National Forest Genetics Laboratory (NFGEL)

FY12 1st Quarter Report

October – December 2011

Project Reports Completed

Use of native species in biodiversity restoration and management (Project #165)

Monterey pine (Pinus radiata D. Don) is a forest tree species of great economic importance worldwide, with a native range restricted to the coastal zone of central California and northern Baja California. The island of Guadalupe, in the Pacific Ocean off the coast of Baja California, hosts one of the five remnant natural populations of this species. The current population size on the island is down to about 220 adult trees growing isolated or in small patches. Because of the fast and presumably massive loss of pines, causing both fragmentation and drastic reduction in population size, several genetic impacts have likely occurred on the island, including loss of genetic diversity and increase in inbreeding. If genetic diversity has been drastically reduced in the population, it might be necessary to re-introduce genetic material from earlier *ex-situ* collections. Similarly, if inbreeding is an issue, actions might be required to promote cross pollination and seed dispersal between patches to reduce relatedness among parental trees in the next generation. Based on a germplasm sample from about 35% of the current population distributed along the patches, an analysis of genetic diversity, as well as its spatial structure and inbreeding level, was done using microsatellite markers. The sampling structure allowed comparing the genetic diversity and inbreeding level in the progeny (seed) in relation to that in the maternal generation (remnant trees). Results showed that despite the drastic reduction in population size, an adequate level of genetic diversity remains, both in the remnant trees and their open-pollinated progeny. The data also indicated a minimum of 45% cross-pollination in the population. Thus, the genetic information obtained does not support the need for a genetic intervention to restore this population other than to move seed among resident trees to increase dispersion distance and accelerate connectivity between patches.

Genetic make-up of quaking aspen colonies across Nebraska (Project #235)

The goal of this project was to provide a 'genetic make-up' or 'clonal identity' of quaking aspen (*Populus tremuloides*) colonies growing across Nebraska. A total of 207 trees from 18 colonies were included in the study. Although aspen does reproduce sexually through seed, it is known for its ability to reproduce vegetatively by root suckers, resulting in groups of trees that are genetically identical. These asexually formed stems, or ramets, comprise a single clone. Studies have shown that aspen in the Pacific West can grow in large stands that are made up of multiple genetic types (so the number of stems per clone is small, with multiple clones per stand). Aspen growing in eastern North America tends to grow in stands that are small in size, where clones size is also very small (a low number of stems per clone). Finally, aspen in the Intermountain West often grow in large stands with correspondingly large clonal sizes. Data at six microsatellite (SSR) loci from this study indicate that the aspen stands (colonies) located in Nebraska are genetically diverse (100% polymorphic loci, 9.7 alleles/locus, He = 0.784), and stands are genetically different from each other, with 78.5% of all genetic variation measured being the differences among stands. Seventeen of the 18 stands studied were monoclonal (contained a single clone). Therefore, aspen stands growing in Nebraska are usually comprised of just one clone per stand.

Ramet identification in Douglas-fir, Noble fir, and Sugar pine (Project #246)

Submitted ramets of clones were genetically tested to verify if ramet genotypes are the same. The project objective is to verify the identity of material going into new conifer seed orchards.

Ramet Identification in Noble Fir (Abies procera)

A total of 311 samples were submitted for a genetic analysis using 19 isozyme loci. An average of five ramets per clone were tested (ranging from 1 to 7 ramets per clone) from a total of 61 clones. Of the 61 clones analyzed, four clones contained ramet mis-labeling (<u>6.6% mislabeling</u>).

Ramet Identification in Sugar Pine (Pinus lambertiana)

A total of 326 samples were submitted for a genetic analysis using 19 isozyme loci. An average of three ramets per clone were tested (ranging from 2 to 5 ramets per clone) from a total of 90 clones. Ten clones contained ramet mis-labeling (<u>11.1% mislabeling among clones</u>). Unique genotypes were identified among the 108 total clones analyzed (90 clones with multiple ramets + 8 clones submitted as single ramets + 10 mislabeled ramets of unknown identity). There were a total of 107 unique genotypes among this group with only two clones sharing the same genotype. The average probability that two unrelated individuals with this genotype could be drawn from the same randomly mating populations is 1 out of 314 trees. Therefore, this is a fairly common genotype and these two clones likely share this genotype just out of random chance. Furthermore, mis-labeled ramets did not match any other genotype in the data set.

Ramet Identification in the Douglas-fir (Pseudotsuga menziesii) Provolt Orchard

A total of 1,496 samples were submitted for genetic analysis. An average of four ramets per clone were tested (ranging from 2 to 13 ramets per clone) from a total of 385 clones. DNA from all trees was extracted and characterized at three microsatellite loci. Of the 385 clones analyzed, 32 clones contained ramet mis-labeling (<u>8.3% mis-labeling in the clones</u>).

Ramet Identification in the Douglas-fir (Pseudotsuga menziesii) Horning Orchard

A total of 1,658 samples were submitted for genetic. An average of four ramets per clone were tested (ranging from 2 to 18 ramets per clone) from a total of 385 clones. DNA from all trees was extracted and characterized at three microsatellite loci. Of the 385 clones analyzed, 21 clones contained ramet mis-labeling (5.4 % mislabeling in clones). Almost every clone contained a unique genotype. The Probability of Identity (the average probability that two unrelated individuals, drawn from the same population, will by chance have the same multilocus genotype) is 1.6×10^{-7} (making the possibility of having matching genotypes by chance between clones in this orchard very rare). However, in eight cases, trees identified as being different clones had the same genotype. These matches either indicates that there is further mislabeling among some clones, or that these are just examples of random data matches between clones (and if further variation was assessed, we would start to detect differences.)

The role of genetic differentiation and local adaptation on the morphological variation of lodgepole pine (*Pinus contorta*) (Project #249)

DNA was extracted from 508 conifer needle samples and shipped back to the project cooperator. The overall goals driving the need for DNA are to: investigate the role of genetic differentiation and local adaptation on the morphological variation of *Pinus contorta*. The primary focus of the project is to determine the extent of genetic variation within and among the four distinct subspecies of *Pinus contorta* (ssp. *murrayana*, ssp. *latifolia*, ssp. *contorta*, and ssp. *bolanderi*) and uncover how specific ecological site characteristics may elicit variation in morphological characteristics.

Project Priorities (order of analysis in lab; several projects may overlap at once)

Isozymes

Project	'Region'	Species
251	R5	Fritillaria eastwoodiae
256	R5	Astragalus webberi
255	R5	Lewisia kelloggii
244	FS-RMRS	Rocky Mountain Bristlecone Pine
263	SPI/R5	Ponderosa Pine
254	BLM/R6	Ponderosa Pine (samples still arriving)
128	FS-SRS	Loblolly Pine

DNA

l	Project	'Region'	Species
2	246	BLM	Douglas-fir, Tyrell Orchard
2	232	BLM	Ponderosa Pine
2	261	Greenwood Res.	Poplar
2	250	SPI/R5	Ponderosa Pine
2	263	SPI/R5	Ponderosa Pine
2	262	R6	Quaking Aspen
2	254	BLM/R6	Ponderosa Pine (samples still arriving)
2	259	R8	Longleaf Pine (samples still arriving)

DNA Marker Development

Project	'Region'	Species
155	R9	Eastern White Pine
258	R6	Sisyrinchium sarmentosum
256	R5	Astragalus webberi
207	FS-PSW	Southwestern White Pine

Administrative News

- NFGEL's status as a detached unit is pending the acceptance of signed WO Forest Management organizational charts.
- NFGEL is receiving its administrative support through the Washington Office.
- FY11 Accomplishment Reporting was completed in October 2011.
- Potter, KM, RM Jetton, WS Dvorak, VD Hipkins, J Rhea, and WA Whittier. 2011. Widespread inbreeding and unexpected geographic patterns of genetic variation in eastern hemlock (*Tsuga canadensis*), an imperiled North American conifer. Conservation Genetics (in press).
- Schoettle, AW, BA Goodrich, V Hipkins, C Richards, and J Kray. 2011. Geographic patterns of genetic variation and population structure in *Pinus aristata*, Rocky Mountain bristlecone pine. Canadian Journal of Forest Research (in press).

Budget

NFGEL FY12 Budget is currently set at \$480,000 (NFVW).

Staffing

Valerie Hipkins. GS-426-13. Permanent (100%) Randy Meyer. GS-401-07. Permanent (40%) Courtney Owens. GS-401-05. Temp-NTE (100%) Jody Mello. GS-401-05. Temp-STEP (60%) Rosanna Hanson. GS-401-05. Temp-STEP (60%)

Temp-NTE GS-404-05 vacancy closed on 11/14/2011. We have not yet received a referral list from HRM (as of 12/5/2011).

Permanent GS-440-11/12 position description is in classification (since September 2011).

In-the-Lab News Update

The ABI instrument (runs all microsatellite (gene fragment) and sequence samples) has been out of commission from November 19th to December 7th with a broken power button. There has been a delay in repairing as we work out the procurement processes with our new administrative services groups.

NFGEL was unable to micropurchase from October 3th to November 14th due to our cardholders information needing to be realigned with the WO (and not with PSW).

We were not able to run any isozyme samples from August 22nd to December 12th due to backorders of two critical isozyme chemicals (original orders from ~April 2011). The supply of these chemicals is still limited and sporadic, which may cause delays on future projects. Current isozyme projects were delayed by four months.

Status of On-Going Projects

PROJECT	REGION	SPECIES	CONTACT	PROJECT TITLE	STATUS
				Characterize genetic	
				variation in the	Prepped for analysis;
120		Loblolly Dino	E Bridgowator	Founder Tree Project	noiding due to low
120	r3-3K3	LODIOIIY PILIE	F.Briugewater		priority.
		viraatum		Distribution of genetic	Assessing whether to
		Schizachvrium		variation across the	drop project or get
		scoparium,		population range of	further needed
		Elymus		grass species used for	samples collected
147	R8/R9	virginicus	P.Berrang	restoration	and submitted.
					Analysis complete;
					partial report
					complete; assessing
				Genetic analysis of an	possibility to run
				Eastern White Pine	additional markers to
455	50	Eastern White	D.D	seed orchard for the	better address one
155	R9	Pine	P.Berrang	Lake States	Objective.
				Port-Orford Cedar	about 2000 trees and
				sampling stradegy to	shinned to FS-PNW
				compare the genetic	for DNA marker
				structure and diversity	development.
				among pre-epidemic,	Isozymes prepped
				post-epidemic, and	and being held if
				Phytophthora lateralis	needed
		Port Orford		resistant orchard	(determination
173	R6	Cedar	R.Sniezko	populations	needed).
		Picea		Genetic analysis of	Analysis complete; in
188	FS-PSW	chihuahuana	P.Hodgskiss	Picea chihuahuana	reporting.
				Family structure in	
				WPBR Pinus	Analysis complete;
				strobiformis (south	more variable
207	50 5014	Southwestern		western white pine)	markers needed to
207	FS-PSW	White Pine	A.MIX	family 564	address objectives.
				Cional structure and	Analysis completes in
210	R/	Cottonwoods	l Richardson	in cottonwood	reporting
210	114	Cottonwoods	J.MCHaruson	Genetic testing of	Teporting.
				disjunct Ponderosa	
				Pine stands on BLM	
				lands in Wyoming and	
232	BLM	Ponderosa Pine	R.Means	throughout the west	In analysis.
				-	DNA extracted; being
	Amer.			DNA extraction from	held until shipped to
	Chest.	American		American Chestnut	FS-R&D cooperator
234	Found.	Chestnut	B. Monahan	(Castanea dentata)	needs them.

PROJECT	REGION	SPECIES	CONTACT	PROJECT TITLE	STATUS
		Ponderosa			
		Pine, Douglas-			
		fir, Lodgepole			
		Pine, Subalpine		Quantifying gene flow	
		Fir, Arizona		and adaptive variation	
		Longleaf Pine,		in conifers across the	
		Western		Western states to	
		Redcedar,		predict effects of	
242		Grand Fir,	C. Cushman	climate change on	Analysis complete; in
242	FS-RIVIRS	western Larch	S. Cushman	Constitution	reporting.
				Genetic diversity in	
				from the St Mary's	Samples propared
		Pocky		Glaciar site on the	and being hold in
		Mountain		Boosevelt National	freezers (isozymes –
244	FS-RMRS	Bristlecone Pine	A Schoettle	Forest Colorado	nriority #4)
244	15 110113	Disticcone i inc	A. Schoettie	Ramet identification in	
				the Douglas-fir Tyrell	
246	BLM	Douglas-fir	M.Crawford	orchard	In analysis (DNA)
					Samples still arriving
				Genetic structure of	(starting arriving in
				Golden Chinguapin	July 2010); prep and
		Golden		(Chrysolepis	hold until all samples
248	R6	Chinquapin	A. Bower	chrysophylla)	collected.
				Genetic analysis of	
				relationship among	
				Sierra Pacific Industries	
				Super Trees near	In analysis (isozymes
250	R5	Ponderosa Pine	G. Lunak	Stirling City	complete, DNA)
				Population genetics	In analysis (isozymes
		Fritillaria		study of Fritillaria	 priority #1; ploidy
251	R5	eastwoodiae	J. Nelson	eastwoodiae	complete)
				Genetics relationships	Samples still arriving;
254		Davidancia Dia a	D. Massas	of isolated, disjunct	prep and hold until
254	BLM/R6	Ponderosa Pine	B. Means	ponderosa pine stands	all samples collected.
				Dutative new taxan of	Prepped and
		Lowicia			dwalting analysis
255	P5	kelloggii	L O'Brien	northwestern California	(1502911185-priority
255	11.5	Kenoggii	J. O Brieff	northwestern canorna	#5) Prenned and
				Genetic variation of	awaiting analysis
		Astragalus		Astragalus webberi	(isozymes-priority #2
256	R5	webberi	C. Rowe	(Webber's milkvetch)	and DNA)
	-			Clonal identity in giant	- /
		Giant Seguioa.		seguioa and coast	Analysis complete, in
257	Archangel	Coast Redwood	B. Walraven	redwood	reporting
				Hybridization and	Prepped and
				species identitity in	awaiting analysis
		Sisyrinchium		Sisyrinchium	(DNA; ploidy
258	R6	sarmentosum	A. Bower	sarmentosum	complete)

PROJECT	REGION	SPECIES	CONTACT	PROJECT TITLE	STATUS
				Is there a genetic	
				traditional coastal	
				sources and the	
				piedmont sources of	Awaiting further
259	R8	Longleaf Pine	B. Crane	longleaf pine?	collections
	GreenWood				
	Resources			DNA fingerprinting elite	
261	Inc.	Poplar	C. Scott	populus clones	In analysis
					Samples prepared
				Determining if aspen	and being held in
				regeneration is sexual	freezers (DNA) (may
				(seedlings) or asexual	be waiting further
262	R6	Quaking Aspen	V. Erickson	(clonal)	collections?)
				Pollen contamination	Samples prepared
				from outside sources in	and being held in
263	R5	Ponderosa Pine	G. Lunak	ponderosa pine	freezers (DNA).