Rapid Assessment Reference Condition Model

The Rapid Assessment is a component of the LANDFIRE project. Reference condition models for the Rapid Assessment were created through a series of expert workshops and a peer-review process in 2004 and 2005. For more information, please visit www.landfire.gov. Please direct questions to helpdesk@landfire.gov.

Potential Natural Vegetation Group (PNVG)

R6MABA	Maple Basswood				
	General Info	ormation			
Contributors (addition	onal contributors may be listed under "Model E	volution and Comments")			
Modelers	Rev	viewers			
Greg Nowacki	gnowacki@fs.fed.us				
Dave Cleland	dcleland@fs.fed.us				
Jim Gallagher	jagallagher@fs.fed.us				
Vegetation Type	General Model Sources	Rapid AssessmentModel Zones			
Forested	✓Literature	California	Pacific Northwest South Central		
Dominant Species	Expert Estimate	Great Lakes	Southeast		
ACSA QU TILIA POTR5 BEPA	RU <u>LANDFIRE Mapping Zones</u> 41 50	☐ Northeast ☐ Northern Plains ☐ N-Cent.Rockies	S. Appalachians Southwest		

Geographic Range

This forest type extends from northern Minnesota and Wisconsin southward into Iowa and Illinois, and from the forest-prairie margin eastward to Lake Michigan. This forest type is fringed by northern hardwoods to the north and prairies to the west. The western range of beech forms the eastern boundary, whereas its southern margin roughly parallels the maximum extent of past glaciation. The Big Woods of southeastern Minnesota is representative of this forest type (Grimm 1984).

Biophysical Site Description

Following retreat of the glaciers, most of the present Big Woods became prairie between 9000 and 6000 years before present (Webb et al. 1993). Oak woodland began invading the prairie about 5000 years ago, becoming fully established 2400 years ago (Grimm 1981). Oak woodland persisted until 300 years ago, when elm, basswood, and sugar maple rapidly expanded and became dominant. The changes from prairie to oak woodland, and from oak woodland to 'bigwoods' must have resulted from reductions in fire frequency, which were probably caused by increased precipitation and possibly decreased temperatures (ibid). Historically, elm dominated the overstory within the maple-beech component (Grimm 1981). However, this species has been largely eliminated from this system due to Dutch elm disease.

The elm-basswood-maple forests occurred on rich, mesic sites that were protected from fire by the oakaspen buffer lying between this community and the prairie and by natural fuel breaks. They also occurred on upland sites with moist soils, usually in settings protected from fire. Plants in these communities have access to predictable supplies of water and nutrients, but they are often limited by light because of the dense forest canopy. Typical sites are buffered from seasonal drought by fine-textured moisture-retaining soils or dense subsoil layers. Essential nutrients are mineralized from decaying organic matter at twice the rate of that in fire-dependent forest or wet forest communities.

Vegetation Description

Sites are characterized by continuous, often dense, canopies of deciduous trees and understories of shadeadapted shrubs and herbs. Distribution of basswood is limited in northeastern Minnesota to areas inland

^{*}Dominant Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.

from Lake Superior. Vegetation Type and Structure Class* Percent of Landscape Description A: Early-seral all (5%): Early-successional aspen, white birch, oak and openlands (< 60 yrs) B: Mid-seral 1 open (10%): Mid-succession maturing forests (61-100 yrs) C: Mid-seral closed (10%): Late-successional maturing forests (101-150 yrs) D: Late-seral closed (75%): Old late-seral forests (> 150 yrs) Total 100% *Formal codes for classes A-E are: AE1A, BM1O, CM1C, and DL1C, respectively.

Disturbance Description

Fire Regime V characterizes this system, dominated by high-intensity, low-frequency fires that occur at about 1,000-year intervals. Although low-intensity fires are more frequent (average 500-year interval), they do little more than prolong the time it takes to develop mature, fire-resistant stands. Historically, this forest type, composed of fire-sensitive species, was not disturbed by fire except during periods following catastrophic wind events or extreme drought. Grimm (1984) states "The fire regimes of deciduous forests, such as bigwoods, are much different from the commonly perceived model of fire regime, in which fuels and fire danger increase with time and in which intense crown fires cause great destruction of the forest." In the Great Lakes region, this model is appropriate for some of the northern coniferous forests (Heinselman 1983, Ahlgren 1974). However, in the southern deciduous forests, decomposition of potential fuels is rapid, and is particularly rapid on base-rich soils (Bormann and Likens 1979), such as those of the Big Woods. Because of the dense shade, the cover of herbs and shrubs is sparse. Thus little fuel exists at the ground level, tree trunks are not very flammable, and the open tree crowns do not carry fire very well. Moreover, low solar radiation, high humidity, and low wind speeds prolong the moisture retention of ground-level fuels (Kucera 1952), thereby inhibiting the ignition and spread of fire. These forests are sometimes referred to as the " asbestos forests" because of their fireproof character (Vogl 1967). Ordinarily, only the leaf litter ever reaches a flammable state, and only patchy creeping ground fires occur (Hall and Ingall 1911, Niering et al. 1970, Barden and Woods 1973).

Two primary disturbance factors are used to model this system. Catastrophic windthrow affects mature stands and occurs on an approximately 600-year rotation. Replacement fire occurs primarily in young and windthrown stands and occurs on a rotation of approximately 1,000 years. In addition, surface fires occur in young stands < 100 years of age which contain a significant component of oak. The disturbance probabilities by class applied in the model are contained in the VDDT documentation section.

Adjacency or Identification Concerns

Among other characteristics, this setting is distinguished from R6MBOA by more mesic conditions. As described, this setting extends to the prairie edge (see Issues/Problems). Setting is distinguished from R6NHHEgl by lack of hemlock and physical site. Uncharacteristic conditions in this setting include infestation by exotic earthworms of European species that have affected or begun to affect soil conditions, herb/forb species representation, and tree regeneration (Hale et al. 1999). Habitat for the rare Great Lakes endemic fern, Botrychium mormo, is largely eliminated after worm invasion.

Scale Description

Sources of Scale Data ✓ Literature ✓ Local Data Expert Estimate

The most common disturbance extent could best be characterized as a single-tree or small-group gap-phase dynamic. Replacement events would have encompassed hundreds to thousands of acres. Patch sizes would generally conform to landforms on which they are found.

Issues/Problems

Issues are similar to those of R6MBMHW, but with surface fire and more frequent stand replacement. They are also similar to R6MBOA, but with less disturbance and less ecotonal influence of the prairie transition. Mapping issues remain given the coarse mapping options in Rapid Assessment; however, better mapping tools are available at the state level.

*Dominant Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.

Model Evolution and Comments

This model is unmodified from FRCC model for MABA. REVIEWERS: John Almendinger, Ecological Services, MN Department of Natural Resources. Jim Barott, Chippewa National Forest. Reviewed and entered by Jim Gallagher, Chippewa NF.

Succession Classes ** Succession classes are the equivalent of "Vegetation Fuel Classes" as defined in the Interagency FRCC Guidebook (www.frcc.gov).								
Class A 5% Early1 All Struct <u>Description</u> Characterized by early-seral aspen, birch, oak < 60 yrs. Class A succeeds to mid-age stands (Class B). Burn frequency is approximately 50 years due to presence of oak and openings (20 % replacement; 80 % surface).	Dominant Species* and Canopy Position POTR5 Upper BEPA Upper QURU Upper ACSA3 Upper Upper Layer Lifeform □ Herbaceous □ Shrub ✓ Tree Euel Model 5	Image: Structure Data (for upper layer lifeform) Min Max Cover 0 % 95 % Height Shrub Medium 1.0-2.9m Tree Medium 10-24m Tree Size Class Pole 5-9" DBH Upper layer lifeform differs from dominant lifeform. Height and cover of dominant lifeform are:						
Class B 10% Mid1 Open <u>Description</u> Characterized by mid-succession maturing forests (61-100 yrs) which succeed to class C. Windthrow in older classes returns vegetation to this class. Replacement fires (mostly in slash) result in early-seral type. Surface fires are associated with oak component.	Dominant Species* and Canopy Position ACSA3 Upper TILIA Upper QURU Upper BEPA Mid-Upper Upper Laver Lifeform □ Herbaceous □ Shrub ☑ Tree Fuel Model 8	Structur	Tree Medium 10-24m <i>e Class</i> Medium 9-21"C Hayer lifeform differs front t and cover of dominant l	Max 40 % Tree Tall 25-49m PBH n dominant lifeform. ifeform are:				
Class C 10% Mid1 Closed <u>Description</u> Characterized by late-successional maturing forests (101-150 yrs) which succeed to class D. Windthrow exceeds fire probabilities by a factor of 10.	Dominant Species* and Canopy Position ACSA3 Upper TILIA Upper QURU Upper Upper Layer Lifeform ☐ Herbaceous ☐ Shrub ✓ Tree Fuel Model 8	Structure Data (for upper layer life Min Cover 40 % Height Tree Medium 10-24m Tree Size Class Medium 9-21"DB Upper layer lifeform differs from Height and cover of dominant life		ifeform) <u>Max</u> 95 % Tree Tall 25-49m BH dominant lifeform. feform are:				

*Dominant Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.

Class D 75%		Dominant Species* and Canopy Position		Structure Data (for upper layer lifeform)				
Latal Closed		ACSA3 Upper	r	Min			Max	
Description		TILIA Upper	r	Cover		40 %	95 %	
These old late-seral forests (> 150		QURU Upper	r	Height	Tree M	edium 10-24m	Tree Tall 25-49m	
			L	Tree Size	e Class	Large 21-33"DBI	ł	
succession. S predominate proportion of class.	a point of mall gap disturbances to maintain a high the acreage in this	Upper Layer Life ☐ Herbaceou ☐ Shrub ☑ Tree Fuel Model 8	e form s	Upper layer lifeform differs from dominant lifeform. Height and cover of dominant lifeform are:				
Class E 0 % Dominant Species* and Structure Data (for u					for upper layer li	feform)		
Late1 All Str	uctu		_			Min	Max	
Description				Cover		%	%	
Description				Height		no data	no data	
				Tree Size	e Class	no data		
		Herbaceou Shrub Tree Fuel Model no	data	Height	and cov	er of dominant lif	eform are:	
		Distu	urban	ces				
Disturbances	Modeled	Fire Regime Gro	up: 5					
 ✓ Fire ☐ Insects/Di ✓ Wind/Wea ☐ Native Grain Competition ☐ Other: ☐ Other Historical Fire Avg: 5000 Min: 10 	sease ather/Stress azing on e Size (acres)	 I: 0-35 year frequency, low and mixed severity II: 0-35 year frequency, replacement severity III: 35-200 year frequency, low and mixed severity IV: 35-200 year frequency, replacement severity V: 200+ year frequency, replacement severity Fire Intervals (FI) Fire interval is expressed in years for each fire severity class and for all types of fire combined (All Fires). Average FI is central tendency modeled. Minimum and maximum show the relative range of fire intervals, if known. Probability is the inverse of fire interval in years and is used in reference condition modeling. Percent of all fires is the percent of all fires in that severity class. All values are estimate and maximum show the reservence of an expression. 						
Max: 10000								
Sources of Fire	e Regime Data		Avg Fl	Min Fl	Max F	I Probability	Percent of All Fires	
I iteratur	·e	Replacement	1000			0.001	33	
	u ata	Surface	500			0.000	66	
Expert F	stimate	All Fires	322			0.002	00	
		AII 1 II 63	333			0.00301		
		Ref	erenc	es				

Bormann, F. Herbert and Likens, Gene E., 1979. Catastrophic disturbance and the steady state in northern hardwood forests. American Scientist. 67:660-669.

Brown, James K. and Smith, Jane Kapler, eds., 2000. Wildland fire in ecosystems: effects of fire on flora. Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky

*Dominant Species are from the NRCS PLANTS database. To check a species code, please visit http://plants.usda.gov.

Mountain Research Station. 257 p.

Canham, Charles D. and Louck, Orie L., 1984. Catastrophic windthrow in presettlement forests of Wisconsin. Ecology. 65(3):803-809.

Cleland, D.T., S.C. Saunders, T.R. Crow, D.I. Dickmann, A.L. Maclean, J.K. Jordan, R.L. Watson, and A.M. Sloan, 2004. Characterizing historical and modern fire regimes in the lake states: a landscape ecosystem approach. Landscape Ecology 19: 311–325, 2004.

Frelich, Lee E. and Lorimer, Craig G., 1991. Natural disturbance regimes in hemlock-hardwood forests of Upper Great Lakes region. Ecological Monographs. 61:145-164.

Grimm, Eric C., 1981. Chronology and dynamics of vegetation change in the prairie-woodland region of southern Minnesota, U.S.A. New Phytologist. 93:311-350.

Grimm, E.C., 1984. Fire and other factors controlling the Big Woods vegetation of Minnesota in the mid-nineteenth century. Ecological Monographs 54:291-311.

Hale, C., L. Frelich and P. Reich, 1999. Unpublished. Research proposal concerning earthworms and population dynamics and diversity of native plant species. University of Minnesota. St. Paul, Minnesota. Runkle, James Reade, 1982. Patterns of disturbance in some old growth mesic forests of eastern North America. Ecology. 63(5):1533-1546.

Schmidt, Kirsten M.; Menakis, James P.; Hardy, Colin C.; Hann, Wendel J.; Bunnell, David L.; 2002. Development of coarse-scale spatial data for wildland fire and fuel management. Gen.

Tech. Rep. RMRS-GTR-87. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 41 p. + CD.

Webb, T., III; Bartlein, P.J.; Harrison, S.P.; Anderson, K.H., 1993. Vegetation, lake levels, and climate in eastern North America for the past 18,000 years. Pp. 415-467. In: Wright, H.E, Jr..;

Kutzbach, J.E.; Webb, T., III; Ruddiman, W.F.; Street-Perrot, F.A.; Bartlein, P.J., eds. Global Climates since the Last Glacial Maximum. Minneapolis, MN: University of Minnesota Press.

U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (2002, December). Fire Effects Information System, [Online]. Available:

http://www.fs.fed.us/database/feis/.