-250. St. Paul, MN: U.S. Dept. of Agriculture, Forest Service,
Equation	North Central Forest Experiment Station

8.0 Fire and Fuels Extension (FFE-FVS)

The Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) (Reinhardt and Crookston 2003) integrates FVS with models of fire behavior, fire effects, and fuel and snag dynamics. This allows users to simulate various management scenarios and compare their effect on potential fire hazard, surface fuel loading, snag levels, and stored carbon over time. Users can also simulate prescribed burns and wildfires and get estimates of the associated fire effects such as tree mortality, fuel consumption, and smoke production, as well as see their effect on future stand characteristics. FFE-FVS, like FVS, is run on individual stands, but it can be used to provide estimates of stand characteristics such as canopy base height and canopy bulk density when needed for landscape-level fire models.

For more information on FFE-FVS and how it is calibrated for the EM variant, refer to the updated FFE-FVS model documentation (Rebain, comp. 2010) available on the FVS website.

9.0 Insect and Disease Extensions

FVS Insect and Pathogen models for dwarf mistletoe and western root disease have been developed for the EM variant through the participation and contribution of various organizations led by Forest Health Protection. These models are currently maintained by the Forest Management Service Center and regional Forest Health Protection specialists. Additional details regarding each model may be found in chapter 8 of the Essential FVS Users Guide (Dixon 2002).

10.0 Literature Cited

- Alexander, R.R. 1967. Site Indices for Engelmann Spruce. Res. Pap. RM-32. Forest Service, Rocky Mountain Research Station. 7p.
- Alexander, R.R., Tackle, D., and Dahms, W.G. 1967. Site Indices for Lodgepole Pine with Corrections for Stand Density Methodology. Res. Pap. RM-29. Forest Service, Rocky Mountain Research Station. 18 p.
- Bechtold, William A. 2004. Largest-crown-diameter Prediction Models for 53 Species in the Western United States. WJAF. Forest Service. 19(4): pp 241-245.
- Bjorkbom, John C. 1972. Stand changes in the first 10 years after seedbed preparation for paper birch. USDA Forest Service, Research Paper NE-238. Northeastern Forest Experiment Station, Upper Darby, PA. 10 p.
- Burns, R. M., & Honkala, B. H. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods Agriculture Handbook 654. US Department of Agriculture, Forest Service, Washington, DC.
- Cole, D. M.; Stage, A. R. 1972. Estimating future diameters of lodgepole pine. Res. Pap. INT-131. Ogden, UT: U. S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 20p.
- Crookston, Nicholas. 2003. Internal Document on File. Moscow, ID: Data provided from region 1.
- Crookston, Nicholas. 2005. Draft: Allometric Crown Width Equations for 34 Northwest United States Tree Species Estimated Using Generalized Linear Mixed Effect Models.
- Dixon, G. E. 1985. Crown ratio modeling using stand density index and the Weibull distribution. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 13p.
- Dixon, Gary E. comp. 2002 (revised frequently). Essential FVS: A user's guide to the Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Forest Management Service Center.
- Donnelly, Dennis. 1996. Internal document on file. Data provided from Region 6. Fort Collins, CO: Forest Service.
- Edminster, Carleton B., Mowrer, H. Todd, and Shepperd, Wayne D. 1985. Site Index Curves for Aspen in the Central Rocky Mountains. Res. Note RM-453. Forest Service, Rocky Mountain Research Station. 4 p.
- Unpublished. Based on work presented by Flewelling and Raynes. 1993. Variable-shape stemprofile predictions for western hemlock. Canadian Journal of Forest Research Vol 23. Part I and Part II.
- Gom, L. A., & Rood, S. B. (2000). Fire induces clonal sprouting of riparian cottonwoods. Canadian Journal of Botany, 77(11), 1604-1616.

- Hahn, Jerold T. 1984. Tree Volume and Biomass Equations for the Lake States. Research Paper NC-250. St. Paul, MN: U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station
- Hamilton, D. A., Jr. 1986. A logistic model of mortality in thinned and unthinned mixed conifer stands of northern Idaho. For. Science 32(4): 989-1000.
- Hutnik, Russell J., and Frank E. Cunningham. 1965. Paper birch (Betula papyrifera Marsh.). In Silvics of forest trees of the United States. p. 93-98. H. A. Fowells, comp. U.S. Department of Agriculture, Agriculture Handbook 271. Washington, DC.
- Johnson, N.L. 1949. Bivariate distributions based on simple translation systems. Biometrika 36:297-304.
- Kemp, P.D. 1958. Unpublished report on file at USDA, Forest Service, Rocky Mountain Research Station, Interior West Resource Inventory, Monitoring, and Evaluation Program, Ogden, UT.
- Keyser, C.E. 2001. Quaking Aspen Sprouting in Western FVS Variants: A New Approach. Unpublished Manuscript.
- Krajicek, J.; Brinkman, K.; Gingrich, S. 1961. Crown competition a measure of density. Forest Science. 7(1):35-42.
- Meyer, Walter H. 1961.rev. Yield of even-aged stands of ponderosa pine. Tech. Bull. No. 630. Washington D.C.: Forest Service
- Mosenrud, R.A. 1985. Applying Height Growth and Site index Curves for inland Douglas-fir. Intermountain Research Paper. INT-347.
- Rebain, Stephanie A. comp. 2010 (revised frequently). The Fire and Fuels Extension to the Forest Vegetation Simulator: Updated Model Documentation. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 379 p.
- Reinhardt, Elizabeth; Crookston, Nicholas L. (Technical Editors). 2003. The Fire and Fuels Extension to the Forest Vegetation Simulator. Gen. Tech. Rep. RMRS-GTR-116. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 209 p.
- Richie, Martin W., and Hann, David W. 1986. Development of a tree height growth model for Douglas-fir. Forest Ecology and Management. 15: pp 135-145.
- Schreuder, H.T. and W.L. Hafley. 1977. A Useful Distribution for Describing Stand Structure of Tree Heights and Diameters. Biometrics 33, 471-478.
- Shepperd, Wayne D. 1995. Unpublished equation. Data on file. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station.

- Simonin, Kevin A. 2001. Populus angustifolia. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Stage, A. R. 1973. Prognosis Model for stand development. Res. Paper INT-137. Ogden, UT: U. S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 32p.
- Steinberg, Peter D. 2001. Populus balsamifera subsp. trichocarpa. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Taylor, Jennifer L. 2001. Populus deltoides. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Van Dyck, Michael G.; Smith-Mateja, Erin E., comps. 2000 (revised frequently). Keyword reference guide for the Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center.
- Wensel, L.C., W.J. Meerschaert, and G.S. Bigging. 1978. Tree height and diameter growth models for northern California. Hilgardia 55(8): 1-20.
- Wykoff, W. R. 1990. A basal area increment model for individual conifers in the northern Rocky Mountains. For. Science 36(4): 1077-1104.
- Wykoff, William R. 1986. Supplement to the User's guide for the Stand Prognosis Model-Version 5.0. Gen. Tech. Rep. INT-208. Ogden, UT: Forest Service, Intermountain Research Station. 36 p.
- Wykoff, William R., Crookston, Nicholas L., and Stage, Albert R. 1982. User's guide to the Stand Prognosis Model. Gen. Tech. Rep. INT-133. Ogden, UT: Forest Service, Intermountain Forest and Range Experiment Station. 112p.

11.0 Appendices

11.1 Appendix A. Distribution of Data Samples

The following tables contain distribution information of data used to fit species relationships in this variant's geographic region (information from original variant overview).

Table 11.1.1. Distribution of samples by National Forest, expressed in whole percent of total observations for each species.

		Total Number					
						Lewis &	of
Species	Beaverhead	Custer	Deerlodge	Gallatin	Helena	Clark	Observations
Douglas-fir	13	1	21	34	15	17	30767
lodgepole pine	32	1	24	26	10	8	56939
Engelmann							
spruce	23	1	18	42	5	12	7991
subalpine fir	24	0	14	48	7	8	7927
ponderosa pine	<1	65	<1	5	6	24	5232
whitebark pine	27	0	15	36	6	16	2747

Table 11.1.2. Distribution of samples for diameter breast high, expressed in whole percent of total observations for each species.

	DBH Range								
Species	0-5	5-10	10-15	15-20	20-25	25+			
Douglas-fir	6	32	33	19	7	3			
lodgepole pine	14	56	27	4	1	0			
Engelmann									
spruce	6	30	31	21	8	3			
subalpine fir	16	52	25	6	1	<1			
ponderosa pine	10	31	32	20	5	1			
whitebark pine	9	48	32	9	2	<1			

Table 11.1.3. Distribution of samples by Crown Ratio group, expressed in whole percent of total observations for each species.

	Crown Code (1=1-10,2=11-20,,9=81-100)											
Species	1	2	3	4	5	6	7	8	9			
Douglas-fir	2	7	16	19	18	15	12	8	3			
lodgepole pine	6	19	28	20	11	7	5	3	1			
Engelmann												
spruce	1	2	6	11	14	18	19	13	12			
subalpine fir	1	2	6	10	15	17	18	18	11			
ponderosa pine	3	11	25	22	16	12	7	4	1			
whitebark pine	5	14	23	19	14	10	8	5	2			

Table 11.1.4. Distribution of samples by Aspect Code, expressed in percent of total observations for each species.

	Aspect Code									
		North-		South-		South-		North-		
Species	North	east	East	east	South	west	West	west	Level	
Douglas-fir	20	16	11	10	7	9	11	16	1	
lodgepole pine	18	15	13	9	6	8	10	14	8	
Engelmann										
spruce	28	21	12	5	4	5	7	16	3	
subalpine fir	22	24	17	7	4	5	6	14	2	
ponderosa pine	23	17	13	5	7	12	11	11	2	
whitebark pine	16	18	12	7	7	8	12	18	1	

Table 11.1.5. Distribution of samples by total stand basal area per acre, expressed in percent of total for each species.

	Basal Area								
			100-	150-	200-	250-			
Species	0-50	50-100	150	200	250	300			
Douglas-fir	5	24	39	25	6	1			
lodgepole pine	6	26	43	20	4	1			
Engelmann spruce	3	18	39	30	10	1			
subalpine fir	3	25	40	24	7	1			
ponderosa pine	5	45	38	9	2	1			
whitebark pine	2	20	35	32	10	2			

Table 11.1.6. Distribution of samples by diameter growth, expressed in percent for each species.

	Diameter Growth (inches/10 years)									
Species	< 0.5	0.5-1.0	1.0-1.5	1.5-2.0	2.0-2.5	2.5-3.0	3.0-3.5	<u>></u> 3.5		
Douglas-fir	46	39	11	3	1	1	1	1		
lodgepole pine	54	36	7	2	1	1	1	1		
Engelmann										
spruce	31	42	19	6	2	1	1	0		
subalpine fir	34	45	16	4	1	1	1	0		
ponderosa pine	26	42	20	8	3	1	1	1		
whitebark pine	71	26	3	1	1	0	0	0		

Table 11.1.7. Distribution of samples by elevation, expressed in percent for each species.

	Elevation				
Species	<5000	5000-6000	6000-7000	7000-8000	8000-9000
Douglas-fir	1	21	54	23	1
lodgepole pine	5	42	44	9	0

	Elevation					
Species	<5000	5000-6000	6000-7000	7000-8000	8000-9000	
Engelmann						
spruce	5	31	45	18	1	
subalpine fir	2	23	54	21	1	
ponderosa pine	71	23	5	1	0	
whitebark pine	4	13	37	44	2	

11.2 Appendix B. Habitat Codes

Table 11.2.1 Habitat codes recognized in the EM variant.

Habitat		
Code	Abbreviation	Habitat Type Name
10	SCREE	Scree
65	GRASS	Grass type
70	FORB	Forb type
74	SAL	Willow
79	POTRI	Balsam poplar
91	PIFL2/PSSPS	Limber pine/bluebunch wheatgrass
92	PIFL2/FEID	Limber pine/Idaho fescue
93	PIFL2/FEID-FEID	Limber pine/Idaho fescue-Idaho fescue
95	PIFL/JUCO	Limber pine/common juniper
100	PIPO	Ponderosa pine series
110	PIPO/ANDRO2	Ponderosa pine/bluestem
120	PIPO/STOC	Ponderosa pine/western needlegrass
130	PIPO/AGSP2	ponderosa pine/ bluebunch wheatgrass
140	PIPO/FEID	Ponderosa pine/Idaho fescue
141	PIPO/FEID/FEID	Ponderosa pine/Idaho fescue/Idaho fescue
161	PIPO/PUTR/AGSP	Ponderosa pine/bitterbrush/ldaho fescue
170	PIPO/SYAL	Ponderosa pine/Common snowberry
171	PIPO/SYAL/SYAL	Ponderosa pine/common snowberry/common snowberry
172	PIPO/SYAL/MARE11	Ponderosa pine/common snowberry/creeping barberry
180	PIPO/PRVI	Ponderosa pine/chokecherry
181	PIPO/PRVI/PRVI	Ponderosa pine/chokecherry/chokecherry
182	PIPO/PRVI/SHCA	Ponderosa pine/chokecherry/russet buffaloberry
200	PSME	Douglas-fir series
210	PSME/AGSP	Douglas-fir/Bluebench wheatgrass
220	PSME/FEID	Douglas-fir/Idaho fescue
221	PSME/FEID/FEID	Douglas-fir/Idaho fescue/Idaho fescue
230	PSME/FEAL	Douglas-fir/altai fescue
250	PSME/VACA	Douglas-fir/Dwarf huckleberry
260	PSME/PHMA	Douglas-fir/ninebark

Habitat		
Code	Abbreviation	Habitat Type Name
261	PSME/PHMA/PHMA	Douglas-fir/ninebark/ninebark
262	PSME/PHMA/CARU	Douglas-fir/ninebark/pinegrass
280	PSME/VAGL	Douglas-fir/blue huckleberry
281	PSME/VAME/VAME	Douglas-fir/thinleaf huckleberry/thinleaf huckleberry
282	PSME/VAME/ARUV	Douglas-fir/thinleaf huckleberry/kinnikinnick
283	PSME/VAME/XETE	Douglas-fir/thinleaf huckleberry/common beargrass
290	PSME/LIBO	Douglas-fir/twinflower
291	PSME/LIBO/SYAL	Douglas-fir/twinflower/common snowberry
292	PSME/LIBO/VAME	Douglas-fir/twinflower/thinleaf huckleberry
293	PSME/LIBO/VAME	Douglas-fir/twinflower/thinleaf huckleberry
310	PSME/SYAL	Douglas-fir/common snowberry
311	PSME/SYAL/PSSPS	Douglas-fir/common snowberry/bluebunch wheatgrass
312	PSME/SYAL/CARU	Douglas-fir/common snowberry/pinegrass
313	PSME/SYAL/SYAL	Douglas-fir/common snowberry/common snowberry
315	PSME/SYAL/PIPO	Douglas-fir/common snowberry/ponderosa pine
320	PSME/CARU	Douglas-fir/pinegrass
321	PSME/CARU/PSSPS	Douglas-fir/pinegrass/bluebunch wheatgrass
322	PSME/CARU/ARUV	Douglas-fir/pinegrass/kinnikinnick
323	PSME/CARU/CARU	Douglas-fir/pinegrass/pinegrass
330	PSME/CAGE	Douglas-fir/elk sedge
331	PSME/CAGE/CAGE	Douglas-fir/elk sedge/elk sedge
332	PSME/CAGE/SYOR	Douglas-fir/elk sedge/mountain snowberry
340	PSME/SPBE	Douglas-fir/white spirea
350	PSME/ARUV	Douglas-fir/kinnikinnick
360	PSME/JUCO	Douglas-fir/common juniper
370	PSME/ARCO	Douglas-fir/Heartleaf arnica
371	PSME/ARCO/ARCO	Douglas-fir/Heartleaf arnica/heartleaf arnica
400	PIECA	Spruce series
410	PIECA /EQAR	Spruce/common horsetail
430	PIECA/PHMA5	Spruce/mallow ninebark
440	PIECA /GART	Spruce/sweetscented bedstraw
450	PICEA/VACA13	Spruce/dwarf bilberry
460	PICEA/PAST10	Spruce/rocky mountain groundsel
461	PICEA/PAST10/PSME	Spruce/rocky mountain groundsel/douglas-fir
470	PICEA/LIBO	Spruce/twinflower
480	PICEA/MAST	Spruce/starry false lily of the valley
591	ABGR/LIBO/LIBO	Grand-fir/twinflower/twinflower
610	ABLA/OPHO	Subalpine fir/devilsclub
620	ABLA/CLUN	Subalpine fir/twisted stalk
624	ABLA/CLUN/CETE	Subalpine fir/twisted stalk/beargrass

Habitat Code	Abbreviation	Habitat Type Name
625	ABLA/CLUN/MEFE	Subalpine fir/twisted stalk/menziesia
630	ABLA/GART	Subalpine fir/fragrant bedstraw
632	ABLA/GATR3/VASC	Subalpine fir/fragrant bedstraw/grouse whortleberry
640	ABLA/VACA	Subalpine fir/dwarf huckleberry
641	ABLA/VACA-VACA	Subalpine fir/dwarf huckleberry/dwarf huckleberry
642	ABLA/VACA-CACA	Subalpine fir/dwarf huckleberry/bluejoint
650	ABLA/CACA	Subalpine fir/bluejoint
651	ABLA/CACA/CACA	Subalpine fir/bluejoint/bluejoint
653	ABLA/CACA/GATR	Subalpine fir/bluejoint/fragrant bedstraw
654	ABLA/CACA/VACA	Subalpine fir/bluejoint/dwarf huckleberry
655	ABLA/CACA/LEGL	Subalpine fir/bluejoint/Labrador tea
660	ABLA/LIBO	Subalpine fir/twinflower
661	ABLA/LIBO/LIBO	Subalpine fir/twinflower/twinflower
662	ABLA/LIBO/XETE	Subalpine fir/twinflower/beargrass
663	ABLA/LIBO/VASC	Subalpine fir/twinflower/grouse whortleberry
670	ABLA/MEFE	Subalpine fir/menziesia
674	ABLA/MEFE/VASC	Subalpine fir/menziesia/grouse whortleberry
690	ABLA/XETE	Subalpine fir/beargrass
691	ABLA/XETE/VAGL	Subalpine fir/beargrass/blue huckleberry
692	ABLA/XETE/VASC	Subalpine fir/beargrass/grouse whortleberry
700	ABLA	Subalpine fir, lower subalpine
710	TSME/XETE	Mountain hemlock/beargrass
720	ABLA/VAGL	Subalpine fir/blue huckleberry
730	ABLA/VASC	Subalpine fir/grouse whortleberry
731	ABLA/VASC/CARU	Subalpine fir/grouse whortleberry/pinegrass
732	ABLA/VASC/VASC	Subalpine fir/grouse whortleberry/grouse whortleberry
733	ABLA/VASC/THOC	Subalpine fir/grouse whortleberry/western meadow rue
740	ABLA/ALSI	Subalpine fir/sitka alder
750	ABLA/CARU	Subalpine fir/pinegrass
751	ABLA/CARU-CARU	Subalpine fir/pinegrass/pinegrass
770	ABLA/CLCOC	Subalpine fir/rock clematis
780	ABLA/ARCO	Subalpine fir/heartleaf arnica
790	ABLA/CAGE	Subalpine fir/elk sedge
791	ABLA/CAGE/CAGE	Subalpine fir/elk sedge/elk sedge
792	ABLA/CAGE/PSME	Subalpine fir/elk sedge/douglas-fir
810	ABLA/RIMO	Subalpine fir/mountain gooseberry
820	ABLA/PIAL/VASC	Subalpine fir/whitebark pine/grouse whortleberry
830	ABLA/LUHI	Subalpine fir/smooth woodrush
832	ABLA/LUGLH/MEFE	Subalpine fir/smooth woodrush/rusty menziesia
850	PIAL-ABLA	Whitebark pine-subalpine fir

Habitat		
Code	Abbreviation	Habitat Type Name
860	LALY-ABLA2	Alpine larch-subalpine fir
870	PIAL	Whitebark pine series
900	PICO	Lodgepole pine series
910	PICO/PUTR	Lodgepole pine/antelope bitterbrush
920	PICO/VACA	Lodgepole pine/dwarf huckleberry
930	PICO/LIBO	Lodgepole pine/twinflower
940	PICO/VASC	Lodgepole pine/grouse whortleberry
950	PIPO/CARU	Lodgepole pine/pinegrass
999	Other	

Table 11.2.2 EM habitat code mapping to original NI habitat codes and their associated default value for maximum stand density index.

EM Habitat		Mapping	NI Habitat		Maximum
Code	Abbreviation	Index	Code	Abbreviation	SDI
10	SCREE	1	130	PIPO/AGSP	634
66	GRASS	1	130	PIPO/AGSP	634
70	FORB	1	130	PIPO/AGSP	634
74	SAL	1	130	PIPO/AGSP	634
79	POTRI	1	130	PIPO/AGSP	634
91	PIFL2/PSSPS	1	130	PIPO/AGSP	634
92	PIFL2/FEID	1	130	PIPO/AGSP	634
93	PIFL2/FEID-FEID	1	130	PIPO/AGSP	634
95	PIFL/JUCO	1	130	PIPO/AGSP	634
100	PIPO	1	130	PIPO/AGSP	775
110	PIPO/ANDRO2	1	130	PIPO/AGSP	775
120	PIPO/STOC	1	130	PIPO/AGSP	775
130	PIPO/AGSP2	1	130	PIPO/AGSP	775
140	PIPO/FEID	1	130	PIPO/AGSP	775
141	PIPO/FEID/FEID	1	130	PIPO/AGSP	775
161	PIPO/PUTR/AGSP	2	170	PIPO/SYAL	775
170	PIPO/SYAL	2	170	PIPO/SYAL	775
171	PIPO/SYAL/SYAL	2	170	PIPO/SYAL	775
172	PIPO/SYAL/MARE11	2	170	PIPO/SYAL	775
180	PIPO/PRVI	2	170	PIPO/SYAL	775
181	PIPO/PRVI/PRVI	2	170	PIPO/SYAL	775
182	PIPO/PRVI/SHCA	2	170	PIPO/SYAL	775
200	PSME	4	260	PSME/PHMA	467
210	PSME/AGSP	1	130	PIPO/AGSP	467
220	PSME/FEID	1	130	PIPO/AGSP	467
221	PSME/FEID/FEID	1	130	PIPO/AGSP	467
230	PSME/FEAL	1	130	PIPO/AGSP	467

EM Habitat		Mapping	NI Habitat		Maximum
Code	Abbreviation	Index	Code	Abbreviation	SDI
250	PSME/VACA	3	250	PSME/VACA	768
260	PSME/PHMA	4	260	PSME/PHMA	696
261	PSME/PHMA/PHMA	4	260	PSME/PHMA	696
262	PSME/PHMA/CARU	4	260	PSME/PHMA	696
280	PSME/VAGL	5	280	PSME/VAGL	775
281	PSME/VAME/VAME	5	280	PSME/VAGL	775
282	PSME/VAME/ARUV	5	280	PSME/VAGL	775
283	PSME/VAME/XETE	5	280	PSME/VAGL	775
290	PSME/LIBO	6	290	PSME/LIBO	768
291	PSME/LIBO/SYAL	6	290	PSME/LIBO	768
292	PSME/LIBO/VAME	6	290	PSME/LIBO	768
293	PSME/LIBO/VAME	6	290	PSME/LIBO	768
310	PSME/SYAL	7	310	PSME/SYAL	696
311	PSME/SYAL/PSSPS	7	310	PSME/SYAL	467
312	PSME/SYAL/CARU	7	310	PSME/SYAL	696
313	PSME/SYAL/SYAL	7	310	PSME/SYAL	696
315	PSME/SYAL/PIPO	7	310	PSME/SYAL	696
320	PSME/CARU	8	320	PSME/CARU	634
321	PSME/CARU/PSSPS	8	320	PSME/CARU	467
322	PSME/CARU/ARUV	8	320	PSME/CARU	634
323	PSME/CARU/CARU	8	320	PSME/CARU	634
330	PSME/CAGE	9	330	PSME/CAGE	634
331	PSME/CAGE/CAGE	9	330	PSME/CAGE	634
332	PSME/CAGE/SYOR	9	330	PSME/CAGE	634
340	PSME/SPBE	8	320	PSME/CARU	634
350	PSME/ARUV	8	320	PSME/CARU	634
360	PSME/JUCO	9	330	PSME/CAGE	634
370	PSME/ARCO	7	310	PSME/SYAL	634
371	PSME/ARCO/ARCO	7	310	PSME/SYAL	634
400	PIECA	10	420	PICEA/CLUN	707
410	PIEN/EQAR	10	420	PICEA/CLUN	707
430	PIECA/PHMA5	4	260	PSME/PHMA	696
440	PIEN/GART	11	470	PICEA/LIBO	707
450	PICEA/VACA13	20	640	ABLA/VACA	707
460	PICEA/PAST10	29	850	PIAL-ABLA	635
461	PICEA/PAST10/PSME	29	850	PIAL-ABLA	635
470	PICEA/LIBO	11	470	PICEA/LIBO	768
480	PICEA/MAST	11	470	PICEA/LIBO	768
591	ABGR/LIBO/LIBO	12	510	ABGR/XETE	707
610	ABLA/OPHO	18	610	ABLA/OPHO	707

EM Habitat		Mapping	NI Habitat		Maximum
Code	Abbreviation	Index	Code	Abbreviation	SDI
620	ABLA/CLUN	19	620	ABLA/CLUN	707
624	ABLA/CLUN/CETE	19	620	ABLA/CLUN	707
625	ABLA/CLUN/MEFE	19	620	ABLA/CLUN	707
630	ABLA/GART	21	660	ABLA/LIBO	707
632	ABLA/GATR3/VASC	21	660	ABLA/LIBO	707
640	ABLA/VACA	20	640	ABLA/VACA	707
641	ABLA/VACA-VACA	20	640	ABLA/VACA	707
642	ABLA/VACA-CACA	20	640	ABLA/VACA	707
650	ABLA/CACA	20	640	ABLA/VACA	707
651	ABLA/CACA/CACA	20	640	ABLA/VACA	707
653	ABLA/CACA/GATR	20	640	ABLA/VACA	707
654	ABLA/CACA/VACA	20	640	ABLA/VACA	707
655	ABLA/CACA/LEGL	20	640	ABLA/VACA	707
660	ABLA/LIBO	21	660	ABLA/LIBO	768
661	ABLA/LIBO/LIBO	21	660	ABLA/LIBO	768
662	ABLA/LIBO/XETE	21	660	ABLA/LIBO	768
663	ABLA/LIBO/VASC	21	660	ABLA/LIBO	768
670	ABLA/MEFE	22	670	ABLA/MEFE	661
674	ABLA/MEFE/VASC	22	670	ABLA/MEFE	661
690	ABLA/XETE	24	690	ABLA/XETE	775
691	ABLA/XETE/VAGL	24	690	ABLA/XETE	775
692	ABLA/XETE/VASC	24	690	ABLA/XETE	775
700	TSME	27	730	ABLA/VASC	707
710	TSME/XETE	25	710	TSME/XETE	707
720	ABLA/VAGL	26	720	ABLA/VAGL	775
730	ABLA/VASC	27	730	ABLA/VASC	751
731	ABLA/VASC/CARU	27	730	ABLA/VASC	751
732	ABLA/VASC/VASC	27	730	ABLA/VASC	751
733	ABLA/VASC/THOC	27	730	ABLA/VASC	707
740	ABLA/ALSI	22	670	ABLA/MEFE	661
750	ABLA/CARU	24	690	ABLA/XETE	635
751	ABLA/CARU-CARU	24	690	ABLA/XETE	635
770	ABLA/CLCOC	27	730	ABLA/VASC	635
780	ABLA/ARCO	24	690	ABLA/XETE	635
790	ABLA/CAGE	27	730	ABLA/VASC	635
791	ABLA/CAGE/CAGE	27	730	ABLA/VASC	635
792	ABLA/CAGE/PSME	27	730	ABLA/VASC	635
810	ABLA/RIMO	28	830	ABLA/LUHI	635
820	ABLA/PIAL/VASC	29	850	PIAL-ABLA	635
830	ABLA/LUHI	28	830	ABLA/LUHI	635

EM Habitat		Mapping	NI Habitat		Maximum
Code	Abbreviation	Index	Code	Abbreviation	SDI
832	ABLA/LUGLH/MEFE	28	830	ABLA/LUHI	635
850	PIAL-ABLA	29	850	PIAL-ABLA	635
860	LALY-ABLA2	29	850	PIAL-ABLA	635
870	PIAL	29	850	PIAL-ABLA	635
900	PICO	27	730	ABLA/VASC	707
910	PICO/PUTR	9	330	PSME/CAGE	707
920	PICO/VACA	20	640	ABLA/VACA	707
930	PICO/LIBO	21	660	ABLA/LIBO	768
940	PICO/VASC	27	730	ABLA/VASC	751
950	PIPO/CARU	24	690	ABLA/XETE	635
999	Other	30	999	Other	775

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an equal opportunity provider and employer.