

ENGINEERING EVALUATION/ COST ANALYSIS

FLORIDA STATE UNIVERSITY LOW-LEVEL RADIATION WASTE DISPOSAL SITE

United States Forest Service, Southern Region Apalachicola National Forest, Florida

FINAL

Contract No. AG-4670-C-16-0176

Prepared for: U.S. Department of Agriculture United States Forest Service, Southern Region Atlanta, Georgia

Prepared by: BMT Designers & Planners, Inc. 4401 Ford Avenue, Suite 1000 Alexandria, Virginia 22302

December 2020 Revision 5

THIS PAGE INTENTIONALLY LEFT BLANK

EXECU	TIVE SUMMARY	E-1
1 ואו		1 1
1. INI 1.1	Site History	
1.1.	Site Location and Physical Setting	1-2
1.2.	1 Topography	1-2
1.2	2 Geology	1-2
1.2	3 Hydrogeology	1-3
1.2	4 Ecology	
1.3.	Previous Investigations and Assessments.	
1.3	1. Preliminary Assessment: 1998.	
1.3	.2. Preliminary Site Investigation: 2003	1-4
1.3	.3. Supplemental Site Investigation Report: 2012	1-5
1.3	.4. Expanded Site Inspection: 2017	1-7
1.3	.5. Phase II Expanded Site Inspection: 2018	1-8
1.4.	Regulatory Requirements	1-9
1.4	.1. CERCLA Requirements	1-9
1.4	.2. State Requirements	1-9
1.4	.3. Response Actions	1-10
2. CO	NCEPTUAL SITE MODEL	2-1
2.1.	Introduction	2-1
2.2.	Primary Source of Contamination	2-1
2.3.	Primary Release Mechanisms	2-1
2.3	.1. Infiltration and Percolation	2-3
2.3	.2. Radioactive decay	2-3
2.3	.3. Volatilization to Air	2-3
2.4.	Secondary Release Mechanisms	2-4
2.4	.1. Leaching from Soil to Groundwater	2-4
2.4	.2. Groundwater Baseflow	2-5
2.4	.3. Discharge from Groundwater to Surface Water	2-5
2.5.	Potential Receptors and Exposure Routes	2-5
2.5	.1. Current and Potential Future Residents	2-6
2.5	.2. Current and Future Site Workers	2-6
2.5	.3. Construction Worker	2-7
2.5	.4. Current and Future Trespasser and/or Visitor	2-7
2.5	.5. Ecological Receptors	2-8

3.	STREAM	LINED RISK EVALUATION	3-1
3	3.1. Hum	an Health Risk Assessment	3-1
	3.1.1.	Data Evaluation	3-2
	3.1.1.1.	Selection of Data for Use in the Risk Assessment	3-2
	3.1.1.2.	Selection of Chemicals of Potential Concern (COPCs)	3-2
	3.1.2.	Exposure Assessment	3-2
	3.1.2.1.	Selection of Exposure Scenarios	3-3
	3.1.2.2.	Exposure Point Concentrations (EPCs)	3-4
	3.1.2.3.	Calculation of Exposures to Contaminants in Groundwater	3-4
	3.1.3.	Toxicity Assessment	3-4
	3.1.3.1.	Non-Carcinogenic Contaminants	3-4
	3.1.3.2.	Carcinogenic Chemical Contaminants	3-5
	3.1.3.3.	Carcinogenic Radionuclides	3-5
	3.1.4.	Human Health Risk Characterization	3-5
	3.1.4.1.	Incremental Lifetime Cancer Risks	3-5
	3.1.4.2.	Non-Carcinogenic Risks	3-6
	3.1.4.3.	Radiological Risks	3-7
	3.1.5.	Human Health Risk Summary	3-7
3	3.2. Ecol	ogical Risk Assessment	3-8
4.	IDENTIF	CATION OF REMOVAL ACTION SCOPE, GOALS, AND OBJECTIVES	4-1
2	1.1. Dete	ermination of Removal Action Scope	4-1
	4.1.1.	Groundwater	4-1
	4.1.1.1.	Estimate of Area for Groundwater Plumes	4-1
	4.1.1.2.	Estimate of Groundwater Volume for Treatment Technologies	4-1
	4.1.2.	Surface Water	4-2
	4.1.3.	Air	4-2
	4.1.4.	Disposed Waste and Soil	4-2
	4.1.4.1.	Estimate of Disposed Waste Contaminant Area	4-2
	4.1.4.2.	Estimate of Soil Volume for Excavation Technologies	4-2
2	1.2. Rem	noval Action Goals and Objectives	4-3
	4.2.1.	Removal Action Objectives	4-3
	4.2.2.	Compliance with Applicable or Relevant and Appropriate Requirements	4-3
	4.2.3.	Cleanup Goals	4-4

5. IDENTIF	ICATION AND SCREENING OF TECHNOLOGIES	5-1
5.1. Lan	d Use Controls	5-1
5.2. Sou	rce Isolation and Containment Technologies	5-1
5.2.1.	Subsurface Barriers	5-1
5.2.2.	Capping	5-2
5.3. Sou	rce Removal Technologies	5-2
5.3.1.	Source Removal/Treatment	5-2
5.3.2.	Type of Excavation	5-3
5.3.2.1	. Open Pit Excavation	5-3
5.3.2.2	. Shoring/Sheet Piling	5-3
5.4. Gro	undwater Treatment Technologies	5-4
5.4.1.	Groundwater Treatment and Monitoring for 1,4-Dioxane	5-5
5.4.1.1	. Monitored Natural Attenuation	5-5
5.4.1.2	. Air Stripping	5-6
5.4.1.3	. Sorption	5-6
5.4.1.4	. Phytoremediation	5-6
5.4.1.5	. Bioremediation	5-7
5.4.1.6	. Ex-Situ Chemical Oxidation	5-7
5.4.1.7	. In-Situ Chemical Oxidation	5-7
5.4.2.	Groundwater Monitoring and Treatment for Radionuclides	5-7
5.4.2.1	. Monitored Natural Attenuation	5-8
5.4.2.2	. Ion Exchange	5-8
5.4.2.3	. Reverse Osmosis	5-9
5.4.2.4	. Sorption	5-9
5.4.3.	Groundwater Extraction Methods	5-10
5.4.3.1	. Groundwater Extraction Wells	5-10
5.4.3.2	. Interceptor Trench	5-10
5.5. Scr	eening of Technologies	5-10
6. DEVELO	PMENT OF REMOVAL ACTION ALTERNATIVES	6-1
6.1. Pre	liminary Development of Removal Alternatives – Disposed Radiation Wastes	6-1
6.1.1.	Alternative 1 – No Action	6-1
6.1.2.	Alternative 2 - Excavation and Off-site Disposal of Wastes and Impacted Soils	6-1
6.2. Pre	liminary Development of Removal Alternatives – Groundwater	6-2
6.2.1.	Alternative 3 – Monitored Natural Attenuation	6-2
6.2.2.	Alternative 4 – Targeted Direct Injection and MNA of Groundwater Plumes	6-3
6.2.3.	Alternative 5 – Full Scale Ex-Situ Treatment System	6-4

7.	EVALUA	TION OF REMOVAL ALTERNATIVES	7-1
7.	1. Eva	luation Criteria	7-1
	7.1.1.	Effectiveness	7-1
	7.1.2.	Implementability	7-1
	7.1.3.	Cost	7-2
7.	2. Alte	rnative 1: No Action	7-2
	7.2.1.	Effectiveness – Alternative 1:	7-2
	7.2.2.	Implementability – Alternative 1:	7-2
	7.2.3.	Cost – Alternative 1:	7-3
7.	3. Alte	rnative 2: Excavation and Off-site Disposal of Wastes	7-3
	7.3.1.	Effectiveness – Alternative 2:	7-4
	7.3.2.	Implementability – Alternative 2:	7-4
	7.3.3.	Cost – Alternative 2:	7-5
7.	4. Alte	rnative 3: Monitored Natural Attenuation	7-5
	7.4.1.	Effectiveness – Alternative 3:	7-6
	7.4.2.	Implementability – Alternative 3:	7-6
	7.4.3.	Cost – Alternative 3:	7-6
7.	5. Alte	rnative 4: Targeted Direct Injection and MNA of Groundwater Plumes	7-7
	7.5.1.	Effectiveness– Alternative 4:	7-8
	7.5.2.	Implementability – Alternative 4:	7-8
	7.5.3.	Cost - Alternative 4:	7-9
7.	6. Alte	rnative 5: Full Scale Ex-Situ Treatment System	7-10
	7.6.1.	Effectiveness – Alternative 5:	7-11
	7.6.2.	Implementability – Alternative 5:	7-11
	7.6.3.	Cost – Alternative 5:	7-11
8.	COMPAR	RATIVE ANALYSIS OF REMOVAL ALTERNATIVES	8-1
9.	RECOM	MENDED REMOVAL ACTION ALTERNATIVES	9-1
10.	REFERE	NCES	10-1

FIGURES

Figure 2-1. Conceptual Site Model Flow Diagram2-	Figure 2-1	. Conceptual Site Model F	Flow Diagram	2-2
--	------------	---------------------------	--------------	-----

Figure 1:	Site Location Map
Figure 2:	Site Detail Map
Figure 3:	7.5-Minute Topographic Map
Figure 4:	National Resource Conservation Service Soil Map
Figure 5:	Subsurface Geology Map
Figure 6:	2018 1,4-Dioxane Groundwater Isopleth Plume Map
Figure 7:	2018 Radium Isotopes (226 + 228) Groundwater Isopleth Plume Map
Figure 8:	2018 On-Site Wells Analytical Results Tag Map
Figure 9:	2018 Off-Site Wells Analytical Results Tag Map
Figure 10:	Example In-situ Direct Injection Point Locations
Figure 11:	Example Interceptor Trench Orientation

TABLES

Table E-1: Site Source Removal Options Summary
Table E-2: Site Groundwater Treatment Options Summary E-2
Table 3-1: Contaminant Concentrations in Groundwater from Site Monitoring Wells 3-3
Table 3-2: Summary of HHRA Cancer Risk Characterization Results 3-8
Table 3-3: Summary of HHRA Non-Cancer Risk Characterization Results 3-8
Table 5-1: Screening of Technologies 5-11
Table 7-1: Costing Summary of Alternative 1 – No Action
Table 7-2: Costing Summary of Alternative 2 – Excavation and Off-Site Disposal of All Radiation Wastes
and Impacted Soils7-5
Table 7-3: Costing Summary of Alternative 3 – MNA for Groundwater Plumes
Table 7-4: Costing Summary of Alternative 4 – Targeted In-Situ Treatment for 1,4-Dioxane and Monitored
Natural Attenuation of Groundwater Plumes7-9
Table 7-5: Costing Summary of Alternative 5 – Interceptor Trenches and Pump and Treat System to
Address 1,4-Dioxane and Radionuclides7-12
Table 8-1: Removal Options Summary Comparison 8-2

APPENDICES

- Appendix A Disposal Cell Records
- Appendix B Monitoring Well Boring Logs
- Appendix C RAGS D TABLES and Risk Calculations
- Appendix D Applicable or Relevant and Appropriate Requirements (ARARs)
- Appendix E Presumptive Remedy Costing Sheets

LIST OF ACRONYMS

%	Percent
AEC	Atomic Energy Commission
AOPCs	Areas of Potential Concern
ARARs	Applicable, Relevant and Appropriate Requirements
BAT	Best Available Technology
bgs	below ground surface
BMT	BMT Designers & Planners, Inc.
BV	Bed Volume
CAA	Clean Air Act
CERCLA	$\label{eq:comprehensive} Comprehensive \ Environmental \ Response, \ Compensation, \ and \ Liability \ Act$
CFR	Code of Federal Regulations
COC	Contaminants of Concern
COPC	Contaminant of Potential Concern
CSF	Cancer Slope Factor
CSM	Conceptual Site Model
CWA	Clean Water Act
CY	Cubic Yard
DCGL	Derived Concentration Guideline Level
DOE	Department of Energy
DOL	Department of Labor
DOT	Department of Transportation
DSR	Dose/Source Ratio
EDR	Environmental Data Resources
EE/CA	Engineering Evaluation and Cost Analysis
EPA	Environmental Protection Agency
ERA	Ecological Risk Evaluation
ESI	Expanded Site Inspection
FAC	Florida Administrative Code
FDEP	Florida Department of Environmental Protection
FDOH	Florida Department of Health
FSS	Final Status Survey
FSU	Florida State University
FSU-LLRW	Florida State University Low Level Radiation Waste Disposal Site
GAC	Granular Activated Carbon
GCTL	Groundwater Cleanup Target Levels

LIST OF ACRONYMS

HASP	Health and Safety Plan
HI	Hazard Index
HHRA	Human Health Risk Evaluation
HSA	Hollow-Stem Auger
HQ	Hazard Quotient
ID	Inside Diameter
ILCR	Incremental Lifetime Cancer Risk
in	inches
IRIS	Integrated Risk Information System
ISCO	In-Situ Chemical Oxidation
Kow	Octanal/Water Partitioning Coefficient
LLRW	Low-Level Radiological Waste
LUCs	Land Use Controls
MARSSIM	Multi-Agency Radiation Survey and Site Investigation Manual
MCL	Maximum Contaminant Level
MNA	Monitored Natural Attenuation
mrem/yr	millirem per year
mS/cm	milliSiemens per centimeter
mV	Millivolts
MW	Monitoring Well
NAAQS	National Ambient Air Quality Standards
NCP	National Contingency Plan
NFr	National Forest Road
NPL	National Priorities List
NRC	Nuclear Regulatory Commission
NWI	National Wetlands Inventory
NTCRA	Non-Time Critical Removal Action
O&M	Operating and Maintenance
ORNL	Oak Ridge National Laboratory
P&T	Pump and Treat
PA	Preliminary Assessment
pCi/g	pico Curies/gram
pCi/L	pico Curies/Liter
рН	negative of the log_{10} of the concentration (moles per liter) of hydrogen ions
POE	Point-of-Entry

LIST OF ACRONYMS

PRB	Permeable Reactive Barrier
PRG	Preliminary Remediation Goals
PRSC	Post Removal Site Control
PW	Piezometer Well
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Program Plan
RAGS	Risk Assessment Guidance for Superfund
RAIS	Risk Assessment Information System
RAO	Removal Action Objectives
RCRA	Resource Conservation and Recovery Act
RESRAD	Residual Radioactivity
RfD	Reference Dose
RME	Reasonable Maximum Exposure
RSL	Regional Screening Level
SAS	Surficial Aquifer System
SDWA	Safe Drinking Water Act
SSCT	Small System Compliance Technology
SRE	Streamlined Risk Evaluation
SI	Site Inspection
SSI	Supplemental Site Investigation
SUP	Special Use Permit
SVOC	Semi volatile Organic Compound
ТВС	To-be-Considered
USDA	United States Department of Agriculture
UFAS	Upper Floridan Aquifer System
USFS	United States Forest Service
USFWS	United States Fish and Wildlife Service
USGS	United States Geological Survey
USNRC	United States Nuclear Regulatory Commission
UV	Ultraviolet
µg/L	micrograms per liter
VOC	Volatile Organic Compounds

THIS PAGE INTENTIONALLY LEFT BLANK

EXECUTIVE SUMMARY

An Engineering Evaluation/Cost Analysis (EE/CA) has been developed to address environmental contamination at the Florida State University (FSU) Low-Level Radiation Waste (LLRW) Disposal Site (FSU-LLRW or Site) by identifying the potential problems, focusing on the removal objectives, and evaluating the effectiveness, implementability, and cost of the removal alternatives. This EE/CA satisfies CERCLA and administrative record requirements and selection of the removal alternative will be documented in an Action Memorandum.

The site is located within the Apalachicola National Forest in Leon County, Florida. During the Preliminary Assessment (PA), a groundwater plume with chemical and radiological contaminants was identified in proximity to the former disposal cells and assumed to be the result of previous environmental releases (BAT, 1998, BMT, 2017). A streamlined risk evaluation (SRE) for human health and ecological receptors was conducted to determine the contaminants of concern (COCs) impacting the groundwater associated with the site. The SRE concluded that potential human health risks exist from exposure to 1,4-dioxane and radionuclides in groundwater.

The presence of contaminated groundwater several hundred feet downgradient of the site was observed and necessitated the development of both radiological source treatment and contaminated groundwater treatment options. The following removal alternatives were evaluated in this EE/CA:

- <u>Alternative 1</u> No Action
- <u>Alternative 2</u> Source Treatment: Contaminated waste removal and off-site disposal
- <u>Alternative 3</u> Source Treatment, followed by: Monitored Natural Attenuation (MNA) for Groundwater
- <u>Alternative 4</u> Source Treatment, followed by: Targeted In-Situ Treatment for 1,4-dioxane and MNA for Groundwater
- <u>Alternative 5</u> Source Treatment, followed by: Interceptor Trench and Ex-situ Pump and Treatment Plan for 1,4-dioxane and radionuclides in Groundwater.

A comparative analysis of removal alternatives is summarized in Tables E-1 and E-2. Table E-1 presents the source treatment options that should occur prior to the execution of treatment options for groundwater listed in Table E-2.

Alternative	Benefits	Limitations	Cost (\$)
No Action	None	 Will not achieve Applicable or Relevant and Appropriate Requirements (ARARs) or Removal Action Objectives (RAOs). No reduction in toxicity, mobility, or volume. 	\$0*
Soil Excavation and off-site disposal	 Disposal at permitted landfills addresses unacceptable human health and ecological risks. Will achieve RAOs. 	None	\$4,329,500 (Range \$3,030,700- \$6,494,300)

Table E-1: Site Source Removal Options Summary

*For the purposes of this EE/CA, the No Action alternative has a cost of \$0.00; however, there are costs associated with a No Action alternative that include maintenance of access roads, permitting and regulatory interface with FSU and FDEP concerning the site, and the need for periodic surveys and site visits to assess the condition of existing site land use controls that include site security fencing.

Alternative	Benefits	Limitations	Cost (\$)
Monitored Natural Attenuation (MNA)	1. Easily Implemented.	 Will not achieve ARARs or RAOs. No reduction in toxicity, mobility, or volume. 	\$968,400 (Range \$677,900- \$1,452,600)
Targeted Direct Injection of In-situ Chemical Oxidation (ISCO) amendment and MNA	 Easily Implemented Will reduce potential risks to human health related to 1,4-dioxane 	 Will not achieve all ARARs or RAOs, though will achieve some. 	\$1,447,900 (Range \$1,013,500 - \$2,171,800)
Interceptor Trench and Ex-situ Pump and Treatment Plan	 More completely addresses groundwater contamination issues. 	 Large investment in infrastructure and maintenance required to implement. 	\$19,466,200 (Range \$12,226,400- \$26,199,300)

Table E-2: Site Groundwater Treatment Options Summary

1. INTRODUCTION

This Engineering Evaluation/Cost Analysis (EE/CA) has been developed for the Florida State University (FSU) Low-Level Radiation Waste (LLRW) Disposal Site located within the Apalachicola National Forest in Leon County, Florida. A site location map is shown on Figure 1. This EE/CA is developed in accordance with United States Environmental Protection Agency (EPA) guidance for Non-Time Critical Removal Actions (NTCRA) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (EPA, 1993).

1.1. Site History

On July 20, 1966, the Forest Service granted a Special Use Permit (SUP) to FSU to use the subject property as a waste disposal site for low-level radiological wastes generated from the university's research activities. A Florida Department of Health (FDOH) Bureau of Radiation Control license (#32-10) was also issued to FSU for the disposition of the radiological waste at the site. According to historical records, low-level radiologically contaminated solids containing alpha and beta emitters, containerized liquids, and animal remains were sequentially deposited into 26 disposal cells from March 16, 1967 to June 14, 1979. A total of 40 disposal cells were constructed but only 26 disposal cells were used. Waste was reportedly containerized using 55-gallon steel drums, 5-gallon cans, glass and plastic jars, wooden and cardboard boxes, and plastic bags. Some wastes, specifically whole animal carcasses, may have been disposed without containers. Disposal activities concluded on June 14, 1979, and the site was closed from further disposal activities (BAT, 1998). Figure 2 shows the locations of the waste disposal cells and current monitoring wells.

Radioactivity measured in the disposed waste was from isotopes typically found in biological experiments conducted at FSU. Current monitoring data that identified 1,4-dioxane in the groundwater suggests that other associated hazardous wastes were also disposed of in the disposal area.

Each disposal cell is reportedly eight (8) feet long by seven (7) feet wide by eight (8) feet deep and are arranged in a grid pattern across the site. In Cells 1 through 15, waste was disposed at a depth of four (4) feet to eight (8) feet below grade and then covered with a 4-inch concrete slab directly above, at a depth of four (4) feet below grade. Then, each cell (Cells 1 through 15) was backfilled to grade with approximately 4 feet of local soil. Cells 16 through 26 were reportedly backfilled entirely with soil above the disposed waste but with no concrete slabs (FDEP, 2003). The actual composition and volume of waste is only known from available disposal records (Appendix A).

Since the end of disposal activities at the site in 1979, FSU has conducted groundwater monitoring and maintained the condition of the disposal area within the site fence and performed periodic radiation readings from monitoring wells at the site. Records obtained from FSU suggest that the monitoring wells

were sampled at irregular intervals. The FDOH license requires environmental surveillance to be conducted on a regular basis to document the continuing integrity of the disposal area.

The FDOH license did not stipulate a requirement for an engineered barrier (e.g., compacted clay or geomembrane) below or around the waste disposal unit, nor is there any evidence of an engineered hydraulic barrier having been installed that would isolate disposed waste from groundwater. Based on current measured groundwater elevations, a portion of the waste was disposed below the top of the water table. An analysis of monitoring well data was conducted in 2016 and concluded that a release had likely occurred (BMT, 2016b). Subsequent data review and investigations identified groundwater plumes that are the result of prior releases of chemical contaminants and radionuclides from the site.

1.2. Site Location and Physical Setting

The site is located in Leon County within the Wakulla Ranger District of the Apalachicola National Forest and covers approximately 0.36 acres. The waste disposal area, consisting of 26 separate disposal cells, is fenced with a six-foot high chain-link fence topped with three stands of barbed wire with one locked gate and measures approximately 80 feet x 120 feet inside the fencing. Outside the chain-link fence, there is a barbed-wire fence with a locked access gate. Monitoring wells MW009-MW013 that were initially installed to monitor groundwater quality are located between the interior and exterior fences.

1.2.1. Topography

The site is located on a flat plain adjacent to Forest Road 374A and situated at the peak of a shallow ridge. Regionally, elevation ranges from 200 feet above mean sea level (MSL) on nearby hilltops to 50 feet above MSL along the banks of Lake Talquin. Ground surface slopes gently to the southwest and the southeast from the site. A portion of the 7.5-minute United States Geological Survey (USGS) topographic map showing the site location on Forest Road 374A is included as Figure 3.

1.2.2. Geology

The site is located within the Apalachicola Coastal Lowlands physiographic province (Hendry and Sproul, 1966). The Apalachicola Coastal Lowlands are characterized by essentially flat, sandy surfaces with small shallow bays that contain densely wooded swamps. The area is underlain by sand, and clay deposits with an approximate thickness of 80 feet. The site is underlain by the Jackson Bluff Formation, which is a Miocene age sedimentary formation. The Jackson Bluff Formation consists of light gray to greenish gray and brown clayey sands and sandy clays that are macrofossiliferous (Hendry and Sproul, 1966). The dominant soil type at the site is a Class D loamy sand, characterized by very slow infiltration rate, very poor drainage, and high localized water tables (EDR, 2016). A Natural Resource Conservation Service surficial soils map is included as Figure 4. A subsurface geology map is included as Figure 5.

According to the USGS, the Jackson Bluff formation is found at or near the ground surface in Leon, Liberty, and Wakulla counties and described as tan to orange brown to gray green, poorly consolidated, fossiliferous, sandy clay to clayey sand with fossils present (e.g., mollusks, corals, and foraminifers). It is also described as sandy shell marl containing abundant shells of *Cancellaria* and *pectin* (Hendry and Sproul, 1966). Previous field investigations conducted in Wakulla and Leon counties, dating back to the 1960s, describe the Jackson Bluff formation as composed of a very sandy shell marl that is pale orange, light gray, grayish orange, and blue gray covered by 20 feet of younger sands, silts, clay, and peat.

Spodosols underlie the site and its immediate vicinity. Spodosols occur extensively in Florida and are most often developed in coarse textured sandy formations underlying coniferous vegetation such as pine trees (UF, 2016). Spodosols are acidic and defined by an accumulation of aluminum (AI), Iron (Fe) and organic matter in the subsoils (UF, 2016). Some Florida spodosols contain ortstein formations, which are cemented spodic horizons with greater bulk densities than the overlying formation (Lee et al., 1988). Ortstein layers are typically very black and exhibit far greater tensile strength than overlying horizons (Lipiec et al., 2017). Tensile strength measures formation cohesiveness and hardness.

Compared to overlying spodosol horizons, ortstein horizons have a lower volume of large pores and a greater volume of small pores. Greater cementation within the ortstein horizon is caused by the translocation of iron and aluminum from overlying layers and the formation of organo-mineral complexes (Lipiec et al., 2017). The smaller volume of large pores reduces the potential hydraulic conductivity within the ortstein horizon, which can serve as an aquitard between aquifer units.

1.2.3. Hydrogeology

The regional aquifer system is divided into two distinct water bearing units: a Surficial Aquifer System (SAS) and the Upper Floridan Aquifer System (UFAS). Based on information from previous investigations, and site borehole logs, the SAS aquifer measures at least 40 feet in thickness in the vicinity of the site based on borehole logs that were collected in 2018 as part of the Phase II ESI. Miocene sediments of the Jackson Bluff formation act as a confining layer between the SAS and UFAS (Miller, 1986). The upper confining layer is comprised of low permeability clastic rocks. Regionally, groundwater flows from the Apalachicola National Forest east to southeast (Hendry and Sproul, 1966). The water table is situated close to ground surface locally and much of the area can turn swampy during heavy rains (Hendry and Sproul, 1966). Groundwater wells primarily withdraw water from the UFAS. The SAS is not extensively used for public consumption (Ruper and Spencer, 1988).

There are no groundwater withdrawal wells located within a one (1) mile radius of the site (EDR, 2016). One (1) potable water supply well, owned by the Forest Service, is located 2.5 miles south-southwest of the site. There are 98 groundwater withdrawal wells reported to be located within a four (4) mile radius of the site, mostly on the southern shore of Lake Talquin and are associated with residential properties (EDR, 2016).

1.2.4. Ecology

The Apalachicola National Forest is located within the southeastern conifer forests ecoregion. Surrounding vegetation includes conifer trees and saw palmetto plants. Threatened and endangered species have been identified in the Apalachicola National Forest. The pinelands that make up the Apalachicola National Forest, in the vicinity of the site, are home to the red-cockaded woodpecker, which is an endangered species. The red-cockaded woodpecker nests in specific longleaf pines that have nesting cavities and are marked by the Forest Service. These nesting cavity trees are also protected.

1.3. Previous Investigations and Assessments

Several environmental investigations have been conducted at the site. These investigations are summarized in the following subsections. Several environmental investigations have been conducted at the site by the Florida Department of Environmental Protection (FDEP) and the Forest Service. In the final report of each of these investigations, the site name used was similar but varied slightly: Florida State University Burial Site No. 2, Florida State University LLRW-2 Site, Florida State University Low-Level Radioactive Waste Burial Area No. 2 and Florida State University Low-Level Radiation Waste Burial Site No. 2 (FSU-LLRW-2). In order to eliminate any confusion, it should be noted that all of these site names are for the same site as is being evaluated in this EE/CA: 'FSU-LLRW.' These investigations are summarized in the following subsections

1.3.1. Preliminary Assessment: 1998

A Preliminary Assessment (PA) was conducted in 1998 by the USFS (BAT, 1998). The PA compiled previous site history information, including the structure and location of the disposal cells and groundwater monitoring activities. A groundwater pathway was identified for the potential release of disposed wastes based on migration through the soil to the groundwater. Exposure pathways to soil, surface water, and air were considered incomplete or not present.

1.3.2. Preliminary Site Investigation: 2003

A Preliminary Site Investigation (PSI) was conducted by the Florida Department of Environmental Protection (FDEP) in 2003 (FDEP, 2003). The PSI involved the following activities:

- A surface gamma (γ) radiation survey was conducted over the actual radiological waste disposal area.
- Eight (8) temporary monitoring wells (MW001 through MW008) were installed around the

perimeter of the site. One (1) additional temporary background monitoring well (MW009) was installed approximately 0.59 miles north of the site. All temporary monitoring wells were removed at the conclusion of the 2003 sampling program.

Chemical contaminants detected in groundwater above relevant Florida groundwater screening criteria included volatile organic chemicals (VOCs) (including total xylenes), semi-volatile organic chemicals (SVOCs) (including bis[2-ethyhexyl]phthalate), and metals (including chromium and mercury). Radionuclides detected in groundwater samples above relevant screening criteria included Carbon-14, Radium-226 and Radium-228, Cesium-137, and Tritium. Additionally, several groundwater samples exhibited elevated overall gross alpha ($433 \pm 60 \text{ pCi/L}$) and beta activity ($173 \pm 24 \text{ pCi/L}$). Lead-210 was detected at a concentration of 220 ± 100 pCi/L in a temporary well point (DPT001) located on the northeast corner of the site perimeter, hydraulically upgradient of the disposal cells, in April 2003.

Groundwater samples with exceedances of relevant Florida chemical and radiological screening criteria were collected primarily from temporary monitoring wells located along the southwest, southern and southeastern corners of the site (hydraulically downgradient from the radiological disposal area). Gross alpha activity, Radium-226, and Radium-228 were detected at elevated concentrations in locations immediately adjacent to the site (FDEP, 2003).

1.3.3. Supplemental Site Investigation Report: 2012

A Supplemental Site Investigation (SSI) was conducted in 2010 and 2011 for the FDEP Dry-Cleaning Solvent/Hazardous Waste Site Cleanup Program (FDEP, 2012). The SSI involved the following desktop and field activities:

- A potable water supply well survey was conducted by searching the FDOH databases for drinking water wells within 2.5 miles from the site. One (1) potable water supply well, owned by the Forest Service, is located 2.5 miles south-southwest of the site. According to an Environmental Data Resources (EDR) report from October 2016, this well is still active (EDR, 2016).
- Six (6) piezometer wells (MW-A through MW-F) were installed after the end of the site waste disposal activities. Groundwater was sampled from them for one round and then the piezometers were abandoned. Five (5) new permanent monitoring wells (MW009 through MW013) were installed around the perimeter of the site (clarification: permanent monitoring well MW009 installed in 2010 is not the same as the temporary background monitoring well MW009 installed in 2003 despite having the same well identification name). The five (5) permanent monitoring wells were installed to a depth of approximately 14 feet below ground surface (bgs) with ten (10) feet of 1" inside diameter (ID) slotted well screen. In addition, these permanent monitoring wells

were completed with riser as stickup wells. The monitoring well locations are shown in Figure 2. These wells are called the 'on-site' monitoring wells

- Groundwater samples collected from the five (5) monitoring wells were analyzed for VOCs, target analyte list (TAL) metals, gross alpha and beta radioactivity, tritium, gamma-spectral scan and Carbon-14.
- A Geoprobe was used to advance nine (9) temporary well points in the vicinity of the site.
 Groundwater samples were collected from nine (9) temporary wells located downgradient of the disposal area at up to three (3) depth intervals (i.e., 11-15 ft. bgs, 26-30 ft. bgs, and 36-40 ft. bgs) and analyzed for 1,4-dioxane.
- Temporary groundwater sampling points were advanced to depths of up to 55 feet bgs, but no groundwater was available at this depth or in any groundwater screens advanced beyond 40 feet bgs.
- A surface radiation survey was conducted within the fenced portion of the site. Another radiation survey was conducted around the perimeter of the site, within the barbed-wire fence that surrounds the chain-linked fence. Background radiation measurements were collected from locations approximately 0.25 miles from the site.

Based on well gauging data collected during the SSI, the groundwater gradient was calculated and determined that groundwater flow at the site is to the south and east. Based on the surface radiation survey results, surface radiation at the site was generally less than two (2) times background activity in the vicinity. Background activity was determined by conducting radiation surveys at four (4) off-site locations greater than 0.25 miles from the site. The maximum radiation survey results were measured over Cells 1 to 26 within the southern portion of the site (FDEP, 2012).

Radionuclides in groundwater, sampled from the five (5) permanent monitoring wells, were detected at concentrations below their respective FDEP Groundwater Cleanup Target Levels (GCTLs) (F.A.C.62-777). The new monitoring wells were installed at locations in close proximity to the temporary well points that yielded radionuclide exceedances during the 2003 groundwater sampling event performed by the FDEP. Monitoring well sampling results are summarized below:

• <u>VOCs</u>: Xylenes were detected in two (2) monitoring wells (MW010 and MW011) at concentrations greater than GCTLs.

- <u>SVOCs</u>: 1,4-dioxane was detected in two (2) monitoring wells (MW010 and MW011) at concentrations greater than its GCTL. The SVOC bis(2-ethylhexyl)phthalate was not detected in groundwater during the 2010 and 2011 sampling events.
- <u>Radionuclides</u>: Gross alpha and beta activity and Radium-226 and Radium-228 were detected in all five (5) monitoring wells (MW009 through MW013); however, detected concentrations were below respective Maximum Contaminant Levels (MCLs). Radionuclides were detected at low concentrations in MW009, located upgradient of the disposal area.

1,4-dioxane was detected at a maximum concentration of 910 μ g/L in a temporary well located approximately 100 feet south from the southeast corner of the site at a depth of 11-15 feet bgs. 1,4dioxane also was detected in monitoring wells located directly south of the site, and in other temporary wells no more than 300 feet downgradient of the site at concentrations greater than the GCTL of 3.2 μ g/L. Additionally 1,4-dioxane was detected in groundwater at depths of up to 40 feet. The 2012 SSI report recommended additional groundwater sampling downgradient of the site to delineate the 1,4-dioxane plume. The report also recommended additional surface radiation surveys to be performed every five (5) years after November 2010 (FDEP, 2012).

In addition to these findings, the lack of groundwater in temporary groundwater sampling points advanced to depths beyond 40 feet bgs suggested the presence of an aquitard in the vicinity of the site at depths greater than 40 feet bgs. No soil samples were collected for lithology and the potential presence of any groundwater barrier was not evaluated.

1.3.4. Expanded Site Inspection: 2017

An Expanded Site Inspection (ESI) was conducted at the site in January 2017 to verify the presence of contaminants in groundwater and to delineate the 1,4-dioxane plume that was identified in the 2010 and 2011 SSI (BMT, 2017b). The ESI involved the following desktop and field activities:

- Groundwater samples were collected from the five (5) monitoring wells installed in 2010 (FDEP, 2012). Groundwater samples were analyzed for VOCs, SVOCs, TAL total and dissolved metals, and select radionuclides.
- Four temporary piezometer wells were installed downgradient of the site. The piezometer wells were surveyed prior to their abandonment. Groundwater samples collected from the piezometers were analyzed for VOCs, SVOCs, TAL total and dissolved metals, and select radionuclides.

- Ten (10) direct push technology (DPT) points were advanced to a maximum depth of 30 feet bgs at locations sited to delineate the 1,4-dioxane plume identified in previous site investigations. Groundwater samples were collected from two discrete depth intervals: 12-16 feet and 26-30 feet bgs at each DPT location and analyzed for SVOCs (which includes 1,4-dioxane). In addition, select radionuclides were sampled at four (4) of the DPT locations.
- A groundwater contour map was created to show that groundwater flows primarily in a southeastern direction from the site.
- Screening level risks were calculated based on the comparison of the maximum detected analyte concentrations in groundwater to respective EPA Regional Screening Levels (RSLs) (EPA, 2016a).

Originally, the piezometer wells were to be installed using DPT technology. However, site subsurface geology, specifically the cemented soil horizons within the forest spodosol soils caused refusal at multiple depths using the 3.25" diameter DPT tooling specified to install the piezometers. Piezometers were therefore installed using Hollow-Stem Auger (HSA) tooling and as a result, continuous cores could not be collected.

The contaminants, 1,4-dioxane and select radionuclides, including Radium-226 and Radium-228 and gross alpha activity, were detected in groundwater downgradient to the site at concentrations greater than their respective FDEP GCTLs. The 1-4 dioxane plume was found to cover a significantly larger area than was originally estimated in 2011. Radionuclides were detected in temporary groundwater wells downgradient of the site. Both plumes had migrated several hundred feet beyond the fenced boundaries of the site.

Lead-210 was detected in MW009, located upgradient of the disposal cells. Lead-210 had previously been detected in upgradient groundwater in 2003 (FDEP, 2003).

A screening level risk assessment was conducted as part of the 2017 ESI and determined that there are unacceptable risks to human health resulting from concentrations of 1,4-dioxane, bis(2-ethylhexyl) phthalate, and Radium-226 and Radium-228 that exceed their respective RSLs.

1.3.5. Phase II Expanded Site Inspection: 2018

A Phase II ESI was conducted at the site in January 2018 to install permanent monitoring wells located downgradient of the site to further delineate the 1,4-dioxane and radionuclides groundwater plumes. The Phase II ESI involved the following desktop and field activities:

- Groundwater samples were collected from the five (5) monitoring wells installed in 2010 (MW009-MW013) (FDEP, 2012). Groundwater samples were analyzed for SVOCs and select radionuclides.
- Ten (10) permanent monitoring wells were installed upgradient and downgradient of the site using sonic drilling technology. Eight (8) wells were installed as nested pairs. Borehole logs were collected for each monitoring well. These monitoring wells are called the 'off-site' monitoring wells.
- Groundwater samples were collected from the wells and analyzed for SVOCs (including 1,4dioxane) and select radionuclides.
- An analysis of the waste volumes and activities of each isotope listed in the disposal cell records (Appendix A) was conducted to determine likely sources of elevated gross alpha emitter activity.

The contaminant 1,4-dioxane and select radionuclides, including Radium-226 and Radium-228 and gross alpha activity, were detected in groundwater downgradient to the site at concentrations greater than their respective FDEP GCTLs. Gross alpha activity was detected at elevated concentrations at a site background well (MW014) that is located 100 feet upgradient of the site. Groundwater plume maps were created from the 2018 Phase II ESI data and are included as Figures 6 and 7.

1.4. Regulatory Requirements

The following sections summarize federal and state regulatory requirements for this EE/CA.

1.4.1. CERCLA Requirements

CERCLA provides the federal government with broad authority to respond to disposal sites involving uncontrolled releases of hazardous substances, to develop long-term solutions for sites containing hazardous substances, and to arrange for the restoration of damaged natural resources. The EPA provides guidance on NTCRAs (EPA, 1993) as well as input and criteria on risk management.

1.4.2. State Requirements

The FDOH grants licenses to hospitals, universities, industrial facilities, and entities dealing with radioactivity to manage and handle radiological materials. Licenses specify the quantities of specific isotopes that a licensee may possess during any moment of time.

The FDEP would have input regarding potential removal actions addressing the radiological wastes and groundwater contamination resulting from past contaminant releases.

1.4.3. Response Actions

Two categories of response actions are identified under the National Contingency Plan (NCP) by CERCLA: removal and remedial actions. A removal action involves cleanup or other actions that are taken in response to emergency conditions (e.g., spills) on a short-term or temporary basis. The following factors are considered in determining the appropriateness of a removal action at a particular site [40 CFR 300.415(b)(2)]:

- Actual or potential exposure of nearby populations, animals, or the food chain to hazardous substances or pollutants or contaminants.
- Actual or potential contamination of drinking-water supplies or sensitive ecosystems.
- Hazardous substances or pollutants or contaminants in drums, barrels, tanks, or other bulk storage containers that may pose a threat of release.
- High levels of hazardous substances or pollutants or contaminants in soils, largely at or near the surface, that may migrate.
- Weather conditions that may cause hazardous substances or pollutants or contaminants to migrate or be released.
- Threat of fire or explosion.
- The availability of other appropriate federal or state response mechanisms to respond to the release.
- Other situations or factors that may pose threats to public health or welfare or the environment.

The evaluation of the appropriateness of a removal action is done through a removal site evaluation (40 CFR 300.410). If a removal action is considered appropriate under CERCLA, there are three (3) categories of removal actions; however, it should be noted that CERCLA requires all removal actions to be conducted so as to contribute to the efficient performance of long-term remedial measures that EPA considers practicable. The response action categories are as follows:

• *Emergency,* which generally refers to a release that requires removal activities begin on-site within hours of the lead agency's determination that a removal action is appropriate.

- *Time-critical*, where the lead agency determines that a removal action is appropriate and there is a period of less than 6 months available before removal activities must begin on the site.
- *Non-time-critical,* where the lead agency determines that a removal action is appropriate and there is a planning period of more than 6 months before removal activities must begin.

The removal action deemed appropriate at the site is non-time-critical, and an EE/CA is required under section 300.415(b)(4)(i) of the NCP for all non-time-critical removal actions. Though the site is not listed on the National Priorities List (NPL), evaluation of its environmental issues is presented in this EE/CA in accordance with CERCLA guidelines and regulations.

This EE/CA identifies removal action alternatives, and analyzes the effectiveness, implementability, and cost of each alternative. Removal action objectives (RAOs) for the site include preventing or abating actual or potential contamination of drinking water supplies; and treating or eliminating "significant" levels of hazardous and radiological substances, pollutants, and contaminants in soil where they may migrate.

Effectiveness: Effectiveness is a measure of ability of the removal/remedial option to reduce risk and achieve Applicable or Relevant and Appropriate Requirements (ARARs). For the purposes of evaluating proposed removal options, ARARs include risks to current and future receptor populations (site workers, residents, ecological receptors) resulting from existing contamination at the site.

Measures of effectiveness include:

- Protectiveness of public health, surrounding communities, site workers and the environment
- Compliance with ARARs
- Achievement of RAOs

Implementability: Implementability is a measure of how feasible a potential removal/remedial option is based on known site characteristics, maturity of proposed technology, potential time frame for the implementation and other relevant considerations listed in the ARARs.

Measures of implementability include:

• Technical Feasibility based on construction considerations, useful operational life, adaptability to local environmental conditions and time scale for implementation.

- Availability based on commercial maturity of a technology, and availability of essential personnel.
- Administrative Feasibility based on the ease of permitting, enforcing Land use controls (LUCs), and the likelihood of obtaining statutory exemptions, if necessary.

Cost: Each removal action alternative is evaluated to determine its projected Present Value. The evaluation compares each alternative's direct and indirect capital and post-removal site control (PRSC) costs. Direct capital costs include construction, labor, equipment, material, transport, disposal, and analytical costs. Indirect capital costs include: engineering and design expenses, permit costs, and start-up and shakedown costs. Annual PRSC costs include operating and maintenance (O&M) costs, support, and monitoring costs.

Effectiveness, implementability, and cost for each removal alternative are further discussed in Section 7 of this EE/CA.

2. CONCEPTUAL SITE MODEL

This section presents the conceptual site model for the Site and includes sources of contamination, primary and secondary release mechanisms, and receptor impacts and exposures.

2.1. Introduction

The Conceptual Site Model (CSM) serves to identify the relationship between contaminant sources and known current and potential future receptors through consideration of potential or actual migration and exposure pathways. The CSM was prepared in accordance with EPA Guidance (USEPA, 1998) and presents the current understanding of the site, helps to identify data gaps, and supports the streamlined risk evaluation process that is part of this EE/CA. However, it does not provide quantification of these potential sources, pathways, or exposure levels. A CSM depicting the source area and contaminant migration pathways is included as Figure 2-1.

2.2. Primary Source of Contamination

The primary source of contamination at the site is from the waste disposed in the twenty-six (26) cells. Radiological wastes and other research-related wastes were disposed in these cells between 1967 and 1979 (BMT, 2017). In addition to the radiological contamination in the disposal cells, alpha emitting isotopes have been detected in groundwater approximately 100 feet upgradient of the site; although there is no documented source activity or information about this contamination. Upgradient groundwater contamination may also be associated with historical waste disposal practices as no other source of radiological or SVOC contamination (other than FSU laboratory wastes) have been known to take place in the vicinity of the radiological waste disposal cells. No other potential sources of upgradient contamination have been identified.

Records of materials disposed in the waste cells are provided in Appendix A. The majority of the disposed waste includes low-level radiological materials, associated laboratory materials (e.g., scintillation fluid), and containers. The noted waste in the records generally matches detected site contaminants; for example, 1,4 dioxane is associated with the documented scintillation fluid, and the presence of various radionuclides and gross alpha is associated with laboratory waste.

2.3. Primary Release Mechanisms

The following sections describe the primary release mechanisms contributing to the transport and migration of contaminants from the primary waste source (discussed in Section 2.2) at the site.

				Figure 2-	1: Conceptual Site N	fodel Flow Di	agram				
Primary Source	Primary Release Mechanis	Affr Becc Sou	ected dia & mdary ırces	Secondary Release Mechanism	Exposure Medium			Potential F	teceptors		
	Volatilizati		₹.	Atmosphere	Soil Gas	Exposure Route	Future Site Residents (Ch & Ad)	Future Construction Worker	Current/ Future Site Worker	Current/ Future Site Visitor	Ecological Receptors
					~	Inhalation	-	-	-		
				Eracion/	_	Ingestion	-	-	-	0	0
sl			l			Inhalation	-	-	-	0	0
l90 I	Infiltratio	,u				Dermal Contac	-	-	-	0	0
eso	Percolati	on		→		Indection		•	•	C	C
dsi			ndwatar	Groundwater	Groundwater	Inhalation **	•	-	-		
a M				/ Basetlow	•	Dermal Contac	•	•	-	0	0
רא.							-	-			
יח-ר	Runoff	∑ ה	Intrace	Surface		Ingestion	-			0	0
SH		Sec	diment	Water Flow		Dermal Contac	•			0	0
					Dissolution and	Ingestion	•	-	-	0	0
-		l le			Volatilization to	Inhalation	•	•	Þ	0	0
	neval				Groundwater	Dermal Contac	•	-	-	0	0
	Legend	Grey Ar	row, uncol	nfirmed or no cu	ırrent pathway. Nc	i exposure i	pathway con	npleted.			
	1	Black A	rrow, confi	rmed pathway.	Exposure pathwa	y completec					
	Pathwa	ay is not complete	e. no evaluatio	n required							
0	Pathwa	ay is or might be c	complete, but i	is judged to be minor;	not evaluated						
-	Pathwa	ay potenitally com	plete, but is c	onsidered negligible c	or qualitatively evaluated	I. For Soils, assu	ociated w ith w a:	ste mass, no ri	sk assessmer	nt required.	
•	Pathw 6	ay is or might be c	complete and I	might be significant; s	ufficient data are availa	ble for quantitat	tive evaluation				
Radioacti	ve * Radioac	ctive decay poten	Itially changes	chemical properties,	toxicity, and next radiol	logical decay pr	ocess for a give	en volume of init	tial		
Decay	contami	inant. Exposure p	athw ays impa	icted include air, soil,	and groundw ater sourc	ces.					
*	Region I	N accepts the de	sfault assumpt	tion that inhalation and	d dermal exposure from	show ering is e	quivalent to expo	osure from dail	y ingrestion of	contaminated	w ater

2.3.1. Infiltration and Percolation

The most likely primary release mechanism is from the infiltration and percolation of the contaminants in the disposed radiological and laboratory wastes in the unlined cells. Based on the descriptions in the disposal cell records (Appendix A), liquid wastes were disposed in multiple cells and may have leached into site groundwater. However, the actual release process of the contaminants in the waste is complicated because of where the waste is disposed.

Based on historical information (BMT, 2017a), the soil from the disposal cells was excavated and waste was placed below the current groundwater surface elevation. Groundwater in the vicinity of the site was encountered at depths averaging 3 to 5 feet bgs (BMT, 2018). The waste is most likely in direct contact with groundwater, with potentially infiltrating water from precipitation, and with site soil. Available information relating to disposal cell preparation techniques and waste handling processes is not described in detail, and information regarding pre-disposal staging areas is unknown. There are no records of any liner having been installed prior to waste disposal and disposed wastes were potentially placed in direct contact with previously uncontaminated site soils and/or groundwater. As such, there may be a combination of releases (both primary and secondary) occurring at where the waste is placed.

2.3.2. Radioactive decay

Because the majority of the wastes placed into the cells included radiological materials, radioactive decay is also a potential primary release mechanism. The emission of alpha, beta, and gamma particles is both a source of potential risk and a transformative effect. The resultant degradation products may be the source of additional chemical or radiological risks or they may shift from a radiological source to an inert substance. Because the half-life of each element is different, and sometimes a given element may pass through a number of short or medium length half-lives, radioactive decay may have a large impact on the distribution and potential risk to receptors. The solubility of an element may change substantially as it breaks down creating a complex relationship between observed conditions and historic processes. For example, Radium-226 alpha decays into Radon-222, which can create airborne hazards in confined spaces, such as building basements or through man-made conduits in slab on-grade construction.

2.3.3. Volatilization to Air

There is a potential for the contaminants from the disposed waste to convert into a gaseous state and move up through the soil column and ultimately into the atmosphere. Radiological contaminants may decay into a gas at ambient temperature and conditions and create potential health hazards. The potential presence of radon as a secondary radiological COPC, from radioactive decay of alpha emitting are potential sources of risk for future residential populations in enclosed structures. Though 1,4-dioxane is not a likely source of inhalation hazard, the full inhalation risk was calculated to assure that no future questions regarding this pathway would be made.

2.4. Secondary Release Mechanisms

If there was no liner system installed, the disposal of wastes containing contaminants may have also impacted adjacent and underlying soils. These soils are considered secondary sources. Contaminants that have migrated within surrounding soils have the potential to move to other environmental media through a number of possible secondary release mechanisms. The following describes secondary release mechanisms identified as likely or potentially contributing to the transport and migration of contaminants at the site.

2.4.1. Leaching from Soil to Groundwater

Based on the waste disposal records (Appendix A), the radiological disposal cells were installed below the current water table at the site. Hydraulic barriers are not known to have been placed around or beneath the disposal cells. As noted in Section 2.3.1, contaminants in disposed waste may impact soils and the same contaminants in soil may leach and migrate to groundwater. The single most important property influencing a contaminant's movement with groundwater is its solubility in water. Solubility is a function of the contaminant's chemical properties, soil properties, and groundwater properties.

For example, 1,4-dioxane has a high solubility in water. Radium isotopes and unidentified alpha-emitting isotopes have also been observed in groundwater samples collected from several hundred feet downgradient of the site, implying a high degree of mobility within the aquifer.

When a chemical contaminant enters soil or groundwater, some of it will adhere to soil particles, particularly organic matter, through the processes of absorption and adsorption; and some will dissolve and remain in the aqueous phase but be retained within soil particle interstices. As more water enters the soil through precipitation or groundwater baseflow, the adsorbed contaminant molecules may become detached from soil particles through preferential desorption or the trapped water may be replaced or flushed out into the water column.

The solubility of a chemical contaminant in groundwater and its sorption on soil is typically inversely related to it Octanol/Water Partitioning Coefficient (K_{ow}); increased K_{ow} typically increases sorption to organics in soil, and greater solubility results in less preferential sorption. Once groundwater reaches the low organic zone, the K_{ow} is less important than pH driven mobility. Acidic groundwater or meteoric water conditions can increase a contaminant's solubility; this is especially important when considering mobilization of metallic contaminants, including radioisotopes.

2.4.2. Groundwater Baseflow

Groundwater impacted by contaminated leachate from the radiological disposal cells has been identified as a secondary release mechanism. Base groundwater flow may transport liquid wastes, soluble wastes, leached wastes, and/or infiltrating wastes from the waste cells to a downgradient direction.

The general extent and direction of groundwater baseflow has been assessed through the installation of a groundwater monitoring well network. However, it is unknown how climate seasonality may impact groundwater flow velocity and direction. The site's topography is mostly flat, with a corresponding slight groundwater gradient, and it is possible that localized velocity and directional flow of groundwater might change significantly following large rain events or seasonal increased rains. In addition, the soil cores from the site's soil borings identified a number of high and low conductivity zones and features that may impact the transport of contaminants.

2.4.3. Discharge from Groundwater to Surface Water

There are no known permanent surface water bodies located in the vicinity of the site (BMT, 2017). According to the National Wetlands Inventory (NWI, 2017), freshwater forested/shrub wetlands are located approximately 500 feet downgradient of the site within the current footprint of the comingled groundwater plumes.

Groundwater may discharge to surface water via baseflow or surface seepage. For example, shallow groundwater has the potential to enter the wetlands downgradient of the site following heavy precipitation. The rate of contaminant transport by this mechanism is controlled by solubility, distance traveled, soil properties, and groundwater flow rates. Since ponding and standing water were not observed in the wetlands during the 2017 and 2018 field activities, the potential for groundwater to enter intermittent wetlands is assumed negligible.

2.5. Potential Receptors and Exposure Routes

Receptors identified in the CSM include potential future adult and child residents, current and future trespassers and site visitors, current and future construction/site workers, and ecological receptors. As discussed below, some of these potential receptors are unlikely to be at the site but are considered to evaluate complete site closure and risk scenarios.

Due to the nature of the soil impacts (radiological and laboratory waste) being focused within the disposal site footprint, complete soil pathways are considered negligible beyond the footprint of the actual disposal cells. No other data pertaining to contamination within surficial or subsurface soils is available and will not be calculated in Section 3.

2.5.1. Current and Potential Future Residents

Currently, residential human populations are not living on the site nor are human populations situated downgradient from the site. The nearest human population is a residential development approximately 3.7 miles northwest (hydraulically upgradient) of the site. An artificial basin is located approximately 1.45 miles south-southeast from the site, adjacent to Bloxham-Cutoff road. It is unlikely that the site will be developed for residences in the future; however, the future resident exposure scenario will be considered to provide a conservative estimate of risk and is required by current EPA Risk Assessment Guidance (EPA, 1989 and 2018).

Under this exposure scenario, potential future residents are assumed to have access to, and use, near surface site groundwater for drinking, showering (aerated and inhaled), and doing yard work and gardening. Likewise, vapors and/or gaseous alpha emitting particles may intrude into residential structures. Potential future residents are considered to have access to and contact with surface water, as represented by the nearby intermittent wetlands, and for recreational and/or agricultural activities. This use scenario is purposefully evaluated conservatively to be protective of human health.

The future resident scenario also was considered to evaluate exposure to contaminants in near surface soil. For risk calculations and development of the exposure scenarios, the surface soil interval at the site comprises a depth of 24-inches bgs in accordance with EPA guidance (EPA, 1989 and 2018) representing typical exposures for residential receptors. The exposure pathways, which may potentially be considered complete for hypothetical future residents, are ingestion and dermal absorption tied to direct contact with soil via garden and/or agricultural tracts; along with incidental contacts with soil typically experienced by homeowners (e.g., landscaping and lawn care maintenance).

Future on-site residents may include both child and adult residents. The CSM and risk assessment did not consider the current resident scenario because there are no residents on-site and the nearest residential areas are several miles from the site.

2.5.2. Current and Future Site Workers

With the exception of the site itself, no construction projects have been undertaken in the nearby vicinity. The Apalachicola National Forest, however, is an active timber harvesting area and the site could potentially be used in the future as a temporary worksite, staging area, or other activities performed by USFS personnel and contractors. Therefore, a potential exists to host site workers should temporary or permanent structures or utilities be constructed to support future activities.

Inhalation risks from contaminants in groundwater and soil are considered negligible to site workers. Potential risks from incidental dermal contact with contaminated groundwater are considered.

2.5.3. Construction Worker

Although there are no current plans to develop lands in the vicinity of the site, timber harvesting is possible and may include staging trees and construction of logging roads. Possible future construction projects in the vicinity of the site are unlikely but are considered to provide a conservative risk assessment for all potential site receptors.

A future construction worker may come into contact with contaminants in surface soil, subsurface soil, soil vapor, and shallow groundwater while performing intrusive activities such as site preparation, grading, and soil excavation. The exposure pathways which may potentially be considered complete for a future site worker are:

- Ingestion of chemicals in surface soil, subsurface soil, and shallow groundwater. This pathway is considered negligible.
- Absorption through dermal contact with contaminants in surface soil, subsurface soil, and groundwater. EPA Region 4 Risk Assessment Guidance recommends that dermal contact for radionuclides is not to be evaluated as this pathway is also considered negligible (EPA, 2018a).
- Inhalation of contaminated particulate matter including airborne soil particles or dust.

2.5.4. Current and Future Trespasser and/or Visitor

Potential trespassers and visitors are considered to have similar behaviors and exposure scenarios for the site. Potential trespassers and visitors may include official visitors, people traversing the site, using the site for permitted or non-permitted recreational activities, including hunting, and may include trespassers and visitors of all ages from children to adolescents to adults.

The site is easily accessible via Forest Service roads; however, the actual site is protected by a chainlinked fence (topped with barbed wire), which is surrounded by a 2nd barbed wire fence and is periodically inspected by the USFS and FSU personnel for general site maintenance. The most likely human receptors to enter the site would be persons looking for pedestrian shortcuts, and/or hunters. These trespassers could potentially contact surface soils, which could potentially result in an exposure pathway via ingestion or dermal absorption. Trespassers and recreational users are not considered to have access or exposure to contaminated groundwater. All potential exposure pathways are considered complete but have been judged to be negligible due to the limited time frames for potential exposure.

2.5.5. Ecological Receptors

Plant and animal receptors, whether aquatic or terrestrial in nature, could be susceptible to exposure to soils, sediments, and surface water via dermal contact, inhalation, or ingestion of chemical contaminants at and in the site. This would most likely occur among animal species, which inhabit aquatic or wet soil environs hydraulically downgradient from the source area, or arboreal species with more deeply rooted networks (including native, invasive, and cultivated vegetation). Contaminated groundwater entering downgradient surface water bodies or flowing from related springs and/or seeps in the area could result in extended periods of contact with plants, fish, amphibians, or any number of vertebrate or invertebrate animal species living in wet soils and sediments associated with these physical settings. Ingestion of contaminants is also likely among these "first tier" animals but could also impact predators that rely on these types of animals for food. Potential bio-magnification issues among long-time resident predator species to this immediate area could also result.

Inhalation hazards, although a less likely exposure pathway for ecological creatures, is nevertheless a potential hazard to terrestrial wildlife having prolonged exposure to environmental media. Due to the mobility of most terrestrial animals, including birds, and the small site area, this type of exposure would likely be limited to brief encounters. No significant exposure is expected for ecological species and this pathway is currently incomplete and/or negligible.

3. STREAMLINED RISK EVALUATION

The streamlined risk evaluation (SRE) is intended to be intermediate in scope between the limited risk evaluation performed for emergency removal actions and the conventional baseline risk assessment normally conducted for removal and remedial actions. The streamlined risk evaluation assists in justifying a removal action and identifies what current or potential exposures should be prevented. The streamlined evaluation uses sampling data from the site to identify contaminants of concern (COCs), provides an assessment of the health effects associated with these chemicals, and projects the potential risk of health problems occurring if no cleanup action is taken at a site.

The SRE for the site is intended to focus on the specific risks associated with quantifiable groundwater plumes that have been identified and delineated in previous investigations. The Human Health Risk Assessment (HHRA) evaluated potential risks from groundwater contamination only. Ecological Risk Assessment (ERA) information is discussed in Section 3.2; however, no SRE was performed because groundwater is not an evaluated medium for ecological receptors, the site is small (less than 0.25 acres), ecological receptors are transient, and the disposed waste is situated too deep to come into contact with ecological receptors. The contaminants, 1,4-dioxane and select radionuclides data from January 2018's groundwater monitoring (i.e., Phase II ESI) were used for the SRE.

3.1. Human Health Risk Assessment

A HHRA is an evaluation of cancer risks and non-cancer risks posed to humans by the release of hazardous substances, pollutants, and contaminants from a site without remediation. The approach for the HHRA at the site is based on EPA Region 4 HHRA guidance (EPA, 2018) and EPA's *Risk Assessment Guidance for Superfund (RAGS)*. RAGS is composed of six parts (EPA, 1989; EPA, 1991a; EPA, 1991b; EPA, 2001; EPA. 2004; EPA, 2009a and EPA, 2009b).

The components of the HHRA as depicted in the following subsections include:

- Data Evaluation
- Exposure Assessment
- Toxicity Assessment
- Risk Characterization

EPA recommends that the HHRA process be documented according to EPA RAGS Part D by completing standard tables that sequentially apply contaminant toxicity and exposure factors using site specific data

to calculate estimated risks. These standard tables document the human health risk assessment process and findings, and are summarized and presented at the end of this section and included in Appendix C.

3.1.1. Data Evaluation

The first part of the HHRA process includes the selection of data suitable for use and the second part identifies the constituents of potential concern (COPCs).

3.1.1.1. Selection of Data for Use in the Risk Assessment

For the site HHRA, data evaluation is limited to 1,4-dioxane, Radium-226, and Radium-228 in groundwater. Gross-alpha emitting isotopes were also detected in groundwater at concentrations exceeding the FDEP GTCL, but risks could not be quantified because there is no available speciation for these isotopes. Table 3-1 provides the results of the chemical analyses of contaminants in groundwater from sampling activities as described in the Phase II ESI report (BMT, 2018). Figures 8 and 9 show the analytical results from groundwater sampling conducted in 2018.

3.1.1.2. Selection of Chemicals of Potential Concern (COPCs)

The occurrence, distribution and selection of COPCs in groundwater for site is summarized in RAGS Part D standard Table 2 (Appendix C). As previously described for the purpose of the streamlined risk assessment, the list of COPCs is limited to 1,4-dioxane, Radium-226, and Radium-228 in groundwater. For each of these contaminants detected in groundwater, the maximum detected concentration is compared to their respective EPA Regional Screening Level (RSL) for Chemical Contaminants at Superfund Sites (November 2018) (EPA, 2018a) <u>https://www.epa.gov/risk/regional-screening-levels-rsls</u>. The RSLs used for comparison are based on conservative exposure assumptions that correspond to a non-carcinogenic hazard quotient (HQ) of 0.1 or an incremental lifetime cancer risk (ICLR) of 1x10⁻⁶. For radionuclides, screening values were taken from the Risk Assessment Information System (RAIS) <u>https://rais.ornl.gov/</u>.

3.1.2. Exposure Assessment

The exposure assessment estimates the magnitude, frequency, duration, and route of exposure for all potential human receptors. This process consists of two steps:

- Identification of human health exposure scenarios; and
- Quantifying exposures for each identified COPC for exposure medium for each exposure scenario.
| Sample ID | 1,4-dioxane
(μg/L) | Radium-226
(pCi/L) | Radium-228
(pCi/L) | Gross-Alpha
(pCi/L) |
|----------------|-----------------------|-----------------------|-----------------------|------------------------|
| MW009-GW@9.5' | ND | 1.4 ± 0.44 | ND | ND |
| MW014-GW@20' | ND | 2.6 ± 0.87 | 1.6 ± 0.51 | 18 ± 4.4 |
| MW011-GW@8.9' | 25 | ND | 1.7 ± 0.52 | ND |
| MW012-GW@8.4' | ND | ND | ND | ND |
| MW015-1-GW@10' | 220 | 8.1 ± 2.1 | 2 ± 0.71 | 7.6 ± 2.3 |
| MW015-2-GW@30' | 420 | 5.7 ± 1.6 | 5.6 ± 1.5 | 4.6 ± 1.7 |
| MW016-1-GW@10' | ND | 5.4 ± 1.5 | 4.6 ± 1.2 | 14 ± 3.5 |
| MW016-2-GW@30' | 8.3 | 8.2 ± 2.1 | 6.6 ± 1.7 | 31 ± 6.6 |
| MW017-1-GW@10' | 5.5 | 2.2 ± 0.69 | 6.7 ± 1.7 | 18 ± 4 |
| MW017-2-GW@30' | 20 | 4.5 ± 2.6 | ND | 43 ± 9.1 |
| MW018-GW@25' | 8.6 | 2.1 ± 0.83 | 5 ± 1.4 | 7.3 ± 2.3 |
| MW019-1-GW@10' | ND | ND | 3.4 ± 0.97 | ND |
| MW019-2-GW@30' | ND | 7.4 ± 2 | 6.7 ± 1.7 | 9.3 ± 2.8 |
| MW010-GW@9' | ND | ND | 2.5 ± 0.69 | ND |
| MW013-GW@9.5' | ND | ND | ND | ND |

Table 3-1: Contaminant Concentrations in Groundwater from Site Monitoring Wells

3.1.2.1. Selection of Exposure Scenarios

The HHRA is limited to the most conservative exposure scenarios for human receptors. The exposure scenarios identified for human receptors include:

- Current and future site and construction worker exposed to contaminants in groundwater via dermal exposures during excavation and grading activities.
- Potential Future Adult Residents exposed to contaminants in groundwater in soils via ingestion, inhalation, and dermal exposures.
- Potential Future Child Residents exposed to contaminants in groundwater in soils via ingestion, inhalation, and dermal exposures.

EPA HHRA guidance (EPA, 1989) and EPA Region 4 guidance (EPA, 2018) require that a future residential exposure scenario be included with each risk assessment. The selection of HHRA exposure scenarios for the Site is documented in RAGS Part D Standard Table 1 (Appendix C).

3.1.2.2. Exposure Point Concentrations (EPCs)

EPA guidance identifies that the exposure term for HHRA should approximate a Reasonable Maximum Exposure (RME) as the 95% Upper Confidence Limit (UCL) of the arithmetic mean concentration of the COPC in an exposure medium (i.e., soil, groundwater, etc.). To assist in identification of the most appropriate RME UCL, EPA has developed ProUCL software. For each COPC identified in groundwater, an Exposure Point Concentration (EPC) was calculated using EPA's ProUCL v5.1 software (EPA, 2017). The ProUCL results are used to identify the most appropriate RME UCL for each contaminant in soils in RAGS Part D Standard Table 3.1 in Appendix C. The ProUCL input and output files are included in Appendix C.

3.1.2.3. Calculation of Exposures to Contaminants in Groundwater

RAGS Part D Standard Tables 4.1 and 4.2 (Appendix C) provides the parameters and equations used to quantify exposures for contaminants in groundwater associated with dermal and ingestion exposures. Dermal, inhalation, and ingestion exposure doses for groundwater contaminants are reported in RAGs Part D Standard Tables 7.1, 7.2, 7.3, and 7.4 (Appendix C) for current and future site workers and construction workers, future adult residents, and future child residents.

3.1.3. Toxicity Assessment

Toxicity assessment consists of two stages: hazard identification and dose-response assessment. Hazard identification evaluates if a COPC can cause a specific effect and if the adverse health effect occurs in humans. Hazard identification also evaluates the nature and strength of the evidence of causation. Dose-response assessment quantitatively evaluates toxicity information for the chemical to determine the relationship between the administered dose or concentration of the chemical and the incidence of an adverse effect in the exposed population. For non-carcinogens, the toxicity values, or reference doses (RfDs for oral and dermal exposures), are expressed in terms of a threshold value that is below which adverse effects are not expected to be observed. Toxicity values for carcinogens are known as cancer slope factors (CSFs) and are expressed in units of cancer incidence per unit dose of the chemical.

3.1.3.1. Non-Carcinogenic Contaminants

RAGS Part D Standard Table 5 (Appendix C) is used to record the dermal and oral non-cancer toxicity data for 1,4-dioxane. Radionuclides are not evaluated in this table.

3.1.3.2. Carcinogenic Chemical Contaminants

RAGS Part D Standard Table 6.1 (Appendix C) is used to record the dermal and oral cancer toxicity data used in the HHRA for 1,4-dioxane in groundwater. Table 6.1 provides cancer slope factors (CSFs) for oral and dermal exposures, oral adsorption efficiency for dermal exposures, and cancer weight of evidence for 1,4-dioxane. The primary source of CSFs and weight of evidence classification of carcinogenic contaminants are obtained from EPA's IRIS (https://www.epa.gov/iris). Secondary values that have been accepted by EPA are documented as part of the EPA RSLs (https://www.epa.gov/risk/regional-screening-levels-rsls) (EPA, 2018a).

3.1.3.3. Carcinogenic Radionuclides

RAGS Part D Standard Table 6.2 (Appendix C) provides slope factors for radionuclides. Table 6.2 provides slope factors for water ingestion, immersion (dermal exposure) and food ingestion for radionuclides. Slope factors are obtained from the Oak Ridge National Laboratory (ORNL) Risk Assessment Information System (RAIS) (<u>https://rais.ornl.gov/index.html</u>). The RAIS has a calculator to calculate potential risks from radionuclides based on specific isotope, concentration, exposed population and media. RAIS calculator output for Radium-226 and Radium-228, based on EPC concentrations (Appendix C, Table 3), is shown in Appendix C.

Background concentrations of the radium isotopes (Radium-226 and Radium-228) have been measured at less than 2.5 pCi/L within the Florida panhandle, far lower than peak concentrations detected downgradient of the site (USGS, 2018).

3.1.4. Human Health Risk Characterization

The final component of the HHRA is risk characterization. In this step, the exposure and toxicity assessments are combined to produce a quantitative estimate of non-cancer hazards and cancer risks. Risks are calculated for individual COPCs. Risks are also calculated for overall risk assuming simultaneous exposures to all COPCs by a single receptor are additive.

3.1.4.1. Incremental Lifetime Cancer Risks

Carcinogenic risk is calculated as the product of the carcinogenic COPC specific CSF (from RAGS Part D Standard Table 6.1 for oral and dermal exposures of 1,4-dioxane and table 6.2 for radionuclides) and the calculated intake (dose) for oral and dermal exposures or the estimated exposure concentration for inhalation exposures. Carcinogenic effects are expressed in terms of dimension-less numbers that represent the probability of a receptor (adult or child) developing cancer resulting from exposure to each COPC classified as a carcinogen. The estimated dose (or concentration for inhalation exposures) for each carcinogenic COPC is multiplied by the respective CSF to calculate the Incremental Lifetime Cancer Risk (ILCR) value. The expression is as follows:

COPC: ILCR = Intake (mg/kg-day or µg/cm³) × CSF (1/mg/kg-day or 1/µg/cm³)

For simultaneous exposure to several carcinogens, the calculated ILCRs are summed within each pathway and then summed for all pathways to yield a total ILCR posed by the site for each receptor. This approach represents the probability of developing a carcinogenic response, which is solely attributable to exposure to chemicals in excess of general background risk.

Inhalation intake rates of 1,4-dioxane in groundwater, resulting from exposures to vapor intrusion from soils, are calculated using EPA's Vapor Intrusion Screening Level (VISL) Calculator (USEPA, 2017). This model is used only for chemicals considered to be volatile, and sufficiently toxic through the soil gas vapor intrusion pathway. The model provides generally recommended risk-based screening-level concentrations for groundwater. The intake rates of groundwater COPCs resulting from vapor intrusion are calculated only for current and future site and adult and child resident exposure scenarios due to their presence in enclosed structures that are assumed under this scenario.

Based on the assumption that any exposure to a carcinogen poses some risk, "zero" risk is not achievable in a practical sense. To be protective of human health, EPA has specified that exposure to site-related carcinogens should be limited to result in an individual upper bound excess lifetime cancer risk not to exceed one in 10,000 or 1E-04. EPA has established the risk range from one in 10,000 (1E-04) to one in a million (1E-06) as being generally acceptable; however, EPA can require further action depending on other exposure factors, toxicity, and possible synergistic effects within this range. Cancer risks of one in a million or less are generally considered insignificant.

RAGS Part D Standard Tables 7.1, 7.2, 7.3, and 7.4 (Appendix C) summarize the calculation of cancer risks for the site. ILCR values are presented as well as a total ILCR across dermal, and ingestion exposure pathways in RAGS Part D Standard Table 9.1 for current and future site and construction workers, Standard Table 9.2 for future adult residents, in Standard Table 9.3 for future child residents, and Standard Table 9.4 for child and adult residents combined (Appendix C).

3.1.4.2. Non-Carcinogenic Risks

RAGS Part D Standard Table 7 (Appendix C) is also used to record risks associated to exposures to noncarcinogens. Non-carcinogenic risks are assessed using the concept of hazard quotient (HQ) and Health Index (HI). The HQ for a COPC is the ratio of the estimated intake or concentration to the reference dose (RfD)

HQ = (Intake) / RfD

And the HI is the sum of the individual HQs for all the COPCs. HQs and HIs are typically evaluated using a value of 1.0. Generally, non-carcinogenic health effects are not anticipated if an HQ or HI, developed on a target organ/effect-specific basis, does not exceed 1.0.

3.1.4.3. Radiological Risks

RAGS Part D Standard Table 8 (Appendix C) is used to record risks associated to exposures to radionuclides in groundwater. Media intakes and slope factors are taken from the RAIS calculator output and RAGS D Table 6.2 (Appendix C), to generate an overall radiation exposure factor that is incorporated into the total cancer risk for the site.

3.1.5. Human Health Risk Summary

Table 3-2 provides an overall summary of the carcinogenic risks calculated for the selected scenarios; including future resident adults, and future resident children exposed to contaminants in groundwater dermal contact and direct ingestion. In accordance with EPA guidance, carcinogenic risks are calculated for a receptor that combines COC intake/exposure concentrations for adult + child residents to calculate total lifetime risks to residential populations. Child resident receptor exposure parameters are described in Table 4.1 of Appendix C . Child risks are summarized in tables 7.3 and 9.3 of Appendix C. Child risks are summarized in tables 7.4 and 9.4 of Appendix C..

Risks associated with dermal absorption range from an ILCR of 7.47E-08 for current and future site workers and construction workers to 4.98E-07 for the future resident adults. These risk estimates are below the EPA's acceptable cancer risk range of 1E-04 to 1E-06. Risks associated with inhalation of vapors were calculated, using the VISL model, at 8.60E-08 for all residential populations. These risk estimates are below the EPA's acceptable cancer risk range of 1E-04 to 1E-06. However, cancer risks associated with ingestion are above the EPA's acceptable risks at ILCR values ranging from 1.35E-04 for the future resident child to 2.02E-04 for the future residential adult exposure scenario (Table 3.2). ILCR for radiation exposure was generated using the RAIS information calculator for resident use of untreated tap water. Total ILCR for radiation exposure is 1.42E-04. The calculation for carcinogenic risks from radionuclides does not include unspeciated gross-alpha particle emitting isotopes. ILCR from external radiation is likely higher than the estimate presented in the streamlined risk assessment.

Non-carcinogenic risks are summarized in Table 3-3. No unacceptable non-carcinogenic risks were identified for potential future residents (adult and child) from ingestion and dermal contact with tap water because the total HI value for each of these exposure pathways is less than 1.0.

For both the carcinogenic and non-carcinogenic risk characterization results, the calculated values are based on data reflecting current site conditions. However, risks could increase with further releases and contaminant migration over time.

Receptor Population	ILCR Dermal	ILCR Inhalation	ILCR Ingestion	ILCR Radiation	Total ILCR
Site/Construction Worker	7.47E-08	NA	NA	NA	7.47E-08
Future Resident - Adult	4.98E-07	8.60E-08	2.02E-04	1.42E-04	3.45E-04
Future Resident - Child	2.59E-07	8.60E-08	1.35E-04	1.42E-04	2.77E-04
Future Resident - Adult + Child	7.58E-07	8.60E-08	3.37E-04	1.42E-04	4.80E-04

Table 3-2: Summary of HHRA Cancer Risk Characterization Results

Note: EPA Acceptable Carcinogenic Risk Range: 1E-04 to 1E-06.

Table 3-3: Summary	of HHRA Non-Cancer Risk Characterization Results
--------------------	--

Receptor Population	Non- Carcinogenic HI Dermal	Non- Carcinogenic HI Inhalation	Non- Carcinogenic HI Ingestion	Total Non- Carcinogenic HI
Site Worker and Construction Worker	6.28E-08	NA	NA	6.28E-08
Future Resident - Adult	0.0006	0.0015	0.2359	0.2380
Future Resident - Child	0.0001	0.0015	0.5242	0.5243

3.2. Ecological Risk Assessment

As mentioned in Section 2.5.5, plant and animal receptors, whether aquatic or terrestrial in nature, could be susceptible to exposure to soils, sediments, and surface water via dermal contact, inhalation, or ingestion of chemical contaminants at, and in the vicinity of, the site. Based on information that known contamination beyond the boundary of the site is limited to groundwater, no significant exposure is expected for ecological species except for a future scenario that includes groundwater discharge to the intermittent wetlands located downgradient of site. The exposure pathway for ecological receptors is currently incomplete and ecological risks are not calculated as part of the streamlined risk assessment.

4. IDENTIFICATION OF REMOVAL ACTION SCOPE, GOALS, AND OBJECTIVES

This section identifies the scope, goals, and objectives of the removal action. These items take into consideration the pertinent applicable or relevant and appropriate requirements (ARARs) to the extent practicable and meeting specified cleanup levels for removal action at the Site.

4.1. Determination of Removal Action Scope

The scope of these removal actions is based on available data from prior environmental investigations and present media-specific estimates of areas and volumes to which a response action may be applied. Assumptions utilized in determining these media-specific estimates are provided. These assumptions, in conjunction with the site-specific characterization data and process knowledge, form the basis of design for implementing the selected alternative.

The HHRA performed, as part of this EE/CA, has been used to generate the risk screening values necessary to evaluate and compare relevant removal and removal technologies, options and comparative costs to implement. However, the final site-specific Remediation Goals (Derived Concentration Guidelines Levels) DCGLs for each of the potential radionuclides of concern (ROCs) have to be calculated and agreed to by the regulatory agency that will have ultimate authority to close the permit post removal. DCGLs are derived using the most current versions of Residual Radioactivity dose modeling software (RESRAD).

4.1.1. Groundwater

Groundwater is the primary medium to be addressed beyond the footprint of the site. Successful treatment of the contaminant source at the disposal area will not address groundwater contamination that has migrated beyond the extents of the disposal cells but will help prevent future contaminant releases. Estimates of affected areas and volumes for groundwater treatment are presented in the following subsections.

4.1.1.1. Estimate of Area for Groundwater Plumes

Figures 6 and 7 show that the 1,4-dioxane and radionuclide groundwater plumes cover an estimated area of approximately 350,000 square feet (approximately 8 acres). Currently, there are no established land use controls beyond the site with respect to groundwater.

4.1.1.2. Estimate of Groundwater Volume for Treatment Technologies

Groundwater contaminants were detected at depths of up to 40 feet bgs in the vicinity of the site. The top of the SAS water table is typically 4-5 feet bgs. Assuming an average saturated media thickness of 35 feet, this is equivalent to a total groundwater volume of approximately 12,250,000 cubic feet. Assuming an average pore fraction in soil of 0.3, this translates to approximately 4,000,000 cubic feet of

contaminated groundwater or approximately 30 million gallons requiring treatment. Typical aquifer porosity ranges from 0.2 to 0.4 (Hemond, 2000).

4.1.2. Surface Water

Remediation of potentially contaminated surface water and sediments is not included in the remedy evaluation because there are no identified non-intermittent surface water bodies in proximity to the site.

4.1.3. Air

The atmospheric air is not a medium requiring remediation at the site; however, air pollution preventive measures (e.g., dust suppression) and respiratory protection will be employed as necessary during removal activities.

4.1.4. Disposed Waste and Soil

Disposed waste and nearby surrounding soil are the primary media requiring a removal action at the site. A response action includes excavation. Estimates of areas and volumes for each of these technology types are presented in the following subsections.

4.1.4.1. Estimate of Disposed Waste Contaminant Area

As shown on Figure 1, the site is located within the Apalachicola National Forest in Leon County, Florida. The disposal area consists of a single contiguous field with forty (40) separate disposal cells. Twenty-six (26) of the forty (40) disposal cells were used from 1966 to 1979 and all are located in the southern portion of the site.

The disposal area measures approximately 9,600 square feet (120 feet by 80 feet). Current land use controls include a barbed-wire fence with a locked gate that surrounds the entire site and a six-foot high chain-linked fence topped with three strands of barbed wire with a locking gate around the perimeter of the disposal cells.

4.1.4.2. Estimate of Soil Volume for Excavation Technologies

Excavation of 4 feet of soil cover above each waste cell will generate approximately 40,000 cubic feet of uncontaminated backfill. This soil would potentially be available for use as backfill if clean, and if the contents of the waste cells are excavated. Based on historical records provided by FSU (Section 1.1), there are twenty-six (26) disposal cells, each with an approximate volume of 215 to 250 cubic feet for a total of 5,600 to 6,500 cubic feet or approximately 200 to 240 cubic yards (CY) of waste disposed within the waste cells. When in-situ waste is excavated and left in an unstressed condition, an expansion factor of 25% is appropriate to apply to the final volume produced. Applying a 25% volume increase factor as part of an excavation scenario, approximately 300 CY of waste will be generated from excavation of the

former disposal cells. It is assumed that a certain volume of impacted soil would require excavation and off-site disposal due to waste leakage. For the purposes of this EE/CA, it is assumed that 500 CY of disposed radiological waste and impacted soils would require excavation and off-site disposal.

In addition to the data presented in the historical disposal records, additional characterization of the disposal cells utilizing radiological surveying equipment may be utilized to refine or limit the volume of material removed during excavation. The contents of each disposal cell are detailed in the disposal cell records (Appendix A).

4.2. Removal Action Goals and Objectives

Identifying the removal action goals and objectives is a critical step in the EE/CA. These goals and objectives are achieved by meeting cleanup levels while working within the statutory limits and attaining ARARs to the extent practicable.

4.2.1. Removal Action Objectives

RAOs are site-specific goals that define the cleanup requirements for a CERCLA response action. The removal action objectives address the site risks, exposure pathways and media of concern for current and future land use, clean up options, and ARARs.

Achieving the removal action objectives allow for unrestricted use of the site and its surroundings currently impacted by the groundwater plumes. Removal of source wastes from the disposal area and treatment of the groundwater plumes are thus included as removal action objectives. Specific removal action objectives for the site are as follows:

- Remove the radiologically contaminated waste in all 26 disposal cells to eliminate the source of soil and groundwater contamination at and within the vicinity of the site.
- After source removal, reduce the concentration of 1,4-dioxane and radionuclides in groundwater to established clean-up goals.

4.2.2. Compliance with Applicable or Relevant and Appropriate Requirements

Applicable requirements are those cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under Federal or State law that specifically address a hazardous substance, pollutant, contaminant, removal action, location, or other circumstance at a CERCLA site (e.g., 40 CFR 300.415). "Relevant and appropriate" requirements, while not applicable to a hazardous substance, pollutant, contaminant, removal action, location, or other

circumstance at a CERCLA site, address problems or situations sufficiently similar to those encountered at the site that their use is well suited to the activity conducted.

A third category of ARARs are To-be-Considered (TBC) criteria that are non-promulgated advisories or guidance issued by Federal or State government that are not legally binding and do not have the status of potential ARARs. However, in many circumstances TBCs are considered as part of the site assessment and may be used in determining the necessary level of cleanup for protection of human health or the environment. There are different types of requirements with which removal actions may have to comply. These classifications are presented below:

- Ambient or chemical-specific requirements are usually health- or risk-based numerical values or methodologies which, when applied to site-specific conditions, result in the establishment of numerical values. These values establish the acceptable amount or concentration of a chemical that may be found in, or discharged to, the ambient environment.
- *Performance, design, or other action-specific requirements* are usually technology- or activitybased requirements or limitations on actions taken with respect to hazardous substances.
- *Location-specific requirements* are restrictions placed on the concentration of hazardous substances or the conduct of activities solely because they occur in special locations.

ARARs and TBCs must be attained for hazardous substances, pollutants, or contaminants remaining at the completion of the removal action, unless a waiver of an ARAR is justified. In addition, EPA intends that the implementation of removal actions should also comply with ARARs and TBCs to protect human health and the environment. ARARs and TBCs identified for the removal action at the site are presented in Appendix D.

4.2.3. Cleanup Goals

Because the removal action is intended to address primarily the contamination present within the disposal cells at the site and groundwater impacted from the site, waste cleanup goals will be developed for radionuclide contaminants and 1,4-dioxane. Derivation of PRGs and DCGLs will be determined prior to the implementation of established cleanup goals. As mentioned in Section 4.1, generic cleanup goals were used is this EE/CA for preliminary removal action and remedial design and cost estimation only.

5. IDENTIFICATION AND SCREENING OF TECHNOLOGIES

This section identifies technologies that may be applicable for addressing the source material at the Site and related groundwater plumes. These technologies are screened against site-specific RAOs and conditions to determine which ones are viable to be installed and maintained.

The response actions are divided into four broad categories for technology identification and initial consideration:

- Land Use Controls
- Source Isolation and Containment
- Source removal
- Groundwater treatment

5.1. Land Use Controls

LUCs identified for the site include ongoing access and use restrictions for the site. Access to the site is currently limited to USFS personnel, FSU personnel, and designated site visitors. Intrusive activities within the interior site fencing area are prohibited. Monitoring wells are locked and access to the site monitoring wells is currently controlled by the Forest Service Wakulla Ranger District Office. Site usage and deed restrictions on property within the contaminated areas associated with the site can also be implemented. Additional LUCs include the need to obtain approval from the USFS to perform any field activities within the Apalachicola National Forest.

5.2. Source Isolation and Containment Technologies

Source isolation and containment technologies pertain to segregating the disposed wastes at the site from all surrounding media to prevent future contaminant releases to the environment. The following subsections describe these technologies in greater detail.

5.2.1. Subsurface Barriers

Subsurface barriers refer to a variety of methods whereby low-permeability cutoff walls or diversions are installed below ground surface to contain source areas or groundwater plumes. The most commonly used subsurface barriers are slurry walls, particularly soil-bentonite slurry walls. Less common are cement-bentonite slurry walls, grouted barriers, and sheet piling cutoffs. Directional grouting may also be used to create horizontal barriers for sealing the bottom of source areas.

Slurry walls are typically constructed in a vertical trench that is excavated and filled with a slurry solution. The slurry, usually a mixture of bentonite and water acts essentially like a drilling fluid, may be selected based on surrounding permeability and contaminants in groundwater. The slurry hydraulically shores the trench to prevent collapse, and, at the same time, forms a filter cake on the trench walls to prevent fluid migration to the surrounding subsurface formation. A slurry wall constructed around the perimeter of the disposal cells at the site, in conjunction with a grouted, horizontal barrier below the depth of the cells (acting much like a landfill liner) and a cap with low permeability, have the potential to isolate the wastes in place.

Subsurface barriers may be designed to sorb contaminants from the groundwater, but these amendments impact their ability to act as an aquitard because they typically increase hydraulic conductivity in proportion to increased sorptive capacity.

5.2.2. Capping

For landfills, capping is the preferred remedy due to its ease of installation and well understood features and drawbacks. In general, caps consist of a single confining layer constructed of geomembrane or lowpermeability soils, along with other functional and support layers to protect and assure effectiveness of the top layer. Due to an insufficient supply of low permeability soils (i.e., fine clays) around the site, a low permeability geomembrane or impermeable cap (either asphalt or concrete) would likely be the most costeffective solution.

Non-vegetative caps have the ability to prevent infiltration of precipitation and other surface water into the subsurface, and this removes the vertical migration pathway. However, if waste is determined to be the source of contamination, then caps, in general, contain the source but do not remove it.

5.3. Source Removal Technologies

This section identifies source removal technologies applicable to the disposed contaminated waste and impacted soils within the site footprint. Excavation at waste disposal sites is usually limited to those that are within practical size limitations, have well-defined and accessible waste areas, waste volumes that are less than 100,000 cubic yards (CY), and waste that would continue to pose a threat with the implementation of only containment and land use controls.

5.3.1. Source Removal/Treatment

Source removal includes excavation of animal carcasses, containers, debris, and contaminated soils for disposal in accordance with regulatory guidelines. There are two general approaches to excavation: controlled excavation (e.g., where containers are separated and removed individually) and bulk

excavation (i.e., where earth moving equipment removes the soils, containers, and debris, with separation afterwards using sorting equipment).

The disposal cells and their contents have not been disturbed since the end of disposal activities in 1979. Excavation will require removing the overburden, estimated at an average depth of four (4) feet, and stockpiling that soil for subsequent screening for disposal or use as backfill. When the excavation activities reach the disposed waste, the material will be initially segregated for testing and disposal. By keeping the size of the stockpiles relatively small and conducting regular field screening of soils, cross-contamination of clean and contaminated soils can be minimized. Because radiological wastes were placed below the observed water table at the site, the excavated area would require consideration of a dewatering step in the source removal process.

5.3.2. Type of Excavation

This section summarizes different types of excavation that could potentially be used to remove source wastes at the site.

5.3.2.1. Open Pit Excavation

Open cell excavation methods allow for vehicular access into the excavation area and standard excavation practices to be applied. It is simple because it does not require additional materials to support the sidewalls of an excavation (i.e., no side wall sloughing).

Within the site, the delineated waste cells are situated in close proximity to each other. Under these circumstances, soils extending from ground surface to the top of the disposal cells would be considered 'clean' for removal action purposes and would be stripped off and set aside for potential re-use. An open pit excavation would include all disposal cells and the lateral soils between the disposal cells as a single excavation area, which would be excavated in order to maintain safe slopes at the sides of the excavation. Due to the sandy soils present at the site it is likely that one-and-one-half horizontal (1:1.5) sides slopes would be used. The cost for open-cell excavation is low relative to shoring/sheet piling and grouting but would require more extensive dewatering efforts to maintain a dry floor within the excavation

5.3.2.2. Shoring/Sheet Piling

Shoring or sheet piling can be used to prevent cave-in of the side walls of an excavation. If an open disposal cell excavation is not used, the side walls of the excavation will need to be shored or stepped in accordance with Department of Labor (DOL) regulations since the excavation will likely be at least eight (8) feet deep. DOL regulations [29 CFR 1926.652(a)(1)(ii)] require shoring for trenches/excavations in excess of 5 feet deep. Interlocking metal sheet piling to support the sidewalls of the excavation will minimize excavation volumes and would protect the disposal area from caving in during removal

activities. However, installation of shoring beams or metal sheet piling may require further delineation of the disposal cell boundaries in order to prevent breaking intact bottles and the release of contaminants. Damage or deflection of the sheet piling may occur in rocky soils, resulting in an ineffective installation. Dewatering may still need to be performed under this scenario, but the effort to do so may be less extensive than with an open cell excavation.

5.4. Groundwater Treatment Technologies

Groundwater treatment technologies must address both the chemical (1,4-dioxane) and radionuclide plumes that have been detected downgradient from the site. The estimated volume of contaminated groundwater requiring response is approximately 4,000,000 cubic feet (30 million) gallons (see Section 4.1.1.2).

Chemical and radionuclide contaminants may require different treatment technologies for effective treatment. Based on the selected technologies, the response may be completed in sequence or combined into a single treatment system.

Treatment of Chemical COCs

The SVOC 1,4-dioxane does not readily sorb to soil particles and migrates rapidly in groundwater, often ahead of other contaminants in a groundwater plume (EPA, 2017). The contaminant, 1,4-dioxane does not volatize or readily biodegrade in the natural environment and thus persists in groundwater aquifers after other VOCs and SVOCs have been lost via evaporation or natural attenuation (EPA, 2014). Currently available groundwater treatment options for 1,4-dioxane include:

- In-Situ chemical oxidation (ISCO) to degrade 1,4-dioxane.
- Ex-Situ groundwater treatment via pump (i.e., extraction) and treat systems using
 - Advanced oxidation techniques for the treatment phase; or
 - \circ $\;$ Bioremediation performed ex-situ within a bioreactor (EPA, 2006).
- In-Situ bioremediation or chemical reduction (EPA, 2006).

Treatment of Radionuclide COCs

Radionuclides (i.e., gross alpha activity, Radium-226, and Radium-228) were detected in groundwater downgradient of the site in 2017 and 2018. Maximum radionuclide concentrations were observed several hundred feet downgradient of the site. The groundwater plumes containing 1,4-dioxane and radionuclides are similar in coverage area; however, their plume shape is different (Figures 7 and 8).

Several ex-situ treatment options exist for treating radium compounds and gross alpha activity in groundwater and they include:

- Ion exchange
- Lime softening
- Electrodialysis/Electrodialysis Reversal
- Activated Alumina
- Coagulation/Filtration

Except for the presence of Radium-226 and Radium-228, the contributors to measured gross alpha activity in groundwater have not been identified. Speciation of groundwater would have to be performed to identify the specific isotopes prior to designing a treatment system.

5.4.1. Groundwater Treatment and Monitoring for 1,4-Dioxane

The contaminant, 1,4-dioxane is highly miscible in groundwater. The high solubility and low affinity for sorbing to soil particles make 1,4-dioxane highly mobile. The contaminant, 1,4-dioxane has a low vapor pressure value and produces negligible volatilization from groundwater to air. The contaminant, 1,4-dioxane is resistant to biodegradation and is relatively stable in the environment (Guiseppi & Whitesides, 2007).

Several removal technologies have been utilized to treat 1,4-dioxane in groundwater. Treatment selection will be influenced by the detected concentrations of contaminants at the site and the groundwater's inherent conditions and properties.

5.4.1.1. Monitored Natural Attenuation

Monitored Natural Attention (MNA) is used to identify contaminant migration, intrinsic abiotic and biotic degradation processes, and the need for future action. A long-term site monitoring program can be established to identify and assess potential adverse environmental or public health impacts associated with changes in site conditions.

The contaminant, 1,4-dioxane has a low affinity to sorb to soil particles and is stable in the environment. Based on historical groundwater data, the 1,4-dioxane plume is expected to expand and migrate south and east of the site. MNA by itself will not achieve RAOs; however, the relatively slow speed of its plume migration and the remoteness of the site from residential populations make MNA a potentially viable option of protecting human health when used in conjunction with another treatment option.

Radionuclides are present at far lower concentrations in comparison to their respective screening levels than 1,4-dioxane. Dilution through plume migration should be expected to reduce radionuclide concentrations below respective screening levels assuming no future contaminant releases from the site.

5.4.1.2. Air Stripping

Air stripping is a mass transfer process in which volatile contaminants in water are transferred to a gas (e.g., the atmosphere). It is commonly used to remove VOCs from aqueous waste streams. Air stripping is frequently accomplished in a packed tower equipped with an air blower. The packed tower operates on the principle of countercurrent flow. The water stream flows down through the packing while the air flows upward and is exhausted through the top. Volatile components have an affinity for the gas phase and tend to transfer from the aqueous stream and into the gas phase. In a cross-flow tower, water flows down through the packing as in the countercurrent packed column; however, the air is pulled across the water flow path by a fan. The coke tray aerator is a simple, low maintenance process requiring no blower. The water is allowed to trickle through several layers of trays. This produces a large surface area for gas transfer. Diffused aeration basins. Water flows through the basin from top to bottom or from one side to another while air is dispersed through diffusers at the bottom of the basin. The air-to-water ratio is significantly lower in this setup than in either the packed column or the cross-flow tower.

5.4.1.3. Sorption

Activated carbon adsorption is a technology by which a waste stream flows through one or more activated carbon, packed bed reactors. Selected contaminants are attracted to the internal pores of the activated carbon and adsorbed. Another process involves using powdered carbon that is fed to the waste stream and then separated by sedimentation. Both processes are effective for limited removal of many organic compounds but are most effective for less soluble and more polar compounds.

5.4.1.4. Phytoremediation

Phytoremediation involves the use of trees and other vegetation to facilitate the mass transfer of dissolved phase organic compounds into plant matter through root systems. Hybrid poplars were found to be effective in degrading 1,4-dioxane, even at high groundwater concentrations (100,000 μ g/L) (Chiang et al. 2007). However, phytoremediation is only viable at sites with shallow groundwater systems.

Phytoremediation efficacy depends on the depth of root growth for the vegetation species selected for phytoremediation. Based on the ITRC phytoremediation technical and regulatory guidance (ITRC, 2009),

the effective depth for normal grasses is typically 1 to 2 feet, and up to 10 to 15 feet for prairie grasses and trees. High concentrations of 1,4-dioxane in groundwater has been detected at 40 feet bgs, and no known vegetative species is known to remediate groundwater to this depth. (BMT, 2018).

5.4.1.5. Bioremediation

Bioremediation utilizes specific microbes to consume organic compounds in media. Bioremediation can be implemented in-situ, with a permeable reactive barrier (PRB) or ex-situ, in a bioreactor or a water treatment plant. The efficacy of bioremediation is determined by a variety of factors including: groundwater temperature, physical parameters (pH, salinity etc.), and existing microbial populations in groundwater.

5.4.1.6. Ex-Situ Chemical Oxidation

Enhanced oxidation processes use a controlled combination of ozone or hydrogen peroxide and ultraviolet (UV) light to induce photochemical oxidation of organic compounds. Ozone alone has the ability to breakdown some organic compounds, but its effectiveness is vastly enhanced with the use of UV light. The combination of UV radiation with ozone treatment results in the oxidation of organic contaminants at a rate many times faster than that obtained from applying UV light or ozone alone.

A typical continuous-flow ozone/UV system consists of an oxygen air source, an ozone generator or hydrogen peroxide feed system, a UV/oxidizer reactor, and an ozone decomposer. If ozone is used, flow patterns and configurations are designed to maximize exposure of the ozone bearing wastewater to the UV radiation, which is supplied by an arrangement of UV lamps. Typical reactor designs range from mechanically agitated reactors to spray, packed, and tray-type towers. Reactor gases are passed through a catalytic decomposer, which converts remaining ozone to oxygen and destroys any VOCs prior to being exhausted or recycled.

5.4.1.7. In-Situ Chemical Oxidation

Chemical oxidants such as sodium persulfate or potassium permanganate have proven to be effective at reducing concentrations of dissolved phase 1,4-dioxane in groundwater (Evans et al. 2018). Chemical oxidants can be applied within a well network as suspended cylinders or dissolved into a slurry and injected within the contaminated media. Commercial products derived from these materials have been developed for use at sites with 1,4-dioxane in groundwater.

5.4.2. Groundwater Monitoring and Treatment for Radionuclides

The radionuclide groundwater plume at the site is comprised of Radium-226, Radium-228, and gross alpha activity. In natural systems, gross alpha activity not caused by the decay of Radium-226 is the result of the radioactive decay sequence for Thorium-232 or Uranium-238 (Zapecza and Szabo, 1986).

Gross alpha activity is presumed be the result of past releases of Americium-241 and Curium-244 but may not be limited to these isotopes.

Several treatment methods are commonly used to remove radium compounds and transuranic compounds from water in treatment plants. A treatment system to remediate radionuclides in groundwater needs to work in concert or in sequence with a treatment system for 1,4-dioxane. This compatibility will be included as part of the selection criteria.

5.4.2.1. Monitored Natural Attenuation

MNA for radionuclides would involve ongoing monitoring to identify contaminant plume migration and radioactive decay, and the need for future action, if necessary. An initial step in any planned groundwater monitoring program for radionuclides would be to identify the specific isotopes contributing to high gross alpha activity readings in groundwater so as to tailor future groundwater sampling.

Monitoring consists of periodic sampling and analysis of sediment and surficial and subsurface soils. A long-term site-monitoring program, linked to applicable screening levels for COCs, could be established to identify and assess potential adverse environmental or public health impacts associated with changes in site conditions and impact of groundwater by soils or erosion leading to increased contamination reaching sediment or surface water bodies. Monitoring establishes a mechanism for identifying changes in site conditions and exposure risks.

Detected concentrations for gross alpha activity and radium compounds are above EPA drinking water standards, which are also the FDEP GTCLs, but not by orders of magnitude. Peak detected concentrations are approximately 2-3 times the relevant screening criteria for respective radionuclides. With no further releases, it is possible that the radionuclide plume will decay and spread until detected concentrations are within appropriate concentration criteria.

5.4.2.2. Ion Exchange

During ion exchange, water is passed through a resin containing exchangeable ions. Stronger binding ions displace weaker binding ions and are removed from the water. There are two types of ion exchange: anion exchange and cation exchange. Anion exchange resins generally exchange chloride for anionic contaminants, like uranium. Cation exchange resins generally exchange sodium or potassium for cationic contaminants, such as radium. Mixed bed resins with cation and anion exchange media in two layers are available for systems that need to remove both radium and uranium. Ion exchange is also effective for the removal of beta particles and photon emitters (EPA, 2018b).

Ion exchange has been identified by EPA as a best available technology (BAT) and Small System Compliance Technology (SSCT) for radium, uranium, gross alpha, and beta particle and photon emitters. It can remove up to 99 percent of these contaminants depending on the resin composition, pH level, and specific types of competing ions. Ion exchange resins are regenerated by backwashing, brining, and rinsing. Ion exchange vessels typically have a service capacity of 200 to 1,500 bed volumes (BV) for radium, as a function of water hardness, and 100,000 to 300,000 BV for uranium.

Ion exchange columns can be automated to require minimal operator attention making them appropriate selections for small systems. They can also be used as point-of-entry (POE) devices. Ion exchange columns can also remove other contaminants. Alkalinity, nitrate, and arsenic are removed by anion exchange. Cation exchange resins remove hardness constituents such as calcium, magnesium, iron, and manganese.

The efficacy of an ion exchange system is dependent on ambient groundwater conditions at the site (e.g., pH and presence of dissolved phase ionic compounds). It is unknown if ion exchange is effective in removing quantities of Americium-241, Curium-244 or other exotic radionuclides from groundwater.

5.4.2.3. Reverse Osmosis

Reverse osmosis is a pressure-driven membrane separation process. Water is forced through a membrane with small pores by pressures ranging from 100 to 150 pounds per square inch (psi). Any molecules larger than the pore openings are excluded from the product stream along with a significant portion of the water passing through. Treated water is collected on the other side of the membrane.

Reverse osmosis also has been identified by EPA as a BAT and SSCT for uranium, radium, gross alpha, and beta particles and photon emitters. It can remove up to 99 percent of these radionuclides, as well as many other contaminants such as arsenic, nitrate, and microbial contaminants. Reverse osmosis units can be process automated and compactly designed (EPA, 2018b).

5.4.2.4. Sorption

Sorption involves the treatment of groundwater by flowing the dissolved phase contaminants through one or more activated beds with specific sorbents. Specific sorptive media have been identified for isotopes of radium and americium in groundwater. A radium selective complexer, Dowex RSC, has been field tested to remove radium isotopes from water (Deng, 2005). Other sorbents that have been tested for Americium isotopes include red clay and volclay bentonite (Plaska et al., 2016).

For radionuclides, ambient water quality criteria, target contaminant concentrations, and potential interferences with chemical treatment systems for groundwater are factors influencing the sorption efficacy.

5.4.3. Groundwater Extraction Methods

Groundwater treatment technologies discussed in Sections 5.4.1 and 5.4.2 (except MNA) would require installation of a water treatment plant near the site. Groundwater would have to be extracted from the aquifer to be treated ex-situ. Two groundwater extraction technologies are described in the following subsections.

5.4.3.1. Groundwater Extraction Wells

Groundwater extraction wells can be installed within the footprint of the groundwater plumes to extract contaminated groundwater from the aquifer and pumped into a treatment system. The placement and construction of the groundwater extraction wells will be dependent upon site lithology, the permeability of the groundwater bearing formation, topography, and how the subsurface confining layers are stratified. To extract groundwater from comingled 1,4-dioxane and radionuclide plumes would require installing a large number of extraction wells and operating them with submersible pumps and controllers.

5.4.3.2. Interceptor Trench

An interceptor trench is a single trench that is designed so that incoming groundwater collects into a series of sumps and is then pumped to the surface for further treatment. An interceptor trench is installed downgradient of the contaminated groundwater to capture the full area of the identified plume. Interceptor trenches have similar design constraints to slurry walls (Section 5.2.1) and require a competent aquitard to prevent contaminated groundwater from flowing beneath the trench or installation to sufficient depth below grade to ensure the trench captures all contaminated groundwater

5.5. Screening of Technologies

Table 5-1 summarizes the screening of technologies for the contaminants at site. Technologies and process options retained will be carried forward for further evaluation in Sections 6 through 8 of this EE/CA.

General	Removal/Remedial	Retain	Rationale
Response	Technology	Process	
Action		Option?	
Land Use Controls	Signage, locks, fencing, deed restriction	Yes	The site contains contaminants that require land use controls to prevent contact with human health receptors
Source Isolation and Containment	Subsurface Barriers such as a slurry wall	No	High cost and technology are uncertain for success at the site
Source Isolation and Containment	Capping	No	Does not meet unrestricted future use for the site
Source Removal	Excavation, sorting and disposal of radiological wastes and contaminated soil.	Yes	Removes primary contaminants from the site
Groundwater Treatment (1,4- dioxane)	Monitored Natural Attenuation	Yes	MNA alone will not meet unrestricted future use for site; however, MNA used in conjunction with source removal and ongoing monitoring has the potential to meet RAOs.
Groundwater Treatment (1,4- dioxane)	Air Stripping	No	Will most likely not reduce 1,4-dioxane concentrations below GCTLs
Groundwater Treatment (1,4- dioxane)	Sorption	No	Will most likely not reduce 1,4-dioxane concentrations below GCTLs
Groundwater Treatment (1,4- dioxane)	Phytoremediation	No	Does not treat 1,4-dioxane at necessary groundwater depth intervals
Groundwater Treatment (1,4- dioxane)	Bioremediation	No	Not a commercially viable technology and may fail at the pilot testing stage
Groundwater Treatment (1,4- dioxane)	In-situ Chemical Oxidation (Direct Injection of Oxidant)	Yes	Can treat high concentrations of 1,4-dioxane in groundwater
Groundwater Treatment (1,4- dioxane)	Ex-situ Chemical Oxidation (Combination of Ozone and Hydrogen Peroxide Treatment)	Yes	Chemical oxidation unit as part of an ex-situ treatment system.
Groundwater treatment (radionuclides)	Monitored Natural Attenuation	Yes	MNA alone will not meet unrestricted future use for site; however, MNA used in conjunction with an active groundwater treatment will
Groundwater treatment (radionuclides)	Ion Exchange (Ion exchange unit as part of an ex-situ treatment system)	Yes	Effective at treatment dissolved phase radionuclides in groundwater
Groundwater treatment (radionuclides)	Reverse Osmosis (Reverse osmosis unit as part of an ex-situ treatment system)	Yes	Effective at treatment dissolved phase radionuclides in groundwater
Groundwater treatment (radionuclides)	Sorption (Sorption unit as part of an ex-situ treatment system)	Yes	Effective at treatment dissolved phase radionuclides in groundwater
Groundwater treatment (radionuclides)	Groundwater Extraction Wells	No	High costs associated with the need to install many extraction wells
Groundwater treatment (radionuclides)	Groundwater Interceptor Trench with Sump Wells (Installed to depth of 40- 45' bgs)	Yes	Has ability to capture all contaminated groundwater within the comingled 1,4-dioxane and radionuclide plumes

Table 5-1: Screening of Technologies

THIS PAGE INTENTIONALLY LEFT BLANK

6. DEVELOPMENT OF REMOVAL ACTION ALTERNATIVES

This section presents the development of the removal alternatives at the Site. Each alternative has been developed from the retained technologies and process options described in Section 5. The selected remedy for disposed wastes and groundwater treatment need to be implemented in succession because the groundwater plume will continue to exist if the source is not removed first.

Two (2) removal alternatives were developed for disposed wastes and three (3) removal alternatives were developed for related groundwater contamination. Each alternative is discussed below.

6.1. Preliminary Development of Removal Alternatives – Disposed Radiation Wastes

The following removal alternatives are developed to address the disposal site and impacted soils

- Alternative 1 No Action
- Alternative 2 Excavation of all radiological disposal cells and off-site disposal of all such wastes and impacted soils.

6.1.1. Alternative 1 – No Action

This alternative represents a scenario where no removal action, no environmental monitoring, and no LUCs are implemented at the site to address disposed wastes at the site. Disposed wastes would remain at the site as they are currently, and future use scenarios would not be controlled or limited based on the presence of contaminated media. The evaluation of No Action is required under CERCLA to provide a basis for comparison for other alternatives.

6.1.2. Alternative 2 – Excavation and Off-site Disposal of Wastes and Impacted Soils

This removal alternative would include the following activities related to disposed wastes:

<u>Excavation and Treatment</u> – Under this alternative, all disposal cells would be excavated. The contents of all twenty-six disposal cells would be transported to a facility licensed to accept low level radiological materials and disposed. Potentially contaminated soils would be initially segregated for on-site screening. Soils that are determined to be contaminated would be transported to the same facility that will accept the disposal cell wastes.

Under this alternative, it is assumed that multiple waste streams will be produced. Low-level radioactive wastes and impacted soil will require disposal at a facility licensed to accept such materials. Other soils may require off-site disposal at a RCRA Title C facility. for non-radiological hazardous wastes and at a RCRA Title D facility for RCRA non-hazardous soil.

<u>Post Excavation Final Status Survey</u> - Upon the successful removal of all disposed wastes and contaminated soils, a final status survey (FSS) will be completed in accordance with the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) (URNRC, 2000). The MARSSIM provides information on planning, conducting, evaluating, and documenting building surface and surface soil final status radiological surveys following scoping, characterization and any necessary removal actions.

<u>Backfilling and Site Restoration</u> – The excavated areas will be backfilled with clean soils of similar composition to local native soils (medium sands with silt) capable of supporting vegetation in order to reduce erosion potential. All existing site infrastructure (fencing) and excavation specific infrastructure, including staging areas, project trailers, security fencing and on-site power generation, will be removed and the site will be restored to its native state.

6.2. Preliminary Development of Removal Alternatives – Groundwater

The following removal alternatives have been developed to address groundwater contamination, at the site.

- Alternative 3 Monitored Natural Attenuation (MNA)
- Alternative 4 Targeted Direct Injection Targeting 1,4-dioxane and MNA
- Alternative 5 Full Scale Pump and Treat (P&T) system to address 1,4-Dioxane and Radionuclides.

6.2.1. Alternative 3 – Monitored Natural Attenuation

This removal alternative would include the following activities related to site monitoring of the groundwater plumes. This alternative will not achieve ARARs in the short term due to existing concentrations of 1,4-dioxane and radionuclides at peak concentrations greater than GTCLs. It is expected that radioactive decay of radionuclides and natural attenuation of 1,4-dioxane will significantly reduce peak contaminant concentrations over the thirty-year time period used as the remedy timeframe in this EE/CA.

Natural attenuation of dissolved phase 1,4-dioxane has been observed in the field (Adamson et al., 2015). Recent field studies in California studies for the Air Force have measured a 1,4-dioxane half-life on the order of 6-7 years (<u>https://www.ncbi.nlm.nih.gov/pubmed/25970261</u>). Peak concentrations of 1,4-dioxane have been observed to decrease between groundwater sampling programs that were conducted between 2011 and 2018.

The rate of radioactive decay is dependent on the half-lives of specific radiological isotopes, and daughter products that are present within the contaminant plume. For this reason, speciation of alpha emitting radionuclides would be conducted at the commencement of a long-term monitoring program.

Though MNA will not address ARARs at the site in the short-term, the slow migration of the plume and relative isolation of the site from any residential any populations does make this option potentially viable.

<u>Speciation of Dissolved Phase Radionuclides</u> – Dissolved phase radionuclides that have been detected in groundwater plumes at the site include Radium-226, Radium-228 and gross alpha emitting isotopes. The specific alpha emitting radioactive isotopes contributing to the elevated alpha activity readings are currently unknown. There is an EPA Drinking water standard for gross alpha activity of 15 pCi/L. Prior to establishing an MNA program, it would be recommended to conduct speciation of alpha emitting radionuclides to determine the specific radiological isotopes contributing to this measurement to identify the potential half-life of these isotopes and to target future monitoring efforts.

<u>Additional Groundwater Monitoring Well Installation</u> – Under an MNA scenario, it is assumed that the currently identified groundwater plumes will disperse and migrate beyond the lateral extent of the current off-site monitoring well network (Figures 6 and 7). It is assumed that up to four (4) additional monitoring wells would be installed further downgradient of the site upon the commencement of a long-term monitoring program and that additional monitoring wells would be installed every five years upon a review of the long-term monitoring data.

<u>Long-Term Monitoring</u> – Long-term monitoring would include collection of groundwater samples from all off-site monitoring wells (MW014 – 019) to monitor the spread and migration of dissolved phase contaminants. Data collected from monitoring will be used to estimate degradation of organic contaminants and radioactive decay of radionuclides.

6.2.2. Alternative 4 – Targeted Direct Injection and MNA of Groundwater Plumes

This alternative includes a targeted in-situ treatment program to address 1,4-dioxane in groundwater combined with MNA for low concentrations of 1,4-dioxane and dissolved phase radionuclides. All assumptions for MNA are included in this option except for the addition of additional monitoring wells at the commencement of the project.

As stated in Section 6.2.1, natural attenuation of dissolved phase 1,4-dioxane has been observed in the field (Adamson et al., 2015). The elimination of the 1,4-dioxane plume 'hot spot' would greatly reduce the

total toxicity of the plume and reduce concentrations to values low enough that ARARs could be achieved within a 30-year time frame.

In addition to the speciation of dissolved phase radionuclides in groundwater, this removal alternative would include the following activities related to groundwater:

<u>Pre-Injection Characterization of 1,4-Dioxane Plume Center</u> – Direct injection of oxidizing compounds is not viable over a plume with an estimated area of 350,000 square feet (Section 4.1.1). Groundwater monitoring conducted in 2011, 2017, and 2018 suggests that groundwater with high concentrations of 1,4-dioxane (> 50 μ g/L) is likely limited to a much smaller area. Prior to conducting a targeted direct injection program at the site, groundwater characterization would be conducted in the vicinity of MW015 (Figure 6) using temporary well points to identify groundwater with high concentrations of 1,4-dioxane.

<u>Bench Scale Testing</u> – Bench scale testing includes a pilot study and laboratory testing of potential in-situ constituents prior to mobilizing a full-scale direct injection program. Bench scale testing is conducted to specify a formulation to be used in the injection mixture and to identify potential site conditions that would impact the efficacy of a specific formulation.

<u>Direct Injection Program</u> – A direct injection program would use an appropriate drilling technology to advance a series of temporary injection points over a pre-defined grid. An injection slurry consisting of oxidizing compounds and water would be injected throughout the water column at each injection point.

<u>Long-Term Monitoring</u> – Targeted direct injection will not address all groundwater contamination. Groundwater with low concentrations of 1,4-dioxane (< $50 \mu g/L$) and dissolved phase radionuclides would remain and require long-term monitoring. Targeted direct injection will greatly reduce the potential risks associated with the 1,4-dioxane plume and it is assumed that fewer monitoring wells would have to be installed during a monitoring program than with Alternative 3.

6.2.3. Alternative 5 – Full Scale Ex-Situ Treatment System

This alternative includes a full-scale ex-situ treatment system to address 1,4-dioxane and radionuclides in groundwater. This alternative represents the most comprehensive option for treating contamination defined within the groundwater plumes (Figures 6 and 7) at the site. This removal alternative would include the following activities related to groundwater:

<u>Bench Scale Testing</u> – Bench scale testing includes a small-scale pilot studies and laboratory testing of potential ex-situ treatment systems that are performed prior to finalizing the design for a full-scale

treatment system. Bench scale testing is used to identify potential issues with a proposed treatment system and to optimize a specific treatment sequence.

<u>Installation of Groundwater Interceptor Trenches</u> – As detailed in Sections 5.4.3.1 and 5.4.3.2, groundwater interceptor trenches would generate higher potential groundwater collection rates for an equivalent installation cost and would require a far simplified groundwater pumping set up. Under this alternative, a groundwater interceptor trench, or several groundwater interceptor trenches would be installed within and downgradient of the groundwater plumes using a single pass trencher. Collection sumps would be installed within each interceptor trench to pump groundwater to an ex-situ treatment system.

<u>Installation of Groundwater Injection Wells</u> – A series of groundwater injection wells would have to be installed upgradient of the interceptor trenches. Treated effluent from the pump and treat system would be discharged into the injection wells. Installing injection wells upgradient of the interceptor trenches would facilitate 'flushing' contamination through the system to capture all potential contamination within the groundwater system.

Installation and Operation of an Ex-Situ Treatment System – Extracted groundwater would be disposed of via on-site ex-situ treatment system designed specifically for managing the groundwater and COCs at the site. If an ex-situ treatment is selected, the unit would be placed in an accessible location and groundwater collected in the interceptor trench(s) would be pumped to the ex-situ unit for treatment. Based on observed soil conductivity and groundwater pump tests, the system would require an estimated capacity of 100 to 300 gallons per minute (gpm) to assure capture of the plume. Pending treatability studies, groundwater would likely require five sequential processes:

- **pH treatment:** Recovered groundwater will be treated to raise the pH in order to precipitate alpha emitting radionuclides and other inorganics. Groundwater pH treatment options include lime and calcium carbonate.
- Flocculation and Settling: Treatment for high turbidity and metals that have been precipitated out of solution by the pH treatment. Allowing sufficient time for settling increases efficiency and reduces maintenance requirements of the following aeration and granulated activated carbon (GAC) treatment units.
- **Chemical Oxidation:** Chemical oxidation using ultraviolet (UV) light and hydrogen peroxide and/or ozone would be used to consume 1,4-dioxane.

- **Ion Exchange Resin:** Ion exchange resin would serve as a sorptive and ion exchange medium to remove alpha emitting isotopes from treated water.
- **Granulated Activated Carbon:** Treated water will pass through a GAC treatment unit to remove remaining organic contaminants.

An ex-situ treatment system would require continuous operation for several months to several years to treat all identified groundwater contamination. Frequent groundwater monitoring and treated groundwater effluent monitoring will be required to verify the effectiveness of the treatment system.

7. EVALUATION OF REMOVAL ALTERNATIVES

The technologies and process options identified as applicable to the Site are evaluated in this section based on their effectiveness, implementability, and cost, as noted in 40 CFR 300.430(e)(7).

7.1. Evaluation Criteria

All proposed alternatives are evaluated based on their effectiveness, implementability, and cost. A description of these selection criteria is listed in the following subsections.

7.1.1. Effectiveness

This criterion focuses on the degree to which an alternative minimizes residual risks and affords long-term protection; complies with ARARs; achieves long-term effectiveness and permanence; reduces toxicity, mobility, or volume through treatment; and minimizes short-term impacts.

7.1.2. Implementability

This criterion focuses on the technical and administrative feasibility, availability of the technologies each alternative would employ, and the likelihood of state and community acceptance.

Technical Feasibility

The ability of the technology proposed to implement the removal action must be assessed. The reliability of the technology is also a concern, as technical problems associated with implementation may impact the schedule. Potential impacts on the local community during construction operations are also evaluated. Certain technology may be vulnerable to environmental conditions encountered at the site, including local terrain and weather conditions. The technology must also be consistent with future removal actions to be performed (if any) at the site.

Administrative Feasibility

Administrative feasibility evaluates those activities needed to coordinate the removal action with outside offices and agencies. This evaluation would factor in the need for off-site permits, adherence to non-environmental laws during the conduct of the removal action, and concerns of other regulatory agencies (possibly outside of USEPA, FDEP, and USNRC).

Availability of Services and Materials

It is necessary to determine if off-site treatment, storage, and disposal capacity; equipment; personnel; services and materials; and other resources necessary to implement an alternative will be available in time to maintain the removal action schedule.

7.1.3. Cost

The types of costs that are assessed include capital costs, annual O&M costs, and net present value of capital and O&M costs. For this EE/CA, an approximate total cost is presented in Appendix E for each viable excavation alternative. Capital costs include both direct and indirect costs required to implement the alternative. Direct costs consist of construction costs for equipment, materials, labor, transportation, and disposal; indirect costs include those associated with engineering and design, permitting, and construction management. Annual O&M costs include labor and materials associated with the operation and maintenance of the site following the implementation of the alternative; and auxiliary costs such as energy, monitoring, and laboratory costs.

All costs assume a fee for project management. Project management includes general management services that are not specific to the design of an alternative or for on-site construction management during removal action implementation. Project management expenses of 10% are recommended for projects with capital costs less than \$100K, and 5% for projects with capital costs greater than \$10M, not including construction management (EPA, 2000). Project management expenses of 10% of the total project costs is applied that includes construction management for relevant projects.

Costs for present net worth assume a 5% discount rate in accordance with EPA Guidance (EPA, 1988).

7.2. Alternative 1: No Action

7.2.1. Effectiveness – Alternative 1:

Overall Protection of Human Health and the Environment

This alternative does not satisfy the NCP threshold for overall protectiveness for human health and the environment with regards to soil. Current site workers, trespassers, and visitors and potential future construction workers and theoretical residents would remain exposed to disposed wastes based on the usage patterns. Though unlikely, future construction workers or other receptors could be exposed to unacceptable risk from existing contaminated groundwater produced from continuing releases, which this alternative would not control or minimize.

This alternative would not achieve ARARs or RAOs for the site. This option would lead to no reductions in toxicity, mobility or volume of contaminated media and would not achieve effectiveness in the short term or the long term.

7.2.2. Implementability – Alternative 1:

There is no remedy to implement under the No Action alternative.

7.2.3. Cost – Alternative 1:

Cost estimates and their assumptions are summarized in Table 7-1. The total prevent value cost is \$0. The total capital cost is \$0 and O&M costs associated with Alternative 1 are also \$0. The No Action alternative assumes that no 5-year reviews will be performed to reassess the site's environmental condition.

For the purposes of this EE/CA, the no action alternative has a cost of \$0.00. However, there are costs associated with a no-action alternative that include maintenance of access roads, permitting and regulatory interface with FSU concerning the site, and the needs for periodic surveys and site visits to assess the condition of current site land use controls that include site security fencing.

Cost Item	Am	ount		
CAPITAL COST (One Time)				
No Capital Cost	\$	0		
O&M COSTS (Annual Costs)				
No O&M Costs \$		0		
PERIODIC COSTS (Recurring)				
No Periodic Costs	\$ 0			
PROJECT MANAGEMENT				
Project Management		10%		
Total Present Value Assessment				
Discount Rate (@5%)	Present Worth			
Estimated Project Total Cost	\$	0		
Estimated Project Total Cost Range	\$ 0	\$ 0		

 Table 7-1: Costing Summary of Alternative 1 – No Action

7.3. Alternative 2: Excavation and Off-site Disposal of Wastes

This option includes the complete excavation and removal of the disposed waste plus a certain volume of surrounding soil that is assumed to be contaminated. Under this alternative, all disposal cells would be excavated. Excavated wastes will be sorted from surrounding soils using a screening plant. Potentially impacted soils will be screened using radiation monitors and sampled to determine what volume of excavated soil will have to be disposed of off-site.

For the purposes of this EE/CA it is assumed that all excavated low-level radioactive wastes and impacted soils will be disposed of at the EnergySolutions' Clive, Utah disposal facility for low level radiological wastes. The Clive Utah disposal facility is the only facility in the United States currently licensed by the Nuclear Regulatory Commission (NRC) to accept low-level radiological wastes from the

site. There are three (3) other facilities that are licensed by the NRC to accept low-level radiological wastes but these facilities can only accept wastes from specific geographical areas (<u>https://www.nrc.gov/waste/llw-disposal/licensing/locations.html</u>)

It is assumed that up to 500 Cy of mixed radiological wastes and impacted soil will require excavation and off-site disposal (Section 4.1.4.2). In addition, water stored in frac tanks will require periodic disposal in accordance with all state and federal statutes. For the purposes of this EE/CA, it is assumed that disposal of 5,000 gallons of water per week using a vacuum truck will be required.

Alternative disposal facilities, including RCRA title D (non-hazardous) and title C (hazardous) landfills or soil treatment areas could potentially accept some portion of the excavated wastes and soils. However, there is insufficient characterization data from within the disposal cells at the site to identify these waste streams and to compare against potential waste acceptance criteria. The identification of alternative disposal locations would be part of the planning process for a removal action.

This alternative is broken up into seven (7) discrete tasks:

- 1. Planning and Regulatory Approval
- 2. Site Preparation
- 3. Sediment and Erosion Controls
- 4. Excavation Activities
- 5. Transport and Disposal of low-level radiation wastes and soils
- 6. Final Status Survey, Sampling and Reporting
- 7. Site Restoration

7.3.1. Effectiveness – Alternative 2:

This alternative is protective of human health and the environment by removing and treating all disposed wastes and impacted soils to prevent any future contaminant releases. This option would lead to a complete reduction in the toxicity, mobility and volume of wastes within the disposal cells and would be effective at protecting the environment in the long term.

However, this alternative does not address contaminated groundwater that has migrated beyond the footprint of the Site disposal cells.

7.3.2. Implementability – Alternative 2:

Alternative 2 is implementable. the technology and methodology excavating, screening, analyzing and transporting low-level radiation wastes is well understood and commercially available. The volume, activity and content of each disposal cell is known based on detailed disposal cell records (Appendix A).

Commercial facilities exist that can accept low-level radiation wastes. Site access, including access roads, are all on USFS land, and there the terrain presents no issues with implementing this option.

7.3.3. Cost – Alternative 2:

Costs and assumptions made in the estimate are summarized in Table 7-2. The total present value cost for this alternative is approximately \$4,329,520. There will be no post-action O&M costs under this alternative. Five-year review costs are not included in this alternative but are included in all three (3) alternatives to address groundwater. A cost summary is provided in Appendix E.

Cost Item	Amount	Amount		
CAPITAL COST (One Time)				
1.0 Planning and Regulatory Interface	\$ 30,00	00		
2.0 Site Preparation	\$ 151,70	00		
3.0 Erosion Controls	\$ 92,10	92,100		
4.0 Excavation	\$ 592,70	00		
5.0 Transport and Off-Site Disposal	\$ 2,658,0	50		
6.0 Final Status Survey	\$ 172,0	172,050		
7.0 Site Restoration	\$ 237,10	237,100		
O&M COSTS (Annual Costs)				
No O&M Costs	\$	0		
PERIODIC COSTS (Recurring)				
No Periodic Costs	\$	0		
PROJECT MANAGEMENT				
Project Management				
Total Present Value Assessment				
Discount Rate (@5%) Present Worth				
Estimated Project Total Cost	\$ 4,329,55	20		
Estimated Project Total Cost Range (-30% to +50%)	\$ 3,030,650 \$ 6,494,300			

Table 7-2: Costing Summary of Alternative 2 – Excavation and Off-Site Disposal of All Radiation Wastes and Impacted Soils

7.4. Alternative 3: Monitored Natural Attenuation

This alternative includes the monitoring of the existing groundwater plumes. Four (4) new monitoring wells will be installed at the beginning of the monitoring program to delineate the extent of the contaminant plumes migrating to the south and southeast from the site. In addition, baseline groundwater sampling will be conducted to speciate the specific isotopes to support future groundwater monitoring efforts.

It is assumed that reviews of the MNA program would be conducted every 5-years with the recommendation to install an additional two (2) monitoring wells to track the migration of the plume. The additional wells will increase the total O&M costs of the monitoring program.

7.4.1. Effectiveness – Alternative 3:

This alternative would satisfy the NCP threshold for overall protectiveness for human health and the environment with regards to groundwater as long as it is combined with LUCs that prevent using shallow aquifer groundwater within the plume area for potable use. MNA and the maintenance of current LUCs can prevent sensitive receptors from coming into contact with dissolved phase groundwater contaminants.

This alternative would be effective in the short term due to the lack of human receptors in close proximity to site. The distance of the site from existing residential communities and groundwater withdrawal wells combined with the slow measured velocity of plume migration would make this option potentially effective in the long term. High concentrations of dissolved phase. 1,4-dioxane may not degrade to concentrations below FDEP GTCLs in 30-year time frame. Radioactive decay has the potential to greatly reduce peak radionuclide concentrations to levels below FDEP GTCLs in a 30-year time frame.

This alternative would not actively reduce toxicity, mobility, or volume of COCs. Some natural degradation of COCs (e.g., 1,4-dioxane, radionuclides. etc.) is expected.

7.4.2. Implementability – Alternative 3:

MNA requires a regular groundwater monitoring program combined with the periodic installation of additional groundwater monitoring wells. The technology and methods for achieving this are commercially available and have been previously implemented at the site.

7.4.3. Cost – Alternative 3:

Costs and assumptions made in the estimate are summarized on Table 7-3. The total present value cost for this alternative is approximately \$968,400. The total capital cost is \$71,300 and O&M costs associated with Alternative 1 are \$44,100 per year primarily associated with regulatory reporting and administration. This alternative assumes that 5-year reviews will be performed to reassess the potential viability of the MNA Program. It is also assumed that additional wells will be installed every 5 years to track the expanding groundwater plumes. The operational costs, not including the initial capital costs amount to \$897,100 (30-year present worth with a 5% discount rate). A cost summary is provided in Appendix E.

7.5. Alternative 4: Targeted Direct Injection and MNA of Groundwater Plumes

This alternative includes a targeted in-situ treatment program to address 1,4-dioxane in groundwater combined with MNA for the remaining low concentrations of 1,4-dioxane and dissolved phase radionuclides in groundwater. All assumptions for MNA are included in this option except for the addition of additional monitoring wells at the commencement of the project.

In-situ treatment for 1,4-dioxane would use Persulfox®, an in-situ chemical oxidation (ISCO) product that is specifically formulated to target 1,4-dioxane, or a similar product. That location is currently adjacent to MW015 (Figure 6), but it may have migrated by the time of the implementation of this alternative.

Cost Item	Amount			
CAPITAL COST (One Time)				
1.0 Additional Well Installation and Rad Speciation	\$	71,300		
O&M COSTS (Annual Costs)				
1.0 Administration	\$	7,200		
2.0 Work Plans for MNA Sampling	\$	2,600		
3.0 MNA Sampling	\$	23,900		
4.0 MNA Reporting	\$	6,500		
PERIODIC COSTS (Recurring)				
1.0 CERCLA Review \$ 1				
2.0 Additional Monitoring Well Installations	\$	22,400		
3.0 Additional Monitoring Well MNA Sampling	\$	3,800		
PROJECT MANAGEMENT				
Project Management				
Total Present Value Assessment				
Discount Rate (@5%)	e (@5%) Present Worth			
Estimated Project Total Cost	\$	968,400		
Estimated Project Total Cost Range (-30% to +50%)	\$ 677,900	\$ 1,452,600		

Table 7-3: Costing Summary of Alternative 3 – MNA for Groundwater Plumes

In advance of the full direct injection program, a groundwater characterization program would be implemented to locate, delineate and characterize the 'hot spot' of the current 1,4-dioxane plume. This will involve the advancement of 40 temporary groundwater wells in the vicinity of MW015 (Figure 6), and sampling groundwater for 1,4-dioxane.

Based on the groundwater results and other data that has been collected, a limited pilot study or bench scale test will be implemented to identify the ideal injection volumes, and groundwater ratio necessary to

treat 1,4-dioxane in groundwater. Conducting a pilot study would reduce the chances of an unsuccessful direct injection program.

It is assumed that a total of 72 injection points will be advanced using Sonic drilling technology, or an equivalent methodology, within the previously identified plume 'hot spot' over a period of 8 weeks. A total of approximately 90,000 pounds of Persulfox® would be injected. Approximately 165,000 gallons of water would be required to produce an injection slurry. For this EE/CA, it is assumed that potable water can be obtained and transported to the site in a water trailer or water truck. A sample diagram of injection points is presented in Figure 10.

At the conclusion of the direction injection program, MNA will continue for remaining 1,4-dioxane and select radionuclides. It is assumed that one additional monitoring well will be installed every 5-years upon a review of the MNA program.

7.5.1. Effectiveness- Alternative 4:

This alternative would satisfy the NCP threshold for overall protectiveness for human health and the environment with regards to groundwater as long as it is combined with LUCs that prevent using shallow aquifer groundwater within the plume area for potable use. MNA and the maintenance of current LUCs can prevent sensitive receptors from coming into contact with dissolved phase groundwater contaminants.

This alternative would be effective in the short term due to the lack of human receptors in close proximity to the site. The distance of the site from existing residential communities and groundwater withdrawal wells combined with the slow measured velocity of plume migration would make this option potentially effective in the long term. The aggressive, targeted in-situ treatment of 1,4-dioxane greatly increases the probability of achieving ARARs in a 30-year time span for all groundwater contaminants as compared to Alternative 3.

This alternative would not actively reduce toxicity, mobility, or volume of COCs. Some natural degradation of COCs (e.g., 1,4-dioxane, radionuclides. etc.) is expected; however, due to the observed concentrations, natural degradation is unlikely to meet RAOs within a 30-year window.

7.5.2. Implementability – Alternative 4:

While there are no implementation issues associated with the MNA alternative, some regulatory interface would be required prior to commencing a direct injection program due to the fact that an exogenous substance would be injected into the subsurface at the site, which is located within a National Forest. The proposed technology is commercially available.
7.5.3. Cost - Alternative 4:

Costs and assumptions made in the estimate are summarized on Table 7-4. The total present value cost for this alternative is approximately \$1,447,300. The total capital cost, including the direction injection program, is \$856,200 and O&M costs associated with Alternative 4 are \$32,500 per year primarily associated with MNA sampling, regulatory reporting, and administration. This alternative assumes that 5-year reviews will be performed to reassess the potential viability of the MNA Program. It is assumed that one additional well will be installed every 5 years to track the expanding groundwater plumes. It is assumed that the successful in-situ treatment of high concentrations of 1,4-dioxane in groundwater will allow existing monitoring wells to be removed from annual MNA sampling to maintain constant MNA sampling costs over 30 years. Operational costs, not including the initial capital costs amount to \$591,700 (30-year present worth with a 5% discount rate). A cost summary is provided in Appendix E.

Table 7-4: Costing Summary of Alternative 4 – Targeted In-Situ Treatment for 1,4-Dioxane and
Monitored Natural Attenuation of Groundwater Plumes

Cost Item Amount						
CAPITAL COST (One Time)						
1.0 Planning	\$			7,200		
2.0 Radionuclide Speciation in Groundwater	\$			34,500		
3.0 Pre-Injection Characterization	\$			71,500		
4.0 Bench Scale Testing	\$			45,400		
5.0 Direct Injection of Persulfox® to treat 1,4-dioxane	\$			619,800		
O&M COSTS (Annual Costs)	•					
1.0 Administration	\$			3,600		
2.0 Work Plans for MNA Sampling	\$ 2,880					
3.0 MNA Sampling	\$ 19,500			19,500		
4.0 MNA Reporting	\$ 3,600					
PERIODIC COSTS (Recurring)	•					
1.0 CERCLA Review	\$			15,200		
2.0 Additional Monitoring Well Installations	\$ 15,000					
PROJECT MANAGEMENT	•					
Project Management	10%					
Total Present Value Assessment						
Discount Rate (@5%)	Present Worth					
Estimated Project Total Cost	\$ 1,447,900					
Estimated Project Total Cost Range (-30% to +50%)	\$	1,013,500	\$	2,171,800		

7.6. Alternative 5: Full Scale Ex-Situ Treatment System

This alternative includes the implementation of a pump and treat (P&T) system to treat 1,4-dioxane and radionuclides in groundwater until all groundwater contamination has been addressed and all ARARs have been achieved.

Two (2) interceptor trenches would be installed, one at the leading edge of the identified plumes, and one through the center line of the area of high 1,4-dioxane concentrations. Sump wells would be installed within the interceptor trenches, that would be connected to submersible pumps to feed a groundwater treatment system with the capacity to treat up to 200 gallons per minute (gpm). A potential interceptor trench alignment is presented as Figure 11.

A treatment train that will include a hydrogen peroxide and ozone chemical oxidation treatment plant as well as high capacity filtration units, resin interchange tanks and pH treatment tanks to remove dissolved phase alpha-emitting radionuclides from groundwater. Treated water would be routed to a series of high capacity injection wells located hydraulically upgradient of the interceptor trenches so that groundwater will not be released until it is clean. A potential interceptor trench alignment, complete with proposed locations for injection wells is presented as Figure 11.

Prior to installing a full-scale system, a bench scale study would be conducted to verify the efficacy of the proposed treatment train and to make necessary adjustments to the final design.

As stated in Section 4.1.1.2, a total volume of the comingled groundwater plumes that were identified and delineated during the 2018 Phase II ESI is estimated at 30 million gallons. Depending on actual retardation factors for 1,4-dioxane and radionuclides in groundwater, it would be necessary to flush two to five plume volumes of groundwater to achieve GTCLs in groundwater. This is would mean that up to 150 million gallons of groundwater would require treatment. It is assumed that pumping rates of 200 GPM may not be sustainable within the aquifer system on a perpetual basis.

It is assumed that a treatment train will be under operation for a period of one year at full capacity or close to full capacity which involves operation 24 hours per day and 7 days per week. Subsequently, the plant would be operated at half capacity for a period of 2 years, consisting of 12-hour operations 7 days per week. Subsequent to that, the plant would be run for a period of 3 years at one-third capacity consisting of a single 8-hour shift per day for 200 days per year. This treatment system assumes that all groundwater contamination can be addressed within 6 years.

Following successful treatment of the groundwater plumes, the treatment plan would be disassembled and removed from the site. The submersible pumps, piping and tubing to the interceptor trenches would be removed. The interceptor trenches would remain at the site and be graded over to return the site to its' original condition.

This alternative assumes that two (2) five-year reviews will be completed during the operation of a pump and treat system and that annual groundwater monitoring would continue at the site for four years after the cessation of pump and treatment plant operations

7.6.1. Effectiveness – Alternative 5:

This alternative would satisfy the NCP threshold for overall protectiveness for human health and the environment with regards to groundwater as it is designed to address all current groundwater contamination that will remain in the vicinity of site after a successful source removal.

The potential to capture all contaminated groundwater and to treat organic constituents and radionuclides would achieve short term effectiveness by preventing further plume migration and long-term effectiveness by either treating or removing all dissolved phase contaminants in groundwater. A complete reduction in the toxicity, mobility and volume of dissolved phase contaminants would potentially be achieved.

7.6.2. Implementability – Alternative 5:

All costs associated with installing and operating a pump and treat system are high due to the remote location of site and the lack of existing facilities at the site. This alternative would require a substantial mobilization of infrastructure in the vicinity of the site that include:

- Installing of an interceptor trench requiring extensive ground disturbance and vegetation clearing
- Installation of a remote power system at the site which does not currently have any facilities for power, water, gas or sewer.
- Installation of a complex treatment train to address multiple contaminants

Furthermore, operational costs will be very high due to the high maintenance requirements of associated with an active pump and treat system.

Implementation and operation of an active P&T system within the Apalachicola National Forest has the potential to disrupt forest activities.

7.6.3. Cost – Alternative 5:

Costs and assumptions made in the estimate are summarized on Table 7-5. The total present value cost for this alternative is approximately \$17,466,200. The total capital costs, including the installation of the interreceptor trenches and the construction of a groundwater pump and treat system program are

\$2,009,400. O&M costs associated with Alternative 1 are \$4,852,700 per year for the first year, primarily associated with operation of the P&T system. These costs would reduce to \$3,031,100 per year for the following two-years and \$2,290,200 for an additional three-years. At this point, it is assumed the groundwater plume will have been successfully treated and the system can be removed from the site. Annual groundwater monitoring would continue for a period of four (4) years after the cessation of treatment plant operations. Five-year reviews would be conducted during treatment plant operations and groundwater monitoring.

The total project costs amount to \$19,471,750 (30-year present worth with a 5% discount rate). A cost summary is provided in Appendix E.

Table 7-5: Costing Summary of Alternative 5 – Interceptor Trenches and Pump and Treat System
to Address 1,4-Dioxane and Radionuclides

Cost Item	Am	ount			
CAPITAL COST (One Time)					
1.0 Bench Scale Studies	\$	62,600			
2.0 Interceptor Trench Installation	\$	1,222,400			
3.0 Injection Well Installation	\$	63,000			
4.0 Pump and Treat System Installation	\$	393,000			
O&M COSTS (Annual Costs)					
1.0 Annual Monitoring Costs	\$	103,300			
2.0 Pump and Treat System Operational Costs	\$ 4,288,800				
3.0 Annual Groundwater Monitoring	\$ 19,500				
PERIODIC COSTS (Recurring)					
1.0 CERCLA Review	\$ 15,200				
PROJECT MANAGEMENT					
Project Management	10%				
Total Present Value Assessment					
Discount Rate (@5%)	Present Worth				
Estimated Project Total Cost	\$ 19,466,200				
Estimated Project Total Cost Range (-30% to +50%)	ect Total Cost Range (-30% to +50%) \$ 12,266,400 \$ 26,200,300				

8. COMPARATIVE ANALYSIS OF REMOVAL ALTERNATIVES

Five (5) alternatives have been presented for the Site comprising one (1) No Action alternative, one (1) alternative for removing disposed wastes and three (3) alternatives for capturing and treating groundwater contamination resulting from those disposed wastes. A comparison of the relative implementability, effectiveness and cost of each alternative is presented in Table 8-1.

Alternatives 3, 4 and 5 are targeted at existing, groundwater contamination resulting from past contaminant releases at the site. The completion of these three (3) alternatives assumes the successful source removal and closure of the site (Alternative 2) preventing any future contaminant releases into groundwater.

	Table 8-1:	Removal	Options	Summary	/ Comp	arison
--	------------	---------	---------	---------	--------	--------

Alternative	Implementability	Effectiveness	Cost (\$)
1. No Action	High: Requires only administrative controls	Low: 1. Will not achieve Applicable, Relevant and Appropriated Requirements (ARARs) or RAOs. 2. No reduction in toxicity, mobility, or volume.	Low: \$0*
2. Soil Excavation and off-site disposal	Moderate to High: Excavation and off-site disposal of low-level radiological wastes requires commercially available technology and methods and follows established regulator guidelines. Would require regulatory interface with appropriate regulatory bodies and approvals prior to commencing sitework.	High: 1. Will achieve RAOs.	High: \$4,329,500 (Range \$3,030,700- \$6,494,300)
3. Monitored Natural Attenuation	High: Requires additional sampling and monitoring well installation. No regulatory requirements preventing implementation of this alternative.	Moderate: Will not directly lead to reduction in toxicity, mobility, or volume of groundwater contamination, but site remoteness and slow plume migration velocity may be protective of human health.	Moderate: \$968,400 (Range \$677,900- \$1,452,600)
4. Targeted Direct Injection of ISCO amendment and MNA for other contaminants	Moderate to High: Targeted direct injection would require approvals and regulatory interface, though these are not assumed to be overly burdensome.	Moderate to High: Will to significant reduction in toxicity, mobility, or volume of groundwater contamination, but some contamination will remain to be managed through long term monitoring.	Moderate: \$1,447,900 (Range \$1,013,500 - \$2,171,800)
5. Interceptor Trench and Ex-situ Treatment Train to	Moderate to High: Scale of system would require extensive site improvements at the Site and require the permitting for injection wells that would involve a potentially high level of regulatory interface. Operations would have the potential to significantly disturb normal forest activities.	High: Successful installation and operation of an ex-situ system would lead to complete reduction in toxicity, mobility and volume of groundwater contamination.	High: \$19,466,200 (Range \$12,226,400- \$26,199,300)

*For the purposes of this EE/CA, the no action alternative has a cost of \$0. However, there are costs associated with a no-action alternative that include maintenance of access roads, permitting and regulatory interface with FSU concerning the site, and the needs for periodic surveys and site visits to assess the condition of current site land use controls that include site security fencing.

9. RECOMMENDED REMOVAL ACTION ALTERNATIVES

The recommended removal action alternatives were selected based on the analysis summarized in Section 8 and in Table 8-1. Alternative 2 and Alternative 4 performed in sequence are the recommended alternatives for the site. The rationale for selecting these recommended alternatives is explained below:

Alternative 2:

Capital Cost: \$4,329,500 Annual Cost: \$0

Under Alternative 2, all radioactive materials that were placed in disposal cells and impacted soils within these pits would be removed. This would prevent any potential future releases from occurring and would allow the site to be returned to unrestricted use upon release from the radioactive materials license.

Alternative 4:

Capital Cost: \$1,447,900 Annual Cost: \$32,483

Alternative 4 is the selected removal action alternative to address off-site groundwater plumes (Figures 6 and 7). Alternative 4 and Alternative 5 both address dissolved phase 1,4-dioxane groundwater plumes (Figure 6). Unlike Alternative 5, Alternative 4 does not directly address unspeciated alpha emitting isotopes in groundwater (Figure 7). Alpha emitting isotopes were detected at peak concentrations three (3) multiples of the EPA Drinking Water Standards and FDEP GTCLs. 1,4-dioxane was detected at concentrations more than 100 multiples of the FDEP GTCL.

When all radioactive materials have been removed from the FSU-LLRW disposal cells (Alternative 2), alpha emitting isotopes are likely to dilute from peak concentrations to below FDEP GTCLs. 1,4dioxane in off-site groundwater is likely to remain present at concentrations above FDEP GTCLs for a longer period of time and is considered the issue to be addressed. Alternative 4 will be significantly less expensive to implement than Alternative 5 and will involve less site disturbance and/or permanent alteration of NF lands.

The total estimated costs for the implementation of these proposed alternatives in combination is \$5,776,400, and the estimated average annual O&M cost is \$32,493, including groundwater monitoring.

THIS PAGE INTENTIONALLY LEFT BLANK

10. REFERENCES

Adam et al. 2005. Evidence of 1,4-Dioxane Attenuation at Groundwater Sites Contaminated with Chlorinated Solvents and 1,4-Dioxane. David T. Adamson, R. Hunter Anderson, Shaily Mahendra, and Charles J. Newell. Environmental Science & Technology 2015 49 (11), 6510-6518 DOI: 10.1021/acs.est.5b00964

BAT Associates, Inc. 1998. Preliminary Assessment: Apalachicola National Forest Florida State University Burial Site No. 2. December.

BMT, 2016a. Quality Assurance Program Plan for the FSU-LLRW-2 ESI. Final. December.

BMT, 2016b. *Review and Evaluate Historical Groundwater Data Florida State University Radiological Burial Waste Site No. 2.* March.

BMT, 2017. Expanded Site Inspection Report: Florida State University Low-Level Radiation Burial Site No. 2. Apalachicola National Forest. August.

BMT, 2018. Phase II Expanded Site Inspection Report. April.

Deng, 2005. Polymeric Adsorbent for Radium Removal from Groundwater. July.

EDR, 2016. GeoCheck® Report: FSURBS Leon County, Tallahassee, FL 32310. September 28.

United States Environmental Protection Agency (EPA), 1993. Guidance for Non-Time Critical Removal Actions (NTCRA) Under CERCLA

EPA, 1988. *Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA, Interim Final* (October 1988) EPA 540/G-89/004, OSWER 9355.3-01. <u>http://www.epa.gov/superfund/resources/remedy/pdf/540g-89004-s.pdf</u>

EPA, 1989. *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A)*. Interim Final (December 1989) EPA/540/1-89/002, OSWER.

EPA, 2000. A Guide to Developing and Documenting Cost Estimates During the Feasibility Study. EPA 540-R-00-002. July.

EPA, 2002. *Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers*, Groundwater Forum Issue Paper, EPA 542-S-02-00. May. Retrieved online February 2015: http://www.epa.gov/superfund/remedytech/tsp/download/gw_sampling_guide.pdf.

EPA, 2006. Treatment Technologies for 1,4-Dioxane: Fundamentals and Field Applications. December.

EPA, 2007. *Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods, SW-846 3rd edition, Update IVB.* February. Retrieved Online February 2015: http://www.epa.gov/epawaste/hazard/testmethods/sw846/index.htm.

EPA, 2017. *Technical Fact Sheet-1,4-dioxane*. November. <u>https://www.epa.gov/sites/production/files/2014-03/documents/ffrro_factsheet_contaminant_14-dioxane_january2014_final.pdf</u>

EPA, 2017a. Preliminary Remediation Goals (PRG) for Radionuclides: PRG User's Guide. Downloaded June 30, 2017. <u>https://epa-prgs.ornl.gov/radionuclides/PRG_UsersGuide.pdf</u>

EPA, 2018a. EPA working levels (WL) and picocuries per liter of air (pCi/L). Retrieved April 9, 2018. <u>https://iaq.zendesk.com/hc/en-us/articles/212104747-Explain-working-levels-WL-and-picocuries-per-liter-of-air-pCi-L-</u>

EPA, 2018b. Radionuclides in Drinking Water. Webpage retrieved December 7th. <u>https://cfpub.epa.gov/safewater/radionuclides/radionuclides.cfm?action=Rad_Treatment</u>

Evans et al. 2018. Sustained In-situ Chemical Oxidation (ISCO) of 1,4-Dioxane and Chlorinated VOCs Using Slow-Release Chemical Oxidant Cylinders> ESCTP Project ER-201324. July.

F.A.C Chapter 62-777. Florida Administrative Code. Prepared for the Division of Waste Management Florida Department of Environmental Protection by Center for Environmental & Human Toxicology University of Florida Gainesville, Florida. February.

Florida Department of Environmental Protection (FDEP), 1976. Sketch and Partial License Renewal Application. Control 0641. May.

FDEP, 2003. Preliminary Site Investigation Report for the Florida State University LLRW-2 Site, Leon County Florida. Ecology and Environment, Inc. October.

FDEP, 2005. Final Technical Report: Development of Cleanup Target Levels (CTLs) For Florida

FDEP, 2012. Supplemental Site Investigation Report: Florida State University Low Level Radioactive Waste Burial Site No. 2. Apalachicola National Forest, Leon County, Florida (FDEP Facility ID No. 008SL). April.

Guiseppi & Whitesides, 2007 *Treatment Options for Remediation of 1,4-Dioxane in Groundwater*. Environmental Engineer, Spring.

Hemond, 2000. Chemical Fate and Transport in the Environment. 2nd Edition. September.

Hendry, C.W. and Sproul, C.R., 1966. *Geology and Ground-Water Resources of Leon County, Florida:* U.S. Geological Survey Bulletin No. 47.

ITRC, 2009. *Phytotechnology Technical and Regulatory Guidance and Decision Trees, Revised.* February.

Miller, 1986. Hydrogeologic Framework of the Floridan Aquifer System in Florida and in Parts of Georgia, Alabama, and South Carolina. U.S. Geological Survey Professional Paper 1403-B.

NRCS, 2018. Saturated Hydraulic Conductivity in Relation to Soil Texture https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/office/ssr10/tr/?cid=nrcs144p2_074846 Retrieved February 8, 2018

Plaska et al., 2016. New effective sorbents for Removal of Am-241 from Drinking Water. Polish Journal of Environmental Studies. January.

Ruper and Spencer, 1988. Bulletin No. 60: Geology of Wakulla County, Florida. 1988.

Schaefer et al., 2016. *In-situ Bioremediation of 1,4-Dioxane by Methane Oxidizing Bacteria in Coupled Anaerobic-Aerobic Zones. SEDRP Project ER-2306.* February.

Todd & Mays, 2005. Groundwater Hydrology, Third Edition. John Wiley & Sons, Inc.

UF, 2016. Agricultural Soils of Florida. University of Florida. October.

USGS, 2018. *Groundwater Quality in the Floridan Aquifer System, Southeastern United States.* September.

USNRC, 2000. *Multi-Agency Radiation Survey and Site Investigation Manual. NUREG-1574, Rev 1.* August.

Zapecza and Szabo, 1986. Natural Radioactivity in Groundwater – U.S. Geological Survey Water Supply Paper 2325

Zurbuchen et al., 2002. *Dynamic interpretation of slug tests in highly permeable aquifers*. Water Resources Research. March

SITE FIGURES

THIS PAGE INTENTIONALLY LEFT BLANK

Figure 5: Subsurface Geology Map FSU-LLRW Apalachicola National Forest N30°22'6.86" W 84°31'29.93" Geologic Map of Leon County Florida Source: State of Florida State Boar of Conservation Division of Geology, 1966 Approximate Scale: 1" = 5 miles

	11						
		MW014	ua/L				
		1,4-Dioxane	ND				
		Rad	pCi/L				
		Gross Alpha	18 ± 4.4				- <u>I</u> N
		Gross Beta	8.8 ± 2.4				
	I RW	Ra-226	2.6 ± 0.87				
	FSU-LE	Ra-228	2 ± 0.71				N .
		\mathbf{X}					
				MW015-1	ug/L	MW015-2	ug/L
				1,4-Dioxane	220	1,4-Dioxane	420
				Rad	pCi/L	Rad	pCi/L
			/	Gross Alpha	7.6 ± 2.3	Gross Alpha	4.6 ± 1.7
				Gross Beta	6.5 ± 2.1	Gross Beta	3.7 ± 1.8*
MW018	ug/L	1 NFr-37	74A /	Ra-226	8.1 ± 2.1	Ra-226	5.7 ± 1.6
1,4-Dioxane	8.6	1 -		Ra-228	5.6 ± 1.5*	Ra-228	4.2 ± 1.2
Rad	pCi/L	1 ,	/				
Gross Alpha	7.3 ± 2.3	7 _/		NA1047 4			
Gross Beta	2.8 ± 1.7 (ND)	ן ∥ 🗲			ug/L	1 4 Dioyana	ug/L
Ra-226	2.1 ± 0.83	7 -		1,4-Dioxane	5.5	1,4-Dioxane	20
Ra-228	5 ± 1.4			Rau Gross Alpha	18 + 4	Gross Alpha	pci/L 42 ± 0.1
		- //		Gross Reta	84+25	Gross Reta	43 ± 9.1
				Ba-226	22+069	Ba-226	45+26*
				Ra-220	2+0.65	Ra-220	12+68(ND)
							1.2 2 0.0 (10)
		11					
MW019-1		MW019-2	μα/Ι				
1.4-Dioxane	ND	1.4-Dioxane	ND	_			
Rad	pCi/L	Rad	pCi/L			A	
Gross Alpha	2.3 ± 1.4 (ND)	Gross Alpha	9.3 ± 2.8			Ť	
Gross Beta	1.8 ± 1.5 (ND)	Gross Beta	2 ± 1.8 (ND)				
Ra-226	0.41 ± 0.22*	Ra-226	7.4 ± 2				
Ra-228	3.4 ± 0.97	Ra-228	6.7 ± 1.7				
					Note: CCT	Exceedances in	Bold
					Groundwat	er Cleanup Targe	t Goal (GCTL)
MW016-1	ug/L	MW016-2	ug/L			ne = 3.2 ua/L.	
1,4-Dioxane	ND	1,4-Dioxane	8.3		Gross Alph	na = 15 pČi/L	o. //
Rad					ND = Ang	26 +228 = 5 p0 Ivte Not Detected	JI/L
Gross Alpha	14 ± 3.5	Gross Alpha	31 ± 6.6		* = Resul	t less than requ	ested MDC
Ra-226	0.9 ± 2.2 5 / + 1 5	Bioss Dela	1/ ± 3.0 8 2 + 2 4			greater than sam ethod detection	ple specific MDC
Ra-228	5.4 ± 1.5	Ra-228	6.2 ± 2.1				concentration
1 4 220	0.0 1 1.7	14 220			<u>0'</u>	<u>100'</u> 20	0'
					Appr	oximate Scale	
Figure 9			l	_egend		Florido	a Key Map
rigure 3	•			5		FSU-LLR	W
ESULUR	N					Tallahassed	Jacksonville
$\cap ff = \Im f_{a}$	Monitorina Ma	I 🚽 °	ff-site Monitori	ng Well Location		- Charlota	ATIONAL FOREST
Sampling	Results		Access Road				The second se
Sampling						VICINITY M	Priando (185)
			Access Gate	16 Radiation	n Burial Pit		Tampa
FOREST SERVICE	Apalachicola		I				J Jem
ZAIT	National Fore	est 🛛					Naples 175 Luderdale
	Leon County						
A T B							

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A

Site Disposal Pit Burial Records

THIS PAGE INTENTIONALLY LEFT BLANK

3-16-67

70.1

Radioactive Burial

Radioactive material was buried in Pit No. 1, Florida State University Site No. 2, Apalachicola National Forest on March 16, 1967.

The following is a list of containers and the radiation levels:

No. Containers	Type Containers	Maximum	Average
48 47 5 5	Cardboard boxes Bottles Cans, 5 gal.(C ¹⁴) Polyethylene Bags (C ¹⁴ - H ³)	15 mr/hr 22 mr/hr .03 mr/hr .03 mr/hr	1.5 mr/hr 2.0 mr/hr .03 mr/hr .03 mr/hr

The following is a list of the radioisotopes and quantities in μc . The activity calculation date is March 16, 1967.

Rad- ioiso tqpe	Liquid	Solid	Animal	Sub-Total	Ratio of Appendix B x 103
-H	34,211.084	6,587.845	741.776	41,540.705	.166163
C ¹⁴	3,353.69	7,007.56	49.0	10,410.25	.208205
Na ²²	.963	1.215		2.178	.000218
A126	ð.	.009		.009	.00009
S ³⁵	.006	.041		.047	.000001
/ _{C1} 36	1.0	.02		1.02	.00102
$\sqrt{Mn^{54}}$	2.2	1.12		3.32	.0332
Vco ⁵⁷		.003		.003	.00003
√Fe ⁵⁹	.0006	1.347		1.3476	.001348
√co ⁶⁰	1.476	4,989		6.465	.006465
Sr ⁹⁰	13.2139	1.453		14.6669	.146669
vCd ¹⁰⁹	. 45	• 396		.846	.000085
			1		

Rad- ioiso- tope	Liquid	Solid	Animal	Sub-Total	Ratio of Appendix B
$\sqrt{cs^{137}}$	85.956	1.719	9985299993999999999999999999999999999999	87.675	.087675
√ce ¹⁴⁴		.1101		.1101	.000110
√Pm ¹⁴⁷		.020	1.3	.02	.000002
V_{Eu} 152	2 2301	.3734	4 4.8	.3734	.003734
/Eu ¹⁵²	154.5763 2.	576-1.6349.163	5 2.7:	2/1-27-2112-	.272112
/ _{Eu} 154		12.2328		12.2328	.012233
√ _{Tm} 171		.0204		.0204	.000204
Vcm ²⁴⁴		1.7834		1.7834	.017834
√cf ²⁵²		.114		• JJ 4	.00114

TOTAL 37,695.6158 13,624.006 790.776

52,110.3978, .958538 Total Buried -3-16-67

7-7-67 70.2

Radioactive Burial

With water File Radioactive material was buried in Pit No. 2, Florida State University Site No. 2, Apalachicola National Forest on July 🦏, 1967.

> The following is a list of containers and the radiation levels:

No. Containers	Type of Containers	Maximum	Average
17	Cardboard boxes	45 mr/hr	4.8 mr/hr
4	Empty 5 gal. cans	.03 mr/hr	.03 mr/hr
16	Bottles	.2 mr/hr	.05 mr/hr
10	Polyethylene bags	40 mr/hr	4.62 mr/hr

The following is a list of the radioisotopes and quantities in µc. The activity calculation date is July 1, 1967.

Isotope	Solid	Liquid	Animal S	Sub-Total F A	Ratio of Appendix B K 10
/H ³ /C ¹⁴ /Na ²² /P ³² /S ³⁵ /Mn ⁵⁴ /Fe ⁵⁵ /Co ⁵⁶ /Co ⁵⁷ /Fe ⁵⁹	4,484.0997 3,188.32 3.65 .0072 29.2 8.9088 .0003 .25	75650.9528 248.5 .228 .0007 .033	409.498 751.0 79.264 .013	80,544.5505 4,187.82 3.65 79.2712 29.2 9.1368 .0007 .0003 .033 .263	.322178 .085756 .000365 .007927 .000584 .091368 .000000 .000003 .000330 .000263

1

Isotope	Solid I	iquid	Animal S	ub-Total I I	Ratio of Appendix B K 10
r∕co ⁶⁰	1,28			1.28	.001280
Vzr95- Nb95-		.0001		.0001	.000001
/ _{Sn} 113		.1792		.1792	.000018
/In ¹¹⁴		.0001		.0001	.000000
√ I ₁₃₁	.0016			.0016	.000000
/ _{Cs} 137	97.5			97.5	.097500
Ce ¹⁴⁴	8.9334			8.9334	.008933
$\int_{Pm} 147$	36.4512			36.4512	.003451
$\sqrt{Eu_{154}^{152}}$	4.75	к 11. ус. ус.	Eu 152	- 4.2.75 ,475 - 4-75	.047500
VTm ¹⁷⁰	.0063			.0063	.000063
√ _{Hg} 203	.95	4.7766		5.7266	.057266
/T1 ²⁰⁴	8.0081			8,0081	.000160
vPb ²¹⁰	.4815			.4815	.004815
√Po ²¹⁰		.3288		.3288	.003288
√Am ²⁴¹	10.0			10.0	.100000
VU 238	.02			.02.	.000000
√mfp	5.02			5.02	.050200
Total	7,887.8381	75,904.9993	1239.7750	85032.6124	.883249

4-24-68 Pit 70.3

Radioactive Burial

Radioactive material was buried in Pit No. 3, Florida State University Site No. 2, Apalachicola National Forest on April 24, 1968.

The following is a list of containers and the radiation levels:

No. Containers	Type of Containers	Maximum	Average	
17	Cardboard boxes	15 mr/hr	1.36 mr/hr	
7	Bottles	.1 mr/hr	.05 mr/hr	
6	Polyethylene bags	.03 mr/hr	.03 mr/hr	
1	Empty can	.04 mr/hr	.04 mr/hr	
2	Wood drawers	.06 mr/hr	.05 mr/hr	

The following is a list of the radioisotopes and quantities in μc . The activity calculation date is March 1, 1968.

Isotope	Solid	Liquid	Animal	Sub-Total	Ratio of	
					Appendix X 10 ³	В

H 3 18,793.5561 119,203.6914 184.0 138,181.2475 .552729 C 14 2,266.7825 1.1480 803.5 3,071.4305 .061229 Na 22 .8495 1.1480 803.5 3,071.4305 .061229 Na 22 .8495 .000089 .8495 .000089 -P 32 .5332 .0400 .0400 .000000 VS 35 .0400 .0400 .000000 VMn 54 5.8850 .58850 .058850 /Co 60 2.6359 .002636 /Cs 137 17.9696 .017976 /Ce 144 .9248 .9248 .000929 /Pm 147 1.0024 .000100 .000100 /Eu 152- .3352.3724 .352.3724 .003724						
The second s	H 3 C 14 Na 22 P 32 VS 35 VMn 54 Co 60 Cs 137 Ce 144 VPm 147 Eu 152-	18,793.5561 2,266.7825 .8495 .5332 .0400 5.8850 2.6359 17.9696 .9248 1.0024 . <i>3352.</i> 3724	119,203.6914 1.1480	184.0 803.5 202.5	138,181.2475 3,071.4305 .8495 203.0332 .0400 5.8850 2.6359 17.9696 .9248 1.0024 .3352 .3724	.55272 .06122 .00008 .02030 .00000 .05885 .00263 .01797 .00092 .00010 .00372

pit 3 could

Isotope Solid Liquid Animal Sub-Total Ratio of Appendix B X 10⁻²

VTb 160	.0007			.0007	000007
/Tm 170	.0035			.0035	000035
Hg: 203	.1120	1.0200		1.1320	.011320
/T1 204	.0024			.0024	.000000
/Np 237	.6500			.6500	.006500
√Am 241	8.6800			8.6800	.086800
/Cm 244	9.4722			9.4722	.094722
/Cf 252	.0285			.0285	.000285
MFP	1.0100			1.0100	.010100
TOTAL	21,110,5107	119,205,8594	1,190,0	141.506.3701	.928324

5-17-69 Pit No. 4

RADIOACTIVE BURIAL

Radioactive material was buried in Pit No. 4, Florida State University Site No. 2, Apalachicola National Forest on April 27, 1969.

The following is a list of containers and the radiation levels:

NO.	CONTAINERS	TYPE OF CONTAINER	MAXIMUM	AVERAGE
	5	55 gal. drums	2.0 mr/hr	0.46 mr/hr
	5	5 gal. cans	0.08 mr/hr	0.05 mr/hr
	1	wooden shelf	0.04 mr/hr	0.04 mr/hr
~ 1	.00 lbs.	animal waste	0.04 mr/hr	0.04 mr/hr

The following is a list of the radioisotopes and quantities in microcuries (μc). The activity calculation date is February 15, 1969.

ISOTOPE	SOLID	LIQUID	ANIMAL	SUB-TOTAL	RATIO
V _H ³	1209.99600	478.75020	17324.87280	19013.61900	0.076294
$-c^{14}$	1083.75000	5.40000	1050.50000	2139.65000	0.044553
^J P ³²	.06330			.06330	0.000010
$/s^{35}$.00310			.00310	0.0000006
$\sqrt{Mn^{54}}$	9.10580			9. 9.10580	0.091090
Ni ⁶³	02 300			.02300	0.000020
vsr ⁹⁰	3.44098			3.44098	0.034410
Vcd ¹⁰⁹	.00040			.00040	0.0000001
$\sqrt{\mathrm{Sn}^{113}}$.00200			.00200	0.000002
/ 1 ¹²⁵			6.15000	6.15000	0.061500
$\sqrt{\mathrm{Cs}^{137}}$	35.12700			35.12700	0.035127
$\sqrt{Ce^{144}}$.01888			.01888	0.000019
$/ Pm^{147}$	18,31932			18.31932	0.001832
$\int_{Eu} 152$	40.60140			40.60140	0.406014
$\int Eu^{154}$	20.12244			20.12244	0.020122
/ _{Hg} ²⁰³	0.00180			0.00180	0.000018
√Po ²¹⁰	0.02940	3		0.02940	0.000294
√ Am ²⁴¹	5.26000			5.26000	0.052600
/Cm ²⁴⁴	9.27211			9.27211	0.092721
TOTAL	2435.13693	484.15020	18381.52280	21300.80993	0.916624
	×			6-	27-69
----------------------	----------------	--------------	---------------	-------------------	----------------
		RADIOA	CTIVE BURIAL	Pi	1 70.5
		<u>.</u>			
Radio	active mater	ial was buri	ed in Pit No.	. 5, Florida Sta	ate University
Site No. 2	, Apalachico	la National	Forest on Ju	ne 27, 1969.	-
The f	Ollowing is	a list of co	ntainers and	the radiation J	evels:
NO. CONTAL	NERS TYPE	OF CONTAINE	.K MAXIMU.	M AVE	CRAGE
. 5	5 - 2 5 - 2	al. drums	10.0 m	$r/nr \qquad 0.2$	5 mr/hr
1	5 ga	2 1 due	0.13	mr/nr 0.1	.5 mr/nr
1	2 1/	Z I. Jug.	0.03	mr/hr = 0.0	3 mr/nr
1 0.100 1b	card	ol worth (fr	0.04	mr/hr = 0.0	5 mm/hr
The f	ollowing is	a list of th	e radioisete	mr/mr 0.1	.5 mr/nr
microcurie	s (uc) The	activity ca	leulation da	te is June 15 1	969
ISOTOPE	SOLTD	L.TOUTD	ANTMAT.	SUB-TOTAL	RATTO
3					101110
» н а14	665.9190	/3400.0000	6351.5360	80427.4550	0.321710
2 C 2 D 32	498.1000	30.0000	1099.0000	1627.1000	0.032542
/M=54	46.0000			46.0000	0.004600
Leb124	1.1040	25 6000		1.1640	0.011640
/ 125	6 4500	23.0000	20 0120	23.0000	0.023600
J131	0.400		20.9120	0,0050	0.273020
Jcs ¹³⁷	9 8900			9 8900	0.000890
/ _{Eu} 152	1.0482			1.0482	0.010482
Eu ¹⁵⁴	1,0000			1.0000	0.001000
VT1 ²⁰⁴		117.8000		117.8000	0.002356
KU natural	3.0000			3.0000	0.000060
$\chi_{\rm U}^{238}$	1.0000			1.0000	0.010000
VAm ²⁴¹	5.2500			5.2500	0.052500
VCm ²⁴⁴	2.2018			2.2018	0.022018
/ cf ²⁵²	0.4830			0.4830	0.004830
√ MFP		2.0000		2.0000	0.020000
√ Unknown	1.0000	2.0000		3.0000	0.030000
TOTAL	1241.5110	73577.4000	7481,4480	82300,3590	0.832849

V V

١ 1

May 8, 1970 Bit # 6

Radioactive material was buried in Pit No. 6, Florida State University Site No. 2, Apalachicola National Forest on May 8, 1970.

The following is a list of containers and radiation levels:

NO. CONTAINER	5 TYPE OF CONTAINER	MAXIMUM	AVERAGE
6	55 gallon drums	0.22 mrem/hr	0.08 mrem/hr

The following is a list of the radioisotopes and quantities in microcuries. The activities calculation date is May 8, 1970.

ISOTOPE	SOLID	LIQUID	ANIMAL	SUB-TOTAL	RATIO
-Н 3	69,798.9058	0.0	24,351.9094	94,150.8152	0.376603
∨ C 14	853.3000	450.0000	1,261.9000	2,565.2000	0.051304
VP 32	12,4010	0.0	0.0001	12,4011	0.012401
/S 35	1.2480	0.0	0.0	1.2480	0.000024
✓ Sc 46	0.0945	0.0	0.0	0.0945	0.000095
🖌 Mn 54	6.9920	0.0	0.0	6,9920	0.069920
VFe 59	0.0	0.0	1.7500	1.7500	0.001750
/ Co 60	0.0	0.9470	0.0	0.9470	0.000947
√Cd 109	0.0	10,4000	0.0	10.4000	0.001040
I 125	0.2806	0.0	61.4320	61,7126	0.006171
Cs 137	0.0296	0.0	0.0	0.0296	0.000030
Ce 144	2.2380	0.0	0.0	2.2380	0.002238
Pm 147	0.2610	0.0	0.0	0.2610	0.000026
√Eu 152	1.4670	0.0	0.0	2.67481.4670-	0.014670
√Eu -152 -154	2.9720	0.0	0.0	,2972 2.9720-	0.029720

May 8, 1970 Burial Pit # 6

ISOTOPE	SOLID	LIQUID	ANIMAL	SUB-TOTA	AL RATIO
Eu 155	4.7790	0.0	0.0	4.7790	.047790
₩Hg 203	.7476	0.0	0.0	.7476	.007476
- T1 204	.1004	0.0	0.0	.1004	.000002
VRa 226	.8600	0.0	0.0	.8600	.008600
VTh 228	.8933	0.0	0.0	.8933	.008933
Th 230	.1000	0.0	0.0	.1000	.001000
√U 233	1.0000	0.0	0.0	1.0000	.010000
Mp 237	1.0000	0.0	0.0	1.0000	.010000
√Pu 239	1.0000	0.0	0.0	1.0000	.010000
/Am 241	6.5600	0.0	0.0	6,5600	.065600
V Cm 244	2.9740	0.0	0.0	2.9740	.029740
√Bk 249	1.5000	0.0	0.0	1.5000	.015000
√Cf 252	.0836	0.0	0.0	.0836	.000836
Ra D&E Ph Bi	1.0000	0.0	0.0	1.0000	.010000
uMFP	1.2000	0.0	0.0	1.2000	.012000
TOTAL	70,703.9874	461.3470	26,230.4915	97,395.8259	.740988

Dec 16, 1970 Bit # 7

Radioactive material was buried in Pit #7, Florida State University Site #2, Appalachicola National Forest on December 16, 1970. The containers were six 55-gallon drums with an average radiation level of 0.1 mr/hr, maximum was 2.0 mr/hr from one barrel.

The following is a list of the radioisotopes and quantities in microcuries. The activity calculation date is December 15, 1970.

ISOTOPE	SOLID	LIQUID	ANIMAL	SUB-TOTAL	RATIO
⊮ H3	3129.2990	3947,0000	1390.5710	8466.8700	0.033867
✓ C ¹⁴	743.3700	224,5000	791.0000	1758.8700	0.035177
Na ²²	4.0520			4,0520	0.000405
√ _P 32	3135.3020		2	3135.3020	0.313530
√ _S 35	739.7220		1710.0000	2449.7220	0.048994
Mn54	3.0000			3.0000	0.030000
√ _{Fe} 59.	0.0440	8		0.0440	0.000044
√ _{Co} 60	0.1177			0.1177	0.000117
Sr ⁹⁰	0.0600			0.0600	0.000600
√ ₁ 131	Q.5020	-0	8	0.5020	0.000005
V _{Cs} 137	220.2200			220.2200	0.220220
Ce^{144}	0.7300			0.7300	0.00073Ó
Pm ¹⁴⁷ 152	0.0963			s.11 0.0963	0.000009
Eu ¹⁵²⁻ 154	3.4556			.3456 3.4556	0.003455
√ _{Hg} 203	11.5420			11.5420	0.115420
√T1 ²⁰⁴	2.9999			2.9999	0.000059
√ _{Th} 228	1.0000			1.0000	0.010000
/ _{Pu} 239	0.2000			0.2000	0.000020
J _{Am} 241	5.0000			5.0000	0.050000
$\sqrt{Cm^{244}}$	4.3830			4.3830	0.043830
√ _{Bk} 249	0.0780			0.0780	0.000780
TOTAL	8005.1735	4171.5000	3891.5710	16,068.2445	0.907262

Pik 8 12-16-71

Radioactive material was buried in Pit No. 8, Florida State University Site No. 2, Apalachicola National Forest on December 16, 1971.

The following is a list of containers and the radiation levels:

NO. CONTAINERS TYPE OF CONTAINER MAXIMUM AVERAGE 6 55 gal. drums 1.3 mr/hr .04 mr/hr The following is a list of the radioisotopes and quantities in microcuries (µc). The activity calculation date is December 15, 1971.

ISOTOPE	SOLID	ANIMAL	SUB-TOTAL	RATIO
⊮H3	20,476.9600	34,111.1550	54,588.1150	.218352
C C 14	2,512.9513	4,146.7397	6,659.6910	.133190
⊳Na ²²	.7960		7960	.000080
VP 32	4.9023		4.9023	.000490
J _S 35	46.0000		46.0000	.000920
VI125 152	10.8000	64.4000	7.220 72.2000	.007520
VEu ¹⁵² -154	5.0467		5.0467	.050467
/Pu ²³⁹	.1000		.1000	.000100
/Am ²⁴¹	6.5896		6.5896	.065896
⊀ Cm ²⁴⁴	5.2111		5.2111	.052111
/Bk ²⁴⁹	.4996		.4996	.004996
Vcf^{252}	.7264		.7264	.007264
UNID	1.2450		1,2450	.012450
TOTAL	23,071.8280	38,322.2947	61,394.1227	.553836

Radioactive material was buried in Pit No. 9, Florida State University Site No. 2, Apalachicola National Forest on September 13, 1972.

The following is a list of containers and the radiation levels:

APPROX. CUBIC FT	CONTAINERS	MAXIMUM	AVERAGE
38	5 X 55 gal. drums	5mr/hr	.9mr/hr
20	15 Plastic bags (litter)	.05mr/hr	.03mr/hr
15	Plastic bags (animals	.1mr/hr	.05mr/hr

The following is a list of the radionuclides and quantities in microcuries. The activity calculation date is September 13, 1972.

NUCLIDE	SOLID	ANIMAL	SUB-TOTAL	RATIO
H3 C14 Na22 P32 S35 Fe59 Co60 Cd109 I125 I131 Cs137 Pm147 Eu152 Eu152 Eu152 Eu152 Eu152 Fu239 Am241 Cm244 Bk249 Cf252 VUNID	9316.427 3664.751 30.625 1.203 .346 29.760 20.339 33.600 67.580 .087 1.688 18.983 .099 2.921 .187 10.000 5.000 3.700 2.697 3.692 .061 1.162 10.100	24575.593 1440.000 199.900	33892.020 5104.751 30.625 1.203 $.346$ 29.760 20.339 33.600 267.480 $.087$ 1.688 18.983 $2.629 + .0992(2.728)$ $.2921$ $.2921$ $.187$ 10.000 5.000 3.700 2.697 3.692 $.061$ 1.162 10.100	.139568 .102097 .003063 .001203 .000007 .029760 .020339 .003360 .026748 .00009 .001688 .001898 .000990 .029210 .001870 .001870 .000870 .000870 .037000 .037000 .036920 .036920 .000610 .011620 .101000
TOTAL	13225.008	26215.493	39440.501	.725930

PIT #10 10/23/73

RADICACTIVE BURIAL

Radioactive material was buried in Pit. No. 10, Florida State University Burial Site No. 2, Apalachicola National Forest on October 23, 1973. This burial consisted primarily of radioactive animals. Other solid radioactive waste in this pit was mostly animal litter (sawdust).

The following is a list of the containers and radiation levels:

APPROX.	CU.	FT.		CONT	INERS		M	IAXIN	NUM	AVER	AGE
1,	47		Plastic	Bags	(Animal	&	Litter)	.1	mr/hr	.05	mr/hr

The following is a list of the radionuclides and the quantities in microcuries. The activity calculation date is October 18, 1973.

NUCLIDE	SOLID	ANIMAL	SUB-TOTAL	RATIO
√H3	7232.700	76956.996	84189.696	.336759
VC14		846.000	846.000	.016920
S35		289.380	289.380	.005788
VI125	1219.280	657.480	1876.760	.187676
TOTAL	8451.980	78749.856	87201.836	.547143

Radioactive material was buried in Pit No. 11, Florida State University Burial Site No. 2, Apalachicola National Forest on November 29, 1973.

The following is a list of containers and the radiation levels measured at 1 inch from exterior barrel surface.

VOLUME	CONTAINERS	TYPE OF CONTAINER	MAXIMUM	AVERAGE
59 cu. ft	. 8 each	55 gal. drums	ll mr/hr	.4 mr/hr

The following is a list of the radionuclides and quantities in microcuries. The activity calculation date is November 29, 1973.

NUCLIDE	SOLID	RATIO
H3 C14 Na22 P32 S35 C136 Ca45 Mn54 Fe59 Co60 I125 I131 Cs137 S137 Fu152 4 Pb210 Th228 Am241 UNID	12735.632 21179.590 8.522 .104 1042.607 1.000 .776 .007 .457 7.220 .152 1.353 1.341 .1445 .1445 15.009 .710 5.110 3.230	.050907 .423592 .000852 .000010 .020852 .001000 .000078 .000070 .000457 .007220 .000015 .000135 .001341 .014450 .150090 .007100 .051100 .032300
	35004.265	.761569

Radioactive material was buried in Pit No. 12, Florida State University Burial Site No. 2, Apalachicola National Forest on May 16, 1974.

The following is a list of containers and the radiation levels measured at 1 inch from exterior barrel surface. VOLUME CONTAINERS TYPE OF CONTAINER MAXIMUM AVERAGE

52.5 cu ff.7 each55 gal. Drums.8 mr/hr.07 mr/hr7.5 cu ff.Bulk-animalsPlastic Bags.05 mr/hr.04 mr/hr

The following is a list of the radionuclides and quantities in microcuries. The activity calculation date is May 15, 1974.

NUCLIDE	SOLID	LIQUID	ANIMAL	SUB-TOTAL	RATIO
-H3 -C14 Na22	13791.863 5015.010 138 750	2080.427 1181.700	16943.752 54.000	32816.042 6250.710 138 750	.1313 .1250
VP32 VS35 VCa45	27.298 553.453	14.040	.450 302.900	41.788 856.353	.0042 .0171
√Fe59 √Zn65 ✓Se75	7.800 149.650 25.326			7.800 149.650 25.326	.0078 .0150 .2533
/1125 /1131 CS137	566.690 65.023		849.000	1415.690 65.023	.1416
✓Pm147 ,5~ ✓Eu 152 -154	1.341 3.076		Ĩ	1.341. 1.341. 308 -3.076 079	1.341.0001 0308
JTh228 UNID	.580 5.200 20354,211	3276-167	18150 102	.580 5.200	.0058 .0520
	20324.211	3610.101	10190.102	-041/80.480	.0055

C

Radioactive material was buiied in Pit No. 12, Florida State University Burial Site No. 2, Apalachicola National Forest on February 20, 1975.

The following is a list of containers and the radiation levels measured at 1 inch from exterior barrel surface.

VOLUME	CONTAINERS	TYPE OF CONTAINER	MAXIMUM	AVERAGE
52.5	7 each	55 gal. Drums	.6 mr/hr	.05 mr/hr
7.5	Bulk waste	Plastic Cans	.l mr/hr	.04 mr/hr
The follow:	ing is a list	of the radionuclide	s and quant	ities in
microcuries	s. The activ	ity calculation date	is Februar	y 20, 1975.

SOLID	LIQUID	ANIMAL	SUB-TOTAL	RATIO
73962,435			73962.435	.2958
5864.100			5864.100	.1173
3.902			3.902	.0004
616.368			616.368	.0616
552.646			552.646	.0011
15.908	2.651		18.559	.0019
.003			.003	.0000
3.485			3.485	.0035
.463			.463	.0000
621.393			621.393	.0621
53.719			53.719	.0054
.347		((.0003
10.199		11	020 10.192	.1020
1.870		ζ	1.870	.0187
81706.838	2.651		81709.489	.6701
	SOLID 73962.435 5864.100 3.902 616.368 552.646 15.908 .003 3.485 .463 621.393 53.719 .347 10.199 1.870 81706.838	SOLID LIQUID 73962.435 5864.100 5864.100 3.902 616.368 552.646 15.908 2.651 .003 3.485 .463 621.393 53.719 .347 10.199 1.870 81706.838 2.651	SOLID LIQUID ANIMAL 73962.435 5864.100 3.902 616.368 552.646 15.908 2.651 .003 3.485 .463 621.393 53.719 .347 10.199 .347 .4870 .4651 .4651 .347	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

This Radioactive Burial consisted of Animal Waste only. Buried in Pit No. 14 on October 29, 1975, in Florida State University Burial Site No. 2, Apalachicola National Forest.

The Animals were placed in a 3/4" plywood frame 8' X 7' X 2' high. The frame was placed in the pit and the animals placed in the frame to contain them within the 7' X 8' Burial area. No significant radiation levels above background could be obtained with a GM Survey.

The following is a list of the radionuclides and quantities in microcuries. The calculation Date is October 29, 1975. VOLUME: 8'x7'x2 1/2'' = 140 cu. ft.

NUCLIDE	ACTIVITY IN ANIMALS	RATIO
└H 3	40921.698	.16369
C 14	2954.000	.05908
S 35	5106.443	.10213
√Ca 45	6.701	.00067
✓ I 125	1007.094	.10071
TOTAL	. 449995.936	.42628

Radioactive Material was buried in Pit No. 15, Florida State University Burial Site No. 2, Apalachicola National Forest on December 19, 1975.

The following is a list of solid radioactive waste sealed in barrels and the radiation levels measured at barrel contact.

VOLUMECONTAINERSTYPE OF CONTAINERSMAXIMUNAVERAGE60 cu ft8 each55 gal Drums1 mr/hr0.16 mr/hrThe following is a list of the radionuclides and quantities in microcuries. Theactivity calculation date is December 18,1975.

NUCLIDE	SOLID	LIQUID	SUB-TOTAL	RATIO
~н 3	17744.445	233.280	17977.725	.071911
C 14	7981.060	1001.800	8982.860	.179657
P 32	.440	.540	.980	.000098
√S 35	1228.195		1228.195	.024564
√Ca 45	2.815		2.815	.000282
/Fe 59	5.560		5.560	.005560
- Co 60	.058		.058	.000058
Zn 65	.358		.358	.000353
vSr 90	.009		.009	.000090
√I 125	392.858		392.858	.039286
vI 131	.035		.035	.000004
∫Cs 137	1.790		1.790	.001790
Pm 1.47 152-	4.433		4.433	.000443
/Eu -152-154	.738		1.664 .738	.007380
√T1 204	.011		.011	.000000
√U 238	1.000		1.000	.000020
VUNID	12.350		12.350	.123500
	0 27,376.155	1235.620	28611.775	.455001

Radioactive Material was buried in Pit No. 16, Florida State University Burial Site No. 2, Apalachicola National Forest on June 25, 1976. This Pit does not have a Concrete Slab at 4 feet below ground level as the other 15 Pits have. To be in compliance with the current concrete slab requirement, <u>a concrete slab must be</u> placed above ground level prior to removing the chain-link fence.

The following is a list of solid waste in 55 gallon drums. The liquid waste was absorbed in saw-dust, also in 55 gallon drums. The radiation level measurements were made at barrel contact.

VOLUME	CONTAINERS	TYPE OF CONTAINERS	MAXIMUM	AVERAGE
60 cu ft	8 each	55 gal Drums	.8 mr/hr	0.15 mr/hr

The following is a list of the radionuclides and quantities in microcuries. The activity calculation date is June 25, 1976.

NUCLIDE	SOLID	LIQUID	SUB-TOTAL	RATIO
Н 3	36374.529		36374.529	.145498
C 14	2458.100	7215.000	9673.100	.193462
P 32	2.037	.829	2.866	.000287
S 35	189.036	4.699	193.735	.003875
Ca 45	7.384		7.384	.000738
V CO 60	.954		.954	.000954
√I 125	764.985		764.985	.076499
VI 131	.637	.500	1.137	.000114
√Cs 137	1.962	.002	1.964	.001964
VPm 147	.002		.002	.000000
Eu 152-154	.916		S'ACD .916	.009160
√U 238	15.300		15.300	.153000
VUNID (Unidenti	fied) .050	- Collection of the Second Second	.050	.000500
TOTAL	36271.434	7221.030	43492.464	.586051

PIT # 17 11-9-76

RADIOACTIVE BURIAL

Radioactive Material was buried in Pit No. 17, Florida State University Burial Site No. 2, Apalachicola National Forest on November 9, 1976.

The following is a list of radioactive animal waste sealed in barrels and the radiation levels measured at barrel contact.

VOLUME	CONTAINERS	TYPE OF CONTAINRS	MAXIUM	AVERAGE
60 cu ft	8 each	55 gal Drums	.07 mr/hr	.04 mr/hr

The following is a list of the radionuclides and quantities in microcuries. The activity calculation date is November 9, 1976.

NUCLIDE	MICROCURIES IN ANIMALS	RATIO
3		
^V H 3	22210.384	.088842
C 14	2773.200	.055464
√S 35	665.204	.013304
Ca 45	813.046	.081305
√I 125	541.926	.054194
(X)	27003.760	.293109

Radioactive Material was buried in Pit No. 18, Florida State University Burial Site No. 2, Apalachicola National Forest on November 9, 1976.

The following is a list of radioactive waste sealed in barrels. The radiation levels were measured at barrel contact. Liquid waste was absorbed on saw-dust.

VOLUME	CONTAINERS	TYPE OF CONTAINERS	MAXIUM	AVERAGE
60 cu ft	8 each	55 gal Drums	.07 mr/hr	.04 mr/hr

Following is a list of radionuclides and microcurie quantities buried. The activity calculation date is November 9, 1976.

20 B					
NUCLIDE	SOLID	LIQUID	ANIMAL	SUB-TOTAL	RATIO
~H 3	19955.562	929.093	2550.199	23434.854	.093739
C 14	2459.600	11500.000	620.000	14579.600	.291592
Na 22	2.257			2.257	.000023
/P 32	133.958			133.958	.013396
\$ 35	379.115	80.882		459.997	.009200
Ca 45	9.740			9.740	.000974
√Co 60		1.937	×	1.937	.001937
Sr 90	.182			.182	.000182
/I 125	1884.000	.498	382.189	2266.687	.226667
VI 131	28.727			28.727	.002873
VCs 137	1.115			1.115	.001115
Pm 147 15	3.288			3.288	.000329
- Eu -152-154	2.970			2.673 2.970	.029700
√T1 204	.025			.025	.000001
VU 238	10.000			10.000	.100000
🗸 Am 241		.200		.200	.002000
	24870.539	12512.610	3552.388	40935.537	.773728

6-30-77

RADIOACTIVE BURIAL

Radioactive material was buried in Pit No. 19, Florida State University Burial Site No. 2, Apalachicola National Forest on June 30, 1977.

The following is a list of radioactive waste in tar-lined 55 gallon drums, which were sealed with a hoop closure. Liguid waste was absorbed on saw-dust. Radiation levels were measured at barrel contact.

VOLUME	CONTAINERS	TYPE OF CONTAINERS	MAXIMUM	AVERAGE
60 cu ft	8 each	55 gal drums	.7 mr/hr	.26 mr/hr

The following is a list of radionuclides, the form and microcurie quantities buried. The activity calculation date was 6-30-77.

NUCLIDE	SOLID	LIQUID	ANIMAL	SAWDUST	SUB-TOTAL	RATIO
~H 3	15103.979	746.311	368.858		16219.148	.064877
C 14	1969.400	2277.800			4247.200	.084944
/P 32	108.103	1350.261			1458.364	.145836
/s 35	55.863				55.863	.001117
VC1 36 V	1.000				1.000	.001000
VCa 45	11.514				11.514	.001151
√Cr 51	14.993			.318	15.311	.000306
Mn 54	3.572				3.572	.035720
√ Sr 90	.893				.893	.008930
JI 125	3268.451	.532		253.662	3522.645	.352265
√Cs 137	1.605				1.605	.001605
√Ce 144 ,	.653				.653	.000653
/Pm 147_90	.809				.809	.000081
Eu 152,15	4 3.337				3.003 3.337	.033370
√T1 204	1399.056				1399.056	.027981
VPo 210	18.504	1			18.504	.185040
√ Am 241	.100				.100	.001000
(TOTAL)	21976.825	4374.904	368.858	253.980	26959.574	.945223

()

PIT # 20

RADIOACTIVE BURIAL

Radioactive materials were buried in Pit No. 20, Florida State University Burial Site No. 2, Apalachicola National Forest on June 30, 1977.

The following is a list of radioactive waste in tar-lined 55 gallon drums, which were sealed with a hoop closure. Liquid waste was absorbed on saw-dust. Radiation levels were measured at barrel contact.

VOLUME	CONTAINERS	TYPE OF CONTAINERS	MAXIMUM	AVERAGE
60 cu ft	8 each	55 gal drums	2.2 mr/hr	.41 mr/hr

The following is a list of radionuclides, the form, and microcurie quantities buried. The activity calculation date was 6-30-77.

NUCLIDE	LIQUID	ANIMAL	SAWDUST	SUB-TOTAL	RATIO
ч Н З		19296.044		19296.044	.077184
VC 14	50.000	973.000	14	1023.000	.020460
√s 35		750.184		750.184	.015004
Cr 51			8.318	8.318	.000166
J I 125		310.415	470.173	780.588	.078059
v Ce 144	2.157			2.157	.002157
y Eu 152	46.830			46.830	.468300
/y Eu 154	5.208			5,208	.005208
√Tm 170	1.996			1.996	.049000
∫ → Am 241	4.900			4.900	.049000
√ Cm 244	.080		-	.080	.00800
(TOTALS)	111.171	21329.643	478.491	21919.305	.736298

6-30-77

5-18-78 (Burial Date)

Radioactive materials were buried at Florida State University Burial Site No. 2, Apalachicola National Forest, in the Pit # and on the date listed above.

The radioactive waste was compressed into 55 gallon drums and sealed with a hoop closure. Liquid waste was absorbed on saw-dust. Radiation surveys were made of the exterior surface, at contact, of each barrel. The reported maximum mr/hr reading is the highest reading obtained, and the reported average mr/hr reading is the average of the highest readings of all the barrels.

NO. OF BARRELS	TOTAL VOLUME	MAXIMUM	AVERAGE	
Solid 3	_60_ cu. ft.	<u>1.2</u> mr/hr	5 mr/hr	
Liquid	*			
Animal4	The activity decay ca	alculation date is	5-18-78	

The following is a list of radionuclides, the form and microcurie quantities buried.

NUCLIDE	SOLID	LIQUID	ANIMAL	SUB-TOTAL	RATIO
√H 3	9591.752	802.076	15761.090	26154.918	.104620
C 14	1159.210	746.870	1163.000	3069.080	.061382
√S 35	103.007		98.395	201.402	.004028
Ca 45	4.004		36. 1	4.004	.000400
Cr 51	52		.003	.003	.000000
√Zn 65	.042			.042	.000004
I 125	31.190	1.949	45.280	78.419	.007842
√Eu 152	.171			.171 🗸	.001710
VEu 154	.020		rt te	.020	.000020
√Th 232	.200			.200	.010000
√U 233	1.000			1.000	.010000
√U 238	.270	×		.270	.002700
Am 241	1.729			1.729	.017290
TOTAL	10892.595	1550.895	17067.768	29511.258	.210000

 \cap

5-18-78 (Burial Date)

Radioactive materials were buried at Florida State University Burial Site No. 2, Apalachicola National Forest, in the Pit # and on the date listed above.

The radioactive waste was compressed into 55 gallon drums and sealed with a hoop closure. Liquid waste was absorbed on saw-dust. Radiation surveys were made of the exterior surface, at contact, of each barrel. The reported maximum mr/hr reading is the highest reading obtained, and the reported average mr/hr reading is the average of the highest readings of all the barrels.

NO. OF BARRELS		TOTAL VOLUME	MAXIMUM	AVERAGE	
Solid	4	60 cu. ft.	_2.4 mr/hr	<u>.6</u> mr/hr	
Liquid _	2	a			
Animal	2	The activity decay c	alculation date is	5-18-78 .	

The following is a list of radionuclides, the form and microcurie quantities buried.

NUCLIDE	SOLID	LIQUID	ANIMAL	SUB-TOTAL	RATIO
	12			/	
Н 31	7116.097	2714.585	12786.996	22617.678	.090471
C 14/	2535.300	2957.600		5092.900	.101858
/P 32	.261			.261 [√]	.000026
S 35	.017		165.689	165.706	.003314
Cr 51	29.872			29.872	.000597
Mn 54	3.733			3.733	.037330
Fe 59	.621		.083	.704	.000704
Sr 90√	.418			.418	.004180
I 125	560.018	186.062	385.073	1131.153	.113115
Cs 137√	.575			.575	.000575
Pm 147	.863			.863 [/]	.000086
√Eu 152√	~ 445			.445 🗸	.004450
Eu 154 V	.050			.050	.000050
√T1 204	.055		а. С	.055	.000001
VTh 232 V	8.000		945 (M) 7	8.000	.000160
U 238	2.000	99 (*) 1		2.000	.000040
Am 241	2.329	· · · ·		2.329	.023290
Cm 244	.099			.099 -	.000990
VBk 249	.087			.087	.000870
TOTAL	9860.840	5858.247	13337.841	29056.928	.382107
n ²					

FLORIDA STATE UNIVERSITY

P1T # 23

Surface

*Nuclide

AL 31

Label

.03 mr/hr

1-White

C 14

.04 mr/hr

H 3

I-White

.04 mr/hr

1-White

N3,C14,T125

.04 mr/hr

I-White

1 125

RADIOACTIVE MATERIAL TRANSPORTATION AND BURTAL RECORD

Radioactive materials were buried at TSU Radioactive Burial Site # 2, Apolachicola National Forest. The usdioactive waste was compressed into 55 gallon drums and sealed with a hoop closure. Liquid waste was absorbed on sawlust, vermiculite or other equivalent absorbont material. The dpm figure indicates the surface contamination of each container. Surface indicates mr/br, the bighest reading taken at the surface of each container, At 3' indicates the highest reading taken at 3 feet from the surface of each container. The figures below each drum number is the amount of activity in microcuries. *Principal Nuclide. Total number of drums: Solid 4, Liquid 2, Animal 2. Total Volume 60 cu. ft. Activity Date 12-14-78 108 DRUM # 104 106114 115 MICROCURIES PIT 1.01 1.02 105 SUB-TOTAL RATTO LIQUID SAND FORM SOLID LIQUID SOLID ANIMAL ANIMAL SAND ------14661,464 9278.040 32577.863 1932.632 874.111 5831.616 VH 3 .130311 657.000 2030.500 3325.680~ .066514 C 14 369.180 269.000 .01.9 Wa 22 .019 .000002 VP 32 069~ .001 .034 .034 .000007 102.013 536.1264 1 5 35 434.113 .010723 2,110 .995 ,987 Sr 90 .128 .021100 2333.646~ 178.447 114.615 1928.971 53.013 .233365 58.500 VI 125 .988 1.255 .001255 .267 JCa 137 . 5104 ,000510 .386 .124 Ce 144 1.316-1.316 .000132 2m 147 15.647 .156470 /Eu 152 10.836 4.284 .527 .059 1.6160 .001616 VEn 154 1.166 .391 158~ .001680 JTm 170 .1.68 .270 VT1 204 .270 .000005 13 2.38 .200 .000004 .200 2.798 Vim 241 12.785 .100 15.6340 .156840 16.875 .168760 V Cre 244 16.288 .588 2.548 1.025480 VBk 249 .516 2,032 2.5190 .0251.90 /Cf 252 2.519 ----TOTAL 761.981 15213.771 4082,725 11911.922 927.124 5933.629 .995 1.975 38834.122 ,999964 DPM 22 28 22 32 24 30 20 14

.02 mr/hr

No label

.06 mr/hr

I-White

83.835

.02 mr/hr

No label

(For yellow label only)

.03 mr/hr

No label

FLORIDA STATE UNIVERSITY

24 err #

RADIOACTIVE MATERIAL TRANSPORTATION AND BURIAL RECORD

Radioactive materials were buried at FSU Radioactive Burial Site # 2, Apalachicola National Forest. The radioactive waste was compressed into 55 gallon drums and scaled with a hoop closure. Liquid waste was absorbed on sawdust, vermiculite or other conjusient absorbent material. The dpm figure indicates the surface contamination of each container. Surface indicates mr/hr, the highest reading taken at the surface of each container, At 3' indicates the highest reading taken at 3 feet from the surface of each container. The figures below each drum number is the amount of activity in microcuries. *Principal Nuclide.

Total number of drums:	Solid 4 .	Liauta 1 .	Animal 3 .	Total Volume 60 cu. f	c. Activity Date 12-14-78
		the set annual the set of the set	warming warming had a set the set of the	search and the second	and a state of a state of a state of the sta

DRUM #	103	107	109	11.0	11.1	3.72	113	116	MJCROCURTES	PIT
FORM	Solid	Solid	Solid	Animal	Animal	Animal	Solid	Liquid	SUB-TOTAL	RATIO
AL 3	161.098	3010.955	437.739	9096.201	8239.032	1967.944	25.563	4930.903	27869.435	.111478
VC 14	2185.000	125.300	n naise de las des la densi en sond des la Martines des las internets.	a (anaisean 1967) ann a' Gant Na Annaiste (an 1977) a 1977 annaiste	200.000		86.000	295.150	2891.450	.057829
12 32	.178		36,542				4.542	15,998	57.260	.005726
(8.35		an a		648.771		434.108	23.082	70.011	1175.972	.025194
Cr 51			.123					2.132	2.255	.600045
1,5z 90	8,711					water taken the state of an at the state of			8.7119	037110
<u>I 125</u>			2.398				-	990.240	932.638	.013981
163 1.37	12.986		.995						1.3.9814	.01.3981
VTm 170			.069						.069	
1Po 210		11.822					-	17 F. 17	11.822	.118220
V1h 230	a ang mang managang mang mang ang managang mang m	1.25	a navnað til heini Janin - nað ann a kenn heini skunna fra a					.500	.500 a	<u> </u>
0 233		.100					-		.120-	001000
NP 23/								.400	.4000	004000
VPu 239								.500	,5000	.005000
VAm 241	tarfantina'i ani dahar tar yawa karaka ni	.100				S 		.100	.200	.002000
-										en semeren ing is have been listen an over
1.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1										www.co.ordinationality.co.co.adaptics.co.dobased.com
							+			
-										
· Martin and Constant Strategy	nar ve, kur untrikk mule tekste fike verlant den die kere in der sone ist wurde einer ist.	- THE REPORT OF AN ADDRESS OF THE AD								an an an an an Albandar, Albandar a Bhar a Bhar an Anna an
10/10 ⁴ (P. 10) (P. 5) (S. 50 ⁴) (S. 10 ⁴)				non a transmission and a second s		-				
	· · · · · · · · · · · · · · · · · · ·									
								· · · · · · · · · · · · · · · · · · ·		
na unun ter tanan annun practica d			and a transformer of the second s		- Constant and a second state of the second st					
TOTIC:	7767 073	21/0 077	177.0//	07// 070	9/00 000	0/00050	2/10/107	CODE 02/	22005 202	COCCUS
The Further State South	4007.973	3148.277	4/7.800	9744.972	8439.032	2402052	1 139.18/	5303.934	33,043	.330337
DPM	24	24	16	6	32	30	24	0		
Surface	.05 mr/hr	.05 wr/hr	.02 mr/hr	,02 mr/hr	.02 mr/br	.06 mr/hr	.03 mr/hr	.02 mr/hr		
At 3'					-				(For yellow	label only
Label	I - White	I - White	No label	I - White	I - White	I - White	No label	I - White		
*Nuclide	НЗ, С 1.4	H 3		<u>н 3</u>	Н 3	Н 3		I 125		

PIT #	НА Ма 25	ZARD CLASS: 1 terial, n.o.	Radioactive s Normal : RADIOACT	FLORI form TALL TVE MATERIAL	DA STATE UNI A H A SS EE TRANSPORTAT	VERSITY FL 3230 TION AND BURI	A'	FTENTION: M E Buri	4. C. Riggenb SHIPPER al Date	ach 14-79
Radioact compress equivale the high face of Total nu	tive material and into 55 g ent absorbent nest reading each contair umber of drum	ls were burie gallon drums material. T taken at the ner. The figu ns: Solid 3	ed at FSU Rad and sealed w The dpm figur surface of ares below ea , Liquid	ioactive Bur with a hoop of e indicates each contair ach drum numb 3 , Anim	tial Site # 2 closure. Liqu the surface her, "T-Index per is the an hal 2 .	, Apalachico id waste was contaminatio " indicates nount of acti Total Volume	ola National absorbed or on of each co highest read ivity in micr e 60 cu.	Forest. The sawdust, v ntainer. Su ling taken a ocuries. ft. Activi	radioactive ermiculite of rvey indicate t 3 feet from ty Date 6-	waste was r other es mr/hr, n the sur- 14-79 .
DRIM #	117	118	110	120	121	122	126	132		DTM
FORM	Animal	Solid	Animal	Animal	JEIId	Liquid	Solid	Solid'	SUB-TOTAL	RATIO
7 H3	1638 610	1152 217	2617 08/	1/060 /20	36351 8/3	10409 355	60703 834	borra	1278/3 372	511373
VC 14	1050.010	229.000	2017.904	14909,429	491.750	220.830	1.100		942.680	.018854
Na 22								······································		
₽ 32 V							.973		✓ .973	.000079
IS 35 V	336:734	28.435	118,479	122.690		.109			606.447	.012129
MCa 45 V		109.822							V 109.822	.010982
II 125 √ 8:177	11.997	76.575		24,402	633,489	25,607	1196,375	171.986	2140.431	.214043
ee 1441	1						3,110	**************************************	3.110	.003110
Pm 177										
E Eu 152										
TEU 154					.010	· · · · · · · · · · · · · · · · · · ·	1.104	i	V 1.114+	.001114
TH 222 -	1-1				010		010		020	000000
LAm 241	V				010	· · · · · · · · · · · · · · · · · · ·	2 214		2 224	002224
T Cm 244					.010	. 050	2.214		.099	.000099
TBk 249							1.569	· · · · · · · · · · · · · · · · · · ·	1.569	.001569
LCf 252					.007		1.736		1.743	.001743
0										
V										
Jr Ab	.III.	-II-	TH	TH	Ĩ	Ŧ	I	TT		
TOTAL	1987.341	1596.149	2736.463	15116,521	37412/68	10655,951	61912.025	171,986	131653,604	.777339
DPM	20	8	2	10	14	6	4	6	(Surface con	ntamination
Survey	.04	.9	,04	,03	:03	,03	.03	.03	(mr/hr at Co	ontact)
T-Index	[01.57					a		(For Yellow	Label Only
Label	White I	YELLOWIT	white I	white I	white T	white T	VELLOW TC	white I	(or no labe	1 required)
Nuclides	H3 535	H3 C14 Ca45	H3 535	H3 535	H3, C14 1125	H3 C14 1125	H3 L125	F125	(Principal)	Isotope)
V.			and the second			1 1/2				

* FISSILE RADINACTIVE MATERIAI

PIT # Radioact compress equivale the high face of Total nu	HAZARI Materi 26 ive material sed into 55 g ent absorbent nest reading each contain mber of drum	CLASS: Radial, n.o.s. s were burie allon drums material. T taken at the er. The figu	ioactive - Normal form FADIOACT ed at FSU Rad and sealed w The dpm figur surface of ares below ea	FLORI TACC TIVE MATERIAL ioactive Bur with a hoop contrained the a hoop contained the a hoop	DA STATE UNI CAHASSEC TRANSPORTAT ial Site # 2 losure. Liqu the surface her, "T-Index ber is the am	VERSITY FL 323 ION AND BURI d waste was contamination " indicates nount of action Total Volume	ATTE NTIC AL RECORD absorbed or on of each co highest read vity in micr e 60 cu.	DN: M. C. Ri Buria Forest. The sawdust, vo ntainer. Su ling taken at ocuries. ft. Activit	ggenbach - Sh al Date <u>6-7</u> radioactive ermiculite or rvey indicate t 3 feet from ty Date <u>6-7</u>	hipper 4-79 waste was other s mr/hr, the sur- 4-79.
DRUM #	123	124 1	125	127	128	129	130	131.	MICROCURIES	PIT ·
FORM	Lig	ani	ani	Lia	Solid	ani	Lig.	Solid	SUB-TOTAL	RATIO
THH 3	19950.527	2929748	1705.013	and the second	173.427	4788.631	707 595	657,829	30912.770	123651
W-C 14	466,350	Se you is a first			279,010	· · · · · · · · · · · · · · · · · · ·	177.000	285.000	1207.360	024147
TH na 221					.010				V ,010	000001
P P32	1				,020			.511	V.531	000056
IN 5354	198,793	588-174	-		.132	253.957		178,941	V1219,999	024400
12 Ca 45	1		117 9111	VII AAI		- (ea	45)139,55.6	91-136	1230,692	023064
11 125	1210,800		407, 741	-41001	1536,429		1388,029	2110.259	3937.200	5 75 126
100121	V			170					170	0000170
arka (47	1				. 334				334	000033
They 152	V			. 239	.198				V.437	.004370
IF u 154	1			2 - 105	3				V2,105	,002105
J 1 204	V				e 004:		and the second second second		V.004	00000
FU233					,010	X			V.010	00100
四0238	1.500								500	.005000
3 Cem 241	V/			13,693	+100				13,793	131930
2 Cm 241	V			3.681	*149				3.836	.038360
Y Blerty	K/			1.140	E 0 3 0				V-114A	00880
J CZZSZ	- V*		·	1.6.50					V 110 1 0	816700
Q Cr 51	1							91.702	V91.702	.001834
A										
1										
Y										
Fr 2p	Æ	I	III.	T	Ŧ	TF	TH	II		Program and the second sectors pressed
TOTAL	20894,970	3517,924	2112,954	62,535	1990,230	5042,588	2606.984	3415,378	39643,563	998551
DFM	4	24	4	10	12	22	10	4	(Surface con	tamination)
Survey	.03	,03	.03	103	.03	.03	.13	13	(mr/hr at Co	ntact)
'i-Index	+5D	-07-	.672	7.7-	+1.	,02	- 13	47	(For Yellow	Label Only)
Label.	Twhite	Twhite	Tushita	T white	VEN NU T	Twhite	Tushite	1 white	(or no label	required)
Nuclides	HZ	11 2	H3 7125	1125 nm 241	1120	43. <35	134	L (25	(Principal T	sotope)
-	11-1-	FI	11	M		12 20-	T I AM			

* FISSILE BADINACTIVE MATERIAL (SNM)

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B

Monitoring Well Boring Logs

THIS PAGE INTENTIONALLY LEFT BLANK

₩₩017 €	
USCS	
	USCS

Site Name: FSU-LLRW-2-ESI Mational Forest: Aplachticola National Date: 01/09/2018 Boring DD: MW015 Coordinates: 497527.9297, 1960822.3318 Total Depth: 40 Boring Diameter: 6-8* Drill Method: Sonic Trill Rig: Torazionic Track Mounted Inspecto: Justin Idzonga Use: 5 Opmin: Mothod: Sonic Toral Rig: Torazionic Track Mounted Inspecto: Justin Idzonga Use: 5 Use: 5 Opmin: Mothod: Sonic Toral Method: Sonic Toral Method: Sonic Depth (hgs) § © Description USCS USCS Depth (hgs) § © 0 Description Usc s USCS USCS 100% 10 - 1.0 gray and white medium to fine SAND. Slightly most. Some organics: roots and grass. No odor/staining. 00 - 1.0 gray and white medium to fine SAND. Slightly most. Most at Sone odor/staining. 0			FSU-LLRW-2 ESI - SUBSURFACE SOIL BORING LOG		
Boring Diameter: 6-8° monocolumn Drill Wethod: Sonic monocolumn Drill Might TerrSonic Track Mounted mispector: Justin Idzenga Comments: 8° tooling to 20° bgs. 6° tooling to 40° bgs with inspector: Justin Idzenga use of well screen intervals; 10° to 20° Dgs and 25° to 35° bgs. Nested wells. 3° stick-up. use of well screen intervals; 10° to 20° Depth ('bgs) Image: Sonic Track Mounted use of well screen intervals; 10° to 20° 0.00° 1.0 grey and white medum to fine SAND. Slightly molel. Some organics; roots and grass. No oddristaining, USCS USCS 100% 0.0° 1.0 grey and white medum to fine SAND. Slightly molel. Molel 8' 3° No coddristaining, Image: Sonic Track grey to dark grey medum to fine SAND. Molet. No oddristaining, Image: Sonic Track grey Slight greg to the SAND. Molet. No oddristaining, 100% 10.0° 10.0 - 12.5 Dark grey Sligh medium to fine SAND. Molet. No oddristaining, Image: Sonic Track grey Slight greg to the SAND. Molet. No oddristaining, Image: Sonic Track greg Slight greg to the SAND. Molet. No oddristaining, 100% 13.0° - 21.0 Dark greg Slight medium to fine SAND. Molet. No oddristaining, Image: Sonic Track greg Slight medium to fine SAND. Molet. No oddristaining, 100% 13.0° - 21.0 Dark greg Slight medium to fine SAND. Molet. No oddristaining, Image: Sonic Track greg greg Slight medium to fine SAND. Molet to wel. No oddristaining,	Total Depth	Site Na Nationa Date: 0 Boring Coordi	me: FSU-LLRW-2-ESI al Forest: Apalachicola National 1/09/2018 ID: MW015 nates: 497527.9297, 1960822.3318		
Drill Wethod: Some Drill Wethod: Some Drill Wethod: Some Comments: B' tooling to 20' bps. 6' tooling to 40' bps with inspector: Use of the second secon	Boring Dian	neter: 6-8	3"		
Drill Method: Sonic Description USCS USCS 000 rel11 Rg: Terrasonic Track Mounted Inspector: Justin Idzenga Image: Sonic Track Mounted	Driller: Mich	ael Hans	on MW015		
Drill Rig: Torrack Mounted Imspector: Justic Indexinga Use of the control of a 20° bgs. 6° tooling to 40° bgs with continuous cores. 2 sets of well screen intervals; 10° to 20° bgs and 26° to 35° bgs. Nested wells. 3' stick-up. Use of the control of a 20° bgs. 6° tooling to 40° bgs with continuous cores. 2 sets of well screen intervals; 10° to 20° bgs and 26° to 35° bgs. Nested wells. 3' stick-up. Use of the control of the cores. Depth (*bgs) 	Drill Method	I: Sonic	MW019		
Inspector: Justin Idzenga Visitin Idzenga Comments: 5: tooling to 2b gs. 6' tooling to 40' bgs with continuous cores. 2 sets of well screen intervals; 10' to 20' bgs and 26' to 35 bgs. Nested wells. 3' stick-up. Visitin Idzenga Depth ('bgs) <u>8</u> <u>8</u>	Drill Rig: Te	rraSonic	Track Mounted	MW017	
Centervisit Depth (bigs) § § Control to cores and the medium to fine SAND. Slightly moist. Some organics; roots and grass. No codor/staining. USCS USCS 1 100% 10.0 - 10.0 pray and while medium to fine SAND. Slightly moist. Most (§ 3. No codor/staining. Image: Control to tool to 10.0 pray and while medium to fine SAND. Most (§ 3. No codor/staining. Image: Control tool tool tool tool tool tool tool	Inspector: J	ustin Idze	enga	•	
Continuous cores. 2: sets or Weils Screen intervals; 10 to 20 bgs and 25 to 35 bgs. Nested wells. 3: stick-up. Description USCS USCS Depth ('bgs)	Comments:	8" tooling	g to 20' bgs. 6" tooling to 40' bgs with		
Ougs and 25 to 35 dgs. Nested wells, 3 stuck-dp. Image: Constraining of the standard structure of the	continuous c	ores. 2 s	ets of well screen intervals; 10' to 20'		
Depth ('bgs) § E Description USCS USCS 100% 0.0 - 1.0 grey and white medium to fine SAND. Slightly moist. Some organics; roots and grass. No oddor/staining. 100% 10 - 4.0 Grey to dark grey fine SAND. Slightly moist. Moist @ 3: No oddor/staining. Image: Comparison of the stain of the st	bgs and 25 t	0 35 bgs	s. Nested wells. 3 stick-up.		1
0.0.1.0 grey and while medum to fine SAND. Slightly moist. Some organics; roots and grass. No oddr/staining. 100% 1.0.4.0 Grey to dark grey tine SAND. Slightly moist. Moist @ 3'. No oddr/staining. 100% 10.0.1.0.0 Dark grey to very dark grey medium to fine SAND. Moist No oddr/staining. 100% 10.0.1.0.0 Dark grey to very dark grey medium to fine SAND. Moist. No oddr/staining. 100% 10.0.1.2.5 Dark grey Sity medium to fine SAND. Moist. No oddr/staining. 10.0.1.4.5 Dark grey cemented fine SAND. Moist. No oddr/staining. 15' 10.0% 10.0.2.1.5 SAA Saturated 21.5 - 22.5 Dark Grey comented fine SAND. No ist. No oddr/staining. 100% 20.0.2.1.5 SAA Saturated 21.5 - 22.5 Dark Grey comented fine SAND. No ist. No oddr/staining. 20.1.2.5 SAA Saturated 21.5 - 22.5 Dark Grey comented fine SAND. Moist. No oddr/staining. 22.5 - 23.5 SAA 23.5 - 28.0 Dark brown to brown and grey silty fine SAND. Moist to wet. No oddr/staining. 20.0 21.00% 23.0.0 - 28.0 Brown Silty medium to fine SAND. Moist to wet. No oddr/staining. 30.0 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No oddr/s	Depth ('bgs)	Recovel y (%)	Description	USCS	USCS
No oddr/staining. No oddr/staining. 100% 1.0 - 4.0 Grey to dark grey fine SAND. Slightly moist. Moist @ 3'. No oddr/staining. 6' 4.0 - 10.0 Dark grey to very dark grey medium to fine SAND. Moist. No oddr/staining. 10' 10.0 - 12.5 Dark grey Silty medium to fine SAND. Moist. No oddr/staining. 10' 10.0 - 12.5 Dark grey Silty medium to fine SAND. Moist. No oddr/staining. 10' 10.0 - 12.5 Dark grey cemented fine SAND. Moist. No oddr/staining. 10' 10.0 - 14.5 Dark grey cemented fine SAND. Moist. No oddr/staining. 15' 14.5 - 15.0 Dark grey cemented fine SAND. Moist. No oddr/staining. 15' 15.0 - 20.0 Dark grey cemented fine SAND. Moist. No oddr/staining. 100% 20 - 21.5 SAA Saturated 21.5 - 22.5 Dark Grey cemented fine SAND. Saturated. No oddr/staining. 100% 22.0 - 21.5 SAA Saturated 21.5 - 22.6 Dark Grey cemented fine SAND. Moist. No oddr/staining. 22' 20.0 - 21.5 SAA Saturated 23.5 - 28.0 Dark brown to brown and grey silty fine SAND. Moist to wet. No oddr/staining. 26' 30.0 - 35.5 Brown to brown silty medium to fine SAND. Moist to wet. No oddr/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No oddr/staining. 30' 30			0.0 - 1.0 grey and white medium to fine SAND. Slightly moist. Some organics; roots and grass.		
100% 1.0 - 4.0 Grey to dark grey fine SAND. Slightly molst. Moist @ 3. No odor/staining. 5' 4.0 - 10.0 Dark grey to very dark grey medium to fine SAND. Moist. No odor/staining. 100% 10.0 - 12.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 10 10.0 - 12.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 10 10.0 - 12.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 10 10.0 - 12.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 10 13.0 - 14.5 Dark grey cemented fine SAND. Moist. No odor/staining. 15' 14.5 - 15.0 Dark grey cemented fine SAND. Moist. No odor/staining. 100% 21.5 - 22.5 Dark Grey cemented fine SAND. No odor/staining. 100% 22.5 - 23.5 SAA 22.5' 22.6 . 23.0 Brown to brown and grey silty fine SAND. Moist to wet. No odor/staining. 26' 20.0 - 21.5 SAA Saturated 27' 28.0 - 20.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 30' 30.0 - 35.5 Brown to brown silty medium to fine SAND. Moist. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fin			No odor/staining.		
5 4.0 - 10.0 Dark grey to very dark grey medium to fine SAND. Moist. No odor/staining. 10 100% 10 10.0 - 12.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 10 10.0 - 12.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 10 12.5 - 13.0 Dark grey comented fine SAND. Moist. No odor/staining. 15 14.5 - 15.0 Dark grey comented fine SAND. Moist. No odor/staining. 15 14.5 - 15.0 Dark grey comented fine SAND. No odor/staining. 100% 15.0 - 20.0 Dark grey comented fine SAND. No odor/staining. 20 20.0 - 21.5 SAA Saturated 100% 25.5 - 28.0 Dark brown to brown and grey silty medium to fine SAND. Moist. No odor/staining. 25 26.0 - 28.0 Brown Silty imedium to fine SAND. Moist. No odor/staining. 26 28.0 - 28.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 30 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 31 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 40' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 36 100% 37.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 40' 35.5 - 40.0 Grey Silty m	I	100%	1.0 - 4.0 Grey to dark grey fine SAND. Slightly moist. Moist @ 3'. No odor/staining.		
5 4.0 - 10.0 Uaik grey to very dark grey medium to time SAND. Moist. No odor/staining. 10' 10.0 - 12.5 Dark grey Sity medium to fine SAND. Moist. No odor/staining. 10' 10.0 - 12.5 Dark grey Sity medium to fine SAND. Moist. No odor/staining. 10' 10.0 + 12.5 Dark grey Sity medium to fine SAND. Moist. No odor/staining. 10' 10.0 + 12.5 Dark grey Sity medium to fine SAND. Moist. No odor/staining. 10' 13.0 - 14.5 Dark grey cemented fine SAND. Moist. No odor/staining. 15' 14.5 - 15.0 Dark grey Sity medium to fine SAND. Moist. No odor/staining. 10' 15.0 - 20.0 Dark grey Sity medium to fine SAND. No odor/staining. 20' 20.0 - 21.5 SAA Saturated 100% 21.5 - 22.5 Dark Grey cemented fine SAND. No odor/staining. 20' 20.0 - 21.5 SAA Saturated 100% 22.5 - 23.5 SAA 22.5 - 23.5 Dark forey cemented fine SAND. Moist to wet. No odor/staining. 20' 20.0 - 28.0 Brown Sity fine SAND. Moist. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Sity fine SAND. Moist to wet. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Sity fine SAND. Moist to wet. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Sity fine SAND. Moist to wet. No odor/staining. 40' 30.0 - 35.5 Brown to					
100% 10.0 - 12.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 10 12.5 - 13.0 Dark grey comented fine SAND. Moist. No odor/staining. 100% 13.0 - 14.5 Dark grey comented fine SAND. Moist. No odor/staining. 15' 14.5 - 15.0 Dark grey comented fine SAND. Moist. No odor/staining. 100% 15.0 - 20.0 Dark grey comented fine SAND. No odor/staining. 100% 15.0 - 20.0 Dark grey comented fine SAND. No odor/staining. 20' 100% 21.5 - 22.5 Dark Grey comented fine SAND. No odor/staining. 20' 20.0 - 21.5 SAA Saturated 100% 22.5 - 23.5 SAA 25.5 - 20.0 Dark brown to brown and grey silty fine SAND. Moist to wet. No odor/staining. 26' 20.0 - 21.5 SAA Saturated 100% 22.5 - 23.6 SAN 25.6 . 0 and brown Silty line SAND. Moist. No odor/staining. 26.0 - 30.0 Brown Silty line SAND. Moist. No odor/staining. 20' 20.0 - 0.5 S.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist to wet. No odor/staining. 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% </td <td>5</td> <td></td> <td>4.0 - 10.0 Dark grey to very dark grey medium to fine SAND. Moist. No odor/staining.</td> <td></td> <td></td>	5		4.0 - 10.0 Dark grey to very dark grey medium to fine SAND. Moist. No odor/staining.		
10° 100% 10.0 - 12.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 10° 100% 12.5 - 13.0 Dark grey cemented fine SAND. Moist. No odor/staining. 13 14.5 - 15.0 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 15° 14.5 - 15.0 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 100% 15.0 - 20.0 Dark grey Silty medium to fine SAND. No odor/staining. 20 100% 21.5 - 22.0 Dark grey Silty medium to fine SAND. No odor/staining. 20 20.0 - 21.5 SAA Saturated 21.5 - 22.5 Dark Grey comented fine SAND. Saturated. No odor/staining. 22.5 - 23.5 SAA 23.5 - 26.0 Dark brown to brown and grey silty fine SAND. Moist to wet. No odor/staining. 26.0 - 28.0 Brown Silty fine SAND. Moist. No odor/staining. 30' 28.0 - 30.0 Brown Silty medium to fine SAND. Moist to wet. No odor/staining. 30' 100% 31.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 31.0 - 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 31.0 - 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 31.0 - 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 31.0 - 30.0 - 35.5 Brown to brownish grey Silty medium to fine S	I —	-			
10' 10.0 - 12.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 10' 10.0 + 12.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 10' 13.0 - 14.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 15' 14.5 - 15.0 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 15' 100% 20' 100% 20 20.0 - 21.5 SAA Saturated 21.5 - 22.5 Dark Grey cemented fine SAND. Saturated. No odor/staining. 100% 22' 100% 22.6 - 23.5 SAA 23.5 - 28.0 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 100% 26' 28.0 - 30.0 Brown Silty fine SAND. Moist. No odor/staining. 100% 30' 100% 28.0 - 30.0 Brown Silty fine SAND. Moist. No odor/staining. 100% 30' 100% 25.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 35' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 36' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 36' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 37 100% <td< td=""><td>—</td><td>100%</td><td></td><td></td><td></td></td<>	—	100%			
10' 10.0 - 12.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 10' 100% 12.5 - 13.0 Dark grey cemented fine SAND. Moist. No odor/staining. 15' 14.5 - 15.0 Dark grey cemented fine SAND. Moist. No odor/staining. 15' 14.5 - 15.0 Dark grey cemented fine SAND. No odor/staining. 15' 100% 20' 10.0 + 22.5 Dark Grey cemented fine SAND. No odor/staining. 100% 15.0 - 20.0 Dark grey Silty medium to fine SAND. No odor/staining. 20' 100% 21.5 - 22.5 Dark Grey cemented fine SAND. Saturated. No odor/staining. 25' 100% 25.5 - 28.0 Dark brown to brown and grey silty fine SAND. Moist to wet. No odor/staining. 26' 28.0 - 28.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 26.0 - 28.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 28.0 - 30.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 30' 100% 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist. No odor/staining. 30' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 40' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining.		10070			
10% 12.5 - 13.0 Dark grey cemented fine SAND. Moist. No odor/staining. 15' 100% 13.0 - 14.5 Dark grey cemented fine SAND. Moist. No odor/staining. 15' 14.5 - 15.0 Dark grey cemented fine SAND. Moist. No odor/staining. 100% 15.0 - 20.0 Dark grey Silty medium to fine SAND. No odor/staining. 100% 20.0 - 21.5 SAA Saturated 20' 20.0 - 21.5 SAA Saturated 100% 22.5 - 23.5 SAA 23.5 - 26.0 Dark brown to brown and grey silty fine SAND. Moist to wet. No odor/staining. 25' 20.0 - 28.0 Brown Silty imedium to fine SAND. Moist. No odor/staining. 26.0 - 28.0 Brown Silty imedium to fine SAND. Moist. No odor/staining. 28.0 - 30.0 Brown Silty imedium to fine SAND. Moist. No odor/staining. 30' 20.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist. No odor/staining. 35' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 40' 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining.	10'		10.0 - 12.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining.		
12.5 - 13.0 Dark grey cemented fine SAND. Moist. No odor/staining. 100% 13.0 - 14.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 15' 14.5 - 15.0 Dark grey cemented fine SAND. Moist. No odor/staining. 100% 15.0 - 20.0 Dark grey Silty medium to fine SAND. No odor/staining. 20' 100% 21.5 - 25.0 Dark Grey cemented fine SAND. No odor/staining. 20' 20.0 - 21.5 SAA Saturated 21.5 - 22.5 Dark Grey cemented fine SAND. Saturated. No odor/staining. 22.5 - 23.5 SAA 23.5 - 26.0 Dark brown to brown and grey silty fine SAND. Moist to wet. No odor/staining. 25' 26.0 - 28.0 Brown Silty fine SAND. Moist. No odor/staining. 28.0 - 30.0 Brown Silty medium to fine SAND. Moist to wet. No odor/staining. 30' 100% 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining.					
100% 13.0 - 14.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining. 15' 14.5 - 15.0 Dark grey camented fine SAND. Moist. No odor/staining. 100% 15.0 - 20.0 Dark grey Silty medium to fine SAND. No odor/staining. 20' 100% 21.5 - 22.0 Dark Grey camented fine SAND. Saturated. No odor/staining 21.5 - 22.5 Dark Grey camented fine SAND. Saturated. No odor/staining 25' 21.5 - 22.5 Dark Grey camented fine SAND. Moist to wet. No odor/staining. 25' 26.0 - 28.0 Brown to brown and grey silty fine SAND. Moist to wet. No odor/staining. 26' 28.0 - 30.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 40' 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining.			12.5 - 13.0 Dark grey cemented fine SAND. Moist. No odor/staining.		
15' 14.5 - 15.0 Dark grey cemented fine SAND. Moist. No odor/staining. 100% 15.0 - 20.0 Dark grey Silty medium to fine SAND. No odor/staining. 20' 100% 21.5 - 22.5 Dark Grey cemented fine SAND. Saturated. No odor/staining. 25' 100% 26.0 - 28.0 Brown Silty fine SAND. Moist. No odor/staining. 26.0 - 28.0 Brown Silty fine SAND. Moist. No odor/staining. 28.0 - 30.0 Brown Silty fine SAND. Moist. No odor/staining. 28.0 - 30.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 30' 100% 30' 30.0 - 35.5 Brown to brown and grey Silty fine SAND. Moist to wet. No odor/staining. 30' 100% 31.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 100% 35' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 40' 100%		100%	13.0 - 14.5 Dark grey Silty medium to fine SAND. Moist. No odor/staining.		
13 15.0 - 20.0 Dark grey Silty medium to fine SAND. No odor/staining. 20' 100% 20.0 - 21.5 SAA Saturated 21.5 - 22.5 Dark Grey cemented fine SAND. Saturated. No odor/staining. 100% 22.5 - 23.5 SAA 23.5 - 26.0 Dark brown to brown and grey silty fine SAND. Moist to wet. No odor/staining. 25' 26.0 - 28.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 28.0 - 30.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist. No odor/staining. 40' 100%	15'	-	14.5 15.0 Dark group comported fine SAND Moint No eder/steining		
20' 100% 20' 100% 21.5 - 22.5 Dark Grey cemented fine SAND. Saturated. No odor/staining. 25' 23.5 - 26.0 Dark brown to brown and grey silty fine SAND. Moist to wet. No odor/staining. 25' 26.0 - 28.0 Brown Silty fine SAND. Moist. No odor/staining. 26' 28.0 - 30.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 30' 100% 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 100% 35' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 40' 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining.	15		15.0 - 20.0 Dark grey Silty medium to fine SAND. No odor/staining.		
20' 20.0 - 21.5 SAA Saturated 21.5 - 22.5 Dark Grey cemented fine SAND. Saturated. No odor/staining 22.5 - 23.5 SAA 25' 26.0 - 28.0 Brown Silty fine SAND. Moist No odor/staining. 25' 28.0 - 30.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 35' 100% 35' 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 40' 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining.					
20' 20.0 - 21.5 SAA Saturated 21.5 - 22.5 Dark Grey cemented fine SAND. Saturated. No odor/staining 21.5 - 22.5 Dark Grey cemented fine SAND. Moist to wet. No odor/staining. 25' 26.0 - 28.0 Brown Silty fine SAND. Moist. No odor/staining. 28.0 - 30.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 35' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 40' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining.		100%			
20' 20.0 - 21.5 SAA Saturated 100% 21.5 - 22.5 Dark Grey cemented fine SAND. Saturated. No odor/staining 25' 26.0 - 28.0 Brown to brown and grey silty fine SAND. Moist to wet. No odor/staining. 25' 28.0 - 30.0 Brown Silty fine SAND. Moist. No odor/staining. 28.0 - 30.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 100% 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 100% 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 100% 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 100% 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 100% 100% 35' 100% 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 100% 25' 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%					
20.0 - 21.5 SAA Saturated 21.5 - 22.5 Dark Grey cemented fine SAND. Saturated. No odor/staining. 25' 26.0 - 28.0 Brown Silty fine SAND. Moist to wet. No odor/staining. 28.0 - 30.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 30' 100% 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 100% 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 100% 35' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 40'	20'				
21.5 - 22.5 Dark Grey cemented fine SAND. Saturated. No odor/staining 100% 22.5 - 23.5 SAA 25' 26.0 Dark brown to brown and grey silty fine SAND. Moist to wet. No odor/staining. 25' 28.0 - 30.0 Brown Silty fine SAND. Moist. No odor/staining. 30' 28.0 - 30.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 100% 35' 100% 40' S5.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining.			20.0 - 21.5 SAA Saturated		
25' 23.5 - 26.0 Dark brown to brown and grey silty fine SAND. Moist to wet. No odor/staining. 25' 26.0 - 28.0 Brown Silty fine SAND. Moist. No odor/staining. 100% 28.0 - 30.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 30' 100% 35' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining.	I —	4000/	21.5 - 22.5 Dark Grey cemented fine SAND. Saturated. No odor/staining		
25' 26.0 - 28.0 Brown Silty fine SAND. Moist. No odor/staining. 100% 28.0 - 30.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 100% 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 100% END OF BORING		100%	22.5 - 25.5 SAA 23.5 - 26.0 Dark brown to brown and grey silty fine SAND. Moist to wet. No odor/staining		
26.0 - 28.0 Brown Silty fine SAND. Moist. No odor/staining. 28.0 - 30.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 30' 100% 30' 100% 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 100% 35' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% BEND OF BORING	25'	-			
30' 28.0 - 30.0 Brown Silty medium to fine SAND. Moist. No odor/staining. 30' 100% 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 100% 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% BEND OF BORING		1	26.0 - 28.0 Brown Silty fine SAND. Moist. No odor/staining.		
30' 100% 30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 100% 100% 35' 100% 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 100% 100% END OF BORING			28.0 - 30.0 Brown Silty medium to fine SAND. Moist. No odor/staining.		
30'	_	100%			
30' 30.0 - 35.5 Brown to brownish grey Silty fine SAND. Moist to wet. No odor/staining. 100% 100% 35' 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 100% 100% 100% END OF BORING		-			
35' 100% 35.5 - 40.0 Grey Silty medium to fine SAND. Moist to wet. No oddi/staining.	30'		20.0. 25.5 Drawn ta brawniab graw Silley fing SAND. Maint ta wat Na adar/ataining	-	
35' 100% 35' 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 100% 100% 40' END OF BORING			Solo - SS.S Brown to brownish grey Sitty fine SAND. Moist to wet, No oddi/staining.		
35' 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. 40' 100% END OF BORING	I —	100%			
35'					
40' Solution A0' 35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining. END OF BORING	35'				
40' 100% END OF BORING			35.5 - 40.0 Grey Silty medium to fine SAND. Moist. No odor/staining.		
40' END OF BORING		4			
40' END OF BORING		100%			
	40'	-			
	10		END OF BORING	1000000000	1

FSU-LLRW-2 ESI - SUBSURFACE SOIL BORING LOG					
Site Name: FSU-LLRW-2-ESI National Forest: Apalachicola National Date: 01/10/2018 Boring ID: MW016 Coordinates: 497152.5368, 1961155.3040 Total Depth: 40' Boring Diameter: 4" Driller: Michael Hanson Drill Method: Sonic Drill Rig: TerraSonic Track Mounted Inspector: Justin Idzenga Comments: 8" tooling to 15' bgs. 6" tooling to 40' bgs with continuous cores. 2 sets of well screen intervals; 5' to 15' bgs and 20' to 35' bgs. Nested wells. 3' stick-up.		me: FSU-LLRW-2-ESI al Forest: Apalachicola National 1/10/2018 ID: MW016 nates: 497152.5368, 1961155.3040 on Track Mounted enga g to 15' bgs. 6" tooling to 40' bgs with ets of well screen intervals; 5' to 15' s. Nested wells. 3' stick-up.	MW014 Productory MW018 MW018 MW019 MW019 MW019 MW015 MW015 MW016	MW017	
Depth ('bgs	Recove y (%)		Description	USCS	USCS
5'	100% 100% 100%	 0.0 - 1.5 Grey, light grey medium to fine SAND. 1.5 - 2.5 Dark grey to grey medium to fine SAND. 2.5 - 3.5 Tan and beige medium to fine SAND. 3.5 - 4.5 White to light grey medium to fine SAND. 4.5 - 10.0 Dark grey Silty medium to fine SAND. trace translucent medium quartz grains. 10.0 - 15.0 SAA 15.0 - 18.0 Cemented Dark grey to very dark gr Moist to very moist. No odor/staining. 18.0 - 20.0 Dark grey and dark brown Silty medium context for the second se	. Some Organics; roots and grass. ID. Some organics Slightly moist. No odor/staining. ND. Moist. No odor/staining. D. Moist to slightly moist. No odor/staining.		
20' 	100%	20.0 - 23.0 Brown Coarse to fine SAND. Quart: grey, translucent, and brown grains. 23.0 - 30.0 Brown Silty fine SAND. Moist. Satu	z grains. Coarse grains consist of black, rated at 29'. No odor/staining.		
 35'	100%	32.0 - 34.0 White to light grey medium to fine S	SAND. Moist. No odor/staining.		
-	100%	34.0 - 39.0 Brown Silty fine SAND. Moist to ver 39.0 - 40.0 Brown Silty medium to fine SAND. I	ry moist. No odor/staining. Moist. No odor/staining.		
40'					

		FSU-LLRW-2 ESI - S	SUBSURFACE SOIL BORING LOG		
	Site Na	me: FSU-LLRW-2-ESI	MW014		
FOREST SERVICE	Nation	al Forest: Apalachicola National			
UAS	Date: 0	01/10/2018	CU-URW-Z		
TWENT OF AGRESS	Boring	ID: MW017	Canada and		
	Coordi	nates: 497276.8358, 1961338.0361			
Total Depth	: 40'		MW018		
Boring Diar	neter: 4"		NFr-374A		
Driller: Mich	nael Hans	son	₩W015		
Drill Metho	d: Sonic		MW019		
Drill Rig: Te	erraSonic	Track Mounted		100017	
Inspector:	lustin Idze	enga			
Comments	8" tooling	g to 20' bgs. 6" tooling to 40' bgs with			
continuous o	ores. 2 s	sets of well screen intervals; 8' to 18'			
bgs and 23'	to 33' bgs	s. Nested wells. 3' stick-up.			
Depth ('bgs	(%) x (%)		Description	USCS	USCS
		0.0 - 1.0 Grey medium to fine SAND. Some org	ganics; grass and roots. Moist.		
	_	No odor/staining.			
	100%	1.0 - 10.0 Grey to dark grey medium to fine SA	ND. Some organics; grass and roots.		
	_	No odor/staining.			
5'	_				
	_				
	4000/				
	100%				
10'	-				
10		10.0 - 19.0 Dark grow to brownish grow Silty medium to fine SAND including medium			
	-	translucent quartz grains. No odor/staining			
	100%	transideent quartz grains. No odor/staining.			
15'					
	100%				
		19.0 - 24.0 Dark grey cemented silt and fine SAND. Moist. No odor/staining.			
20'					
	4000/				
	100%	Dark grov Silly modium to fine SAND including	urguertz greine. No oder/steining		
25'	-	Dark grey Sitty medium to the SAND including	quartz grains. No odor/staining.		
20					
-	-				
	100%				
-					
30'	1	30.0 - 32.0 Brown, greyish brown coarse to fine	e SAND. Moist. Quartz grained.		
	1	No odor/staining.			
-]	32.0 - 36.0 Brown Silty medium to fine SAND.	Moist. No odor/staining.		
	100%				
	_				
35'					
I _	4	36.0 - 37.0 Brown, and dark brown cemented S	Silt and fine SAND. Moist. No odor/staining.		
	4000	37.0 - 40.0 Brown Silty fine SAND. Moist. No o	dor/staining.		
_	100%				
40'	4				
40		1			

		FSU-LLRW-2 ESI - SUBSU	IRFACE SOIL BORING LOG			
Total Depth: Boring Diam Driller: Mich Drill Method Drill Rig: Te Inspector: J Comments: cores. Scree	Site Na Nationa Date: 0 Boring Coordi : 40' neter: 4" ael Hans I: Sonic rraSonic ustin Idze 6" tooling en interva	me: FSU-LLRW-2-ESI al Forest: Apalachicola National 1/9/2018 ID: MW018 mates: 497685.8977, 1960668.7068 on Track Mounted enga g advanced to 30' bgs with continuous I of 20-30' bgs. 3' stick-up.	MW014 WW018 WW018 WW015 WW019 WW015 WW015 WW015 WW016 WW016 WW016 WW016 WW016	17		
Depth ('bgs)	Recove y (%)	Desc	ription	USCS	USCS	
5'	100%	 0.0 - 1.0 grey medium to fine SAND. Some organics; GNo odor/staining. 1.0 - 1.5 Dark grey to grey Silty medium to fine SAND. No odor/staining. 1.5 - 2.5 Beige and tan medium to fine SAND. Slightly 2.5 - 3.5 Grey and light grey to white medium SAND. No 3.5 - 5.0 Grey and dark grey medium SAND. Moist. No 5.0 - 10.0 Dark grey medium to fine SAND. Slightly models. 	Grass and roots. Slightly moist. Some roots and grass. moist. No odor/staining. foist. No odor/staining. odor/staining. ist to moist. Slight organic odor.			
10'	100%	10.0 - 17.0 Dark grey with translucent grains. Silty medium to fine SAND. Moist. No odor/staining.				
	100%	17.0 - 17.5 Dark grey cemented fine SAND. Moist. No odor/staining.				
	100%	20.0 - 30.0 Dark grey certified line SAND. Molst. No 20.0 - 30.0 Dark brown and brown Silty medium to fine Sand near 25'. Slight organic odor. No staining.	SAND. Moist. Some cemented fine			
_25'	100%			-		
30'		F				
		L			Ţ	

FSU-LLRW-2 ESI - SUBSURFACE SOIL BORING LOG					
Total Depth: Boring Diam Driller: Micha Drill Method: Drill Rig: Ter Inspector: Ju Comments: continuous co bgs and 25' to	Site Na Nationa Date: 0 Boring Coordin 40' eter: 4" ael Hans : Sonic rraSonic ustin Idze 8" tooling ores. 2 s o 35' bgs	me: FSU-LLRW-2-ESI I Forest: Apalachicola National 1/9/2018 ID: MW019 mates: 497364.9358, 1960592.7230 on Track Mounted inga to 20' bgs. 6" tooling to 40' bgs with ets of well screen intervals; 8' to 18' . Nested wells. 3' stick-up.	MW014 Fear-Brief MW018 MW018 MW015 MW019 MW015 MW016 MW016 MW016		
Depth ('bgs)	pth ('bgs)		USCS	USCS	
5'	100%	 0.0 - 2.0 White, grey, and dark grey fine SAND. Some organi 2.0 - 3.0 Brown Silty fine SAND. Little organics. Slightly mois 3.0 - 5.0 Beige and tan Silty fine SAND. Moist. No odor/staini 	c; roots and grass. t. No odor/staining. ing		
10'	100%	5.0 - 7.5 Beige to white to grey medium to fine SAND. Moist. No odor/staining. 7.5 - 10.0 Dark grey and dark brown medium to fine SAND. Moist. No odor/staining			
	100%	10.0 - 15.0 SAA			
	100%	15.0 - 17.0 Dark grey cemented fine SAND. Moist. No odor/staining 17.0 - 18.0 Dark grey and dark brown Silty fine SAND. Moist. Slight organic odor. No staining. 18.0 - 20.0 Brown medium SAND. Little silt. Moist. No odor/staining.			
	100%	 20.0 - 21.0 Dark grey, brown, dark brown coarse to fine SAND. Moist. No odor/staining. 21.0 - 22.5 Dark brown cemented medium to fine SAND. Moist. No odor/staining. 22.5 - 25.5 Dark brown, brown Silty medium to fine SAND. Moist. No odor/staining. 			
	100%	25.5 - 26.0 Brown cemented Silty fine SAND. Moist. No odor/staining. 26.0 - 30.0 Brown to light brown Silty medium to fine SAND. Moist. No odor/staining.			
30'	100%	30.0 - 35.0 SAA			
35'	100%	Brown to light brown Silty fine SAND. Moist. No odor/staining	L.		
40'		END C	DF BORING		

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

Site RAGS D TABLES and Risk Calculations

THIS PAGE INTENTIONALLY LEFT BLANK
RAGS PART D TABLE 1 SELECTION OF EXPOSURE PATHWAYS FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Scenario Timeframe	Source Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
					Adult	Dermal Absorption		
		Groundwater	Tapwater	Resident		Ingestion	Quant*	Future Residential Use is a not anticipated but future residents may be
		Croananator	, apriator	. tooldoni	Child	Dermal Absorption	Quant	exposed to VOCs in groundwater
					6 in a	Ingestion		
Future	Groundwater	vater Air	Tapwater - Water at	Resident	Adult	Inhalation	None	Region 4 guidance (EPA, 2018) accepts the default assumption that inhalation and dermal exposure from showering is equivalent to
			Showerhead	Resident	Child	innalation	None	exposure from the daily ingestion of contaminated water per day.
		Air	Volatilization thru soils	Pesident	Adult	Inhalation	Quant	Future residents may be exposed to volatilization of VOC vapors from
				Resident	Child	Innalation	Quant	groundwater
Current/Future	Groundwater	Air	Volatilization thru soils	Trespasser/Visitor	Child/Adult	Inhalation	None	Low frequency of site visits and lack of intrusive activities limit potential exposures
		Air		Site/Construction Worker	Adult	Inhalation	None	Considered a neglible source due to the lack of enclosed structures on the site and the nature of potential work to be completed.

VOC = Volatile Organic Chemical

* According to EPA Region 4 guidance the dermal exposure pathway is not used for radionuclides (EPA, 2018)

Exposure pathways for surface and subsurface soils are not considered as data are not available for soils.

Table 2 OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Scenario Timetable: Current/Future Medium: Groundwater Exposure Medium: Groundwater

Parameter	CAS RN No.	Frequency of	Maximum Detected	Maximum Sample ID	Screeni	ng Value	Maximum >	Comments	COPC
		Detection	Concentration		Conc ^{1,2}	C,N ³	Screening Value		
SVOCs (µg/L)									
1,4-Dioxane	123-91-1	7 of 15	4.2E+02	MW015-2-GW@30'	4.6E-01	С	yes		1,4-Dioxane
Radionuclides									
Radium-226	13982-63-3	8 of 15	8.2 ± 2.1	MW016-2-GW@30'	3.97E-04	N	yes		Radium-226
Radium-228	15262-20-1	10 of 15	6.7 ± 1.7	MW016-2-GW@30'	9.66E-04	N	yes		Radium-228
Gross Alpha	NA	9 of 15	43 ± 9.1	MW017-2-GW@30'	NA	NA	NA		
Gross Beta	NA	5 of 15	18 ± 6.8	MW015-2-GW@30'	NA	NA	NA		

Notes

The data summarized in this table represents groundwater data collected in January 2018 from Site monitoring wells

¹ Screening Value for noncarcinogens (N) = U.S. EPA Regional Screening Level (RSL) for Tapwater multiplied by 0.1. Screening Value for carcinogens = RSL for Tapwater.

_EPA Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites. (November 2018). https://www.epa.gov/risk/regional-screening-levels-rsls

² Screening values for radionuclides are the PRG (in pCi/L) for residential tapwater (<u>https://rais.ornl.gov/cgi-bin/prg/PRG_search?select=rad</u>)

³ N = not a carcinogen; C = carcinogen; NA = not available; N/A = not applicable

	A	В	С	D	E	F	G	Н			J	K	L
1					UCL Statis	stics for Data	Sets with No	on-Detects					
2				<u>.</u>									
3		User Sele	cted Options										
4	Da	te/Time of Co	omputation	ProUCL 5.1	11/19/2018 6	6:02:37 PM							
5			From File	ProUCL_1,4	-D.xls								
6		Fu	Il Precision	OFF									
7		Confidence	Coefficient	95%									
8	Number	of Bootstrap	Operations	2000									
9													
10	1,4-Dioxane	•											
11													
12						General	Statistics						
13			Total	Number of C	Observations	15			Νι	umbe	r of Distinct	Observations	11
14				Numbe	er of Detects	7					Number o	f Non-Detects	8
15			N	umber of Dis	tinct Detects	7			N	lumbe	er of Distinc	t Non-Detects	4
16				Mini	mum Detect	5.5					Minimu	m Non-Detect	9.4
17				Maxi	mum Detect	420					Maximu	m Non-Detect	9.8
18				Varia	ince Detects	25752					Percen	t Non-Detects	53.33%
19				Μ	ean Detects	101.1						SD Detects	160.5
20				Me	dian Detects	20						CV Detects	1.588
21				Skewr	ess Detects	1.733					Ku	rtosis Detects	2.239
22				Mean of Log	ged Detects	3.374					SD of Lo	gged Detects	1.694
23													
24					Norn	nal GOF Tes	t on Detects	Only					
25			S	Shapiro Wilk	Fest Statistic	0.683			Shapii	ro Wil	k GOF Tes	1	
26			5% S	hapiro Wilk C	Critical Value	0.803		Detected Da	ta Not N	lorma	al at 5% Sig	nificance Leve	I
27				Lilliefors 7	Fest Statistic	0.397			Lillie	efors	GOF Test		
28			5	5% Lilliefors C	Critical Value	0.304		Detected Da	ta Not N	lorma	al at 5% Sig	nificance Leve	1
29]	Detected Dat	a Not Norma	l at 5% Sign	ificance Leve	el				
30					.								
31			Kapian	-Meler (KM) \$		ng Normal Ci	itical values	and other N	onparan	netric			01.10
32					KINI Mean	51.14				KI		Error of Mean	31.10
33				050	KM SD	111.7			050/ 1	() ()	95% K	M (BCA) UCL	106.3
34				95%		100			95% r				105
35				95%	KIVI (Z) UCL	102.4							8/3.9
36			07			144.0							107
37			97	.5% KW Che	bysnev UCL	240.0				:		ebysnev UCL	301.2
38						Tooto on Do	tested Ober	n ationa Onl					
39								ervations Oni	y \ndomo	n Dor		oot	
40				A-D		0.751	Detec	tod Data Nat	Comm			9/ Significance	
41				3% X-D C		0.731	Delec		Kolmon		Smirnov GC		; Level
42				5% K-Q (ritical Value	0.000	Deteo	ted Data Not	Gamm	a Diet	ributed at 5	% Significance	امريم ا د
43				Dotoct	ad Data Not 4	Gamma Diet	ibuted at 5%			มมรเ	nouteu al o		, LEVEI
44				Delecte		Gamma DISU	ibuleu di 3%	Gigrimcaric	C LEVEI				
45					Gamma	Statistics on	Detected D	ata Only					
46					k hat (MLE)	0 51				k.	star (hias co	prrected MLE	በ 387
47				The	ta hat (MLE)	198.1			т	heta (star (hias co		261 3
48						7 1/2			1	neta	nu etar (b	ias corrected)	5 /15
49				۱ ۸۸۰		101 1					nu stat (D	as conected)	5.415
50				IVIE		101.1							<u>i</u>
51													

	А	В	С	D	E	F	G	Н		J	K	L
52					Gamma ROS	Statistics us	sing Imputed	Non-Detect	5			
53			GROS may	not be used	when data s	et has > 50%	NDs with m	nany tied obs	ervations at	multiple D	Ls	
54		GROS mag	y not be used	d when kstar	of detects is	small such a	s <1.0, espe	cially when the the second s	ne sample si	ze is smal	(e.g., <15-20)	
55			Fc	or such situat	ions, GROS	method may	yield incorre	ect values of	UCLs and B	TVs		
56					This is espec	ially true whe	n the sample	e size is sma	II.			
57		For gai	mma distribut	ted detected	data, BTVs a	and UCLs ma	y be comput	ted using gar	nma distribu	tion on KN	l estimates	I
58					Minimum	0.01					Mear	47.96
59					Maximum	420					Mediar	5.5
60					SD	117					CV	2.44
61					k hat (MLE)	0.175			k	star (bias	corrected MLE)	0.185
62				The	ta hat (MLE)	273.3			Theta	star (bias	corrected MLE)	259.5
63					nu hat (MLE)	5.264				nu star	(bias corrected)	5.544
64			Adjusted	I Level of Sig	nificance (β)	0.0324						
65		Ap	oproximate C	hi Square Va	alue (5.54, α)	1.412			Adjusted C	Chi Square	Value (5.54, β)	1.173
66		95% Gamma	a Approximat	e UCL (use v	when n>=50)	188.4		95% G	amma Adjus	ted UCL (ι	use when n<50)	226.7
67												
68				E	stimates of G	iamma Parar	neters using	KM Estimat	es			1
69					Mean (KM)	51.14					SD (KM)	111.7
70				Va	ariance (KM)	12482				S	E of Mean (KM)	31.16
71					k hat (KM)	0.21					k star (KM)	0.212
72					nu hat (KM)	6.286					nu star (KM)	6.362
73				th	eta hat (KM)	244.1					theta star (KM)	241.1
74			80%	% gamma pe	rcentile (KM)	69.4			90	% gamma	percentile (KM)	154.6
75	7595% gamma percentile (KM)259.499% gamma percentile (KM)54									545.3		
76												
77					Gamn	na Kaplan-M	eier (KM) Sta	atistics				
78	050	Ap	oproximate C	hi Square Va	alue (6.36, α)	1.828		0504 0	Adjusted (Chi Square	Value (6.36, β)	1.545
79	95%	o Gamma Ap	proximate KI	M-UCL (use \	when n>=50)	178		95% Gamn	ha Adjusted	KM-UCL (I	use when n<50	210.6
80					agnormal CC)E Test on D	atastad Oha	on otiona On	h.			
81			c	L baniro Wilk	Tost Statistia				Shopiro W		ot.	
82			5% 9		ritical Value	0.000	Det	octed Data a		ormal at 50	Significance I	ovol
83			5/0 5		Teet Statistic	0.803	Dei					.evei
84			5		ritical Value	0.201	Det	octed Data a		ormal at 50	A Significance I	ovol
85			5				mal at 5% S					.evei
86				Dea		opear Lognor						
87				10	ognormal RO	S Statistics I	lsina Imnute	d Non-Deter	te			
88				Mean in O	riginal Scale	51 58				Me	an in Log Scale	2.61
89				SD in O	riginal Scale	115.5					SD in Log Scale	1 412
90		95% t l	ICL (assume	es normality (of ROS data)	104 1			95%	Percentile	Bootstran UCI	106.3
91		007011		95% BCA Bo	otstran UCI	133.1			0070	95%	Bootstran t UCI	808.6
92				95% H-UC		135.4						
93				007011-00	= (209 100)	100.7						
94			Stati	stics using K	M estimates	on Loaged P	ata and Ase	umina Loana	rmal Distrib	ution		
95			Ciau	KM M	ean (logged)	2 637		Logic			KM Geo Mear	13 97
96				KM	SD (loaned)	1 283			95%	Critical H	Value (KM-Log)	3 221
97			KM Standa	rd Error of M	ean (logged)	0.366			5070	95% H		95.97
98				KW	SD (longed)	1 283			95%	Critical H		3 221
99			KM Standa			0.366			5570			0.221
100					can (logged)	0.000						<u> </u>
101						<u>ہ 1/2 ا</u>	tatistics					
102						0023	ເລແອນເວອ					

	А	В	С	D	E	F	G	Н		J	K	L
103			DL/2	Normal					DL/2 Log-1	ransformed		
104				Mean in O	riginal Scale	49.71				Mean	in Log Scale	2.409
105				SD in O	riginal Scale	116.2				SD	in Log Scale	1.451
106			95% t l	JCL (Assume	es normality)	102.6				95%	H-Stat UCL	124.7
107			DL/2	is not a reco	mmended m	ethod, provid	ed for compa	arisons and h	nistorical rea	sons		
108												
109	Nonparametric Distribution Free UCL Statistics											
110	Detected Data appear Lognormal Distributed at 5% Significance Level											
111												
112						Suggested	UCL to Use					
113			97.5	5% KM (Chel	oyshev) UCL	245.8			99	9% KM (Chel	oyshev) UCL	361.2
114												
115		Note: Sugge	estions regard	ling the selec	tion of a 95%	6 UCL are pro	ovided to help	p the user to	select the m	ost appropria	ate 95% UCL	
116	16 Recommendations are based upon data size, data distribution, and skewness.											
117		These reco	mmendations	s are based ι	pon the resu	Its of the sim	ulation studie	es summariz	ed in Singh,	Maichle, and	Lee (2006).	
118	Ho	owever, simu	ulations result	s will not cov	er all Real W	/orld data set	s; for addition	nal insight th	e user may	want to consu	ult a statisticia	in.
119												

	А	В	С	D	E	F	G	Н		J	K	L	
1					UCL Statist	ics for Data	Sets with No	on-Detects					
2		l Isar Sala	cted Ontions										
3	Da	te/Time of Co		ProUCL 5.1	11/19/2018 6	08·43 PM							
4			From File	ProUCL Ba	dium-226 xls	00.1011							
5		Fu	Il Precision	OFF									
6		Confidence	Coefficient	95%									
/ 8	Number	of Bootstrap	Operations	2000									
9													
10	Radium-22	3											
11													
12						General	Statistics						
13			Tota	I Number of C	bservations	15			Numbe	er of Distinct (Observations	15	
14				Numbe	er of Detects	9				Number of	Non-Detects	6	
15			N	lumber of Dist	inct Detects	9			Numb	er of Distinct	Non-Detects	6	
16				Mini	mum Detect	1.4				Minimum	Non-Detect	0.39	
17				Maxi	mum Detect	8.2				Maximum	Non-Detect	5.4	
18				Varia	nce Detects	7.556				Percent	Non-Detects	40%	
19				M		4.089						2.749	
20				Skown	an Delects	4.5				Kud	CV Delects	1.026	
21				Mean of Log	and Detects	1 363				SD of Loc	and Detects	0.67	
22				Wear of Log	geu Deleels	1.000				00 01 200	geu Deleelo	0.07	
23					Norm	al GOF Tes	on Detects	Only					
24			S	Shapiro Wilk T	est Statistic	0.875		•	Shapiro W	lk GOF Test			
25			5% S	Shapiro Wilk C	ritical Value	0.829	De	etected Data	appear Nor	mal at 5% Sig	nificance Lev	el	
27				Lilliefors T	est Statistic	0.221	Lilliefors GOF Test						
28			Ę	5% Lilliefors C	ritical Value	0.274	De	etected Data	appear Nor	mal at 5% Sig	gnificance Lev	el	
29				De	tected Data a	ppear Norm	al at 5% Sig	nificance Lev	/el				
30													
31			Kaplan	-Meier (KM) S	Statistics usin	g Normal Cr	itical Values	and other N	onparametri	CUCLS	1		
32					KM Mean	3.042			K	M Standard E	Fror of Mean	0.794	
33				050	KM SD	2.878			050/ 1/14/	95% KN	I (BCA) UCL	4.338	
34				95%	KM (t) UCL	4.44			95% KM (I	Percentile Bo	otstrap) UCL	4.337	
35				95%		4.348				95% KM BO		4.623	
36			0-	90% KW Che		0.424						10.04	
37			51		bysnev OCL	0					bysnev OCL	10.94	
38				C	amma GOF	Tests on De	tected Obse	rvations Only	,				
39				A-D T	est Statistic	0.475		Δ	nderson-Da	rling GOF Te	st		
40				5% A-D C	ritical Value	0.727	Detecte	d data appea	ar Gamma D	istributed at 5	5% Significand	ce Level	
41				K-S T	est Statistic	0.205			Kolmogorov	Smirnov GO	F		
43				5% K-S C	ritical Value	0.281	Detecte	d data appea	ar Gamma D	istributed at 5	5% Significand	e Level	
44				Detected	data appear	Gamma Dis	tributed at 5	% Significan	ce Level				
45													
46					Gamma	Statistics on	Detected Da	ata Only					
47					k hat (MLE)	2.896			k	star (bias coi	rrected MLE)	2.005	
48				The	a hat (MLE)	1.619			Theta	star (bias cor	rected MLE)	2.339	
49				n	u hat (MLE)	52.13				nu star (bia	as corrected)	36.08	
50				Ме	an (detects)	4.689							
51											. <u></u>		

	А	В	С	D	E	F	G	Н		J	K	L
52 Gamma ROS Statistics using imputed Non-Detects												
53			GROS may	/ not be used	when data s	set has > 50%	6 NDs with m	any tied obs	ervations at	multiple D	Ls	
54		GROS mag	y not be used	d when kstar	of detects is	small such a	s <1.0, espe	cially when th	ne sample si	ze is small	(e.g., <15-20)	
55			Fo	or such situat	ions, GROS	method may	yield incorre	ct values of	UCLs and B	TVs		
56					This is espec	ially true whe	en the sample	e size is sma	11.			
57		For gai	mma distribu	ted detected	data, BTVs a	and UCLs ma	y be comput	ed using gar	nma distribu	tion on KM	lestimates	1
58					Minimum	0.01					Mean	2.898
59					Maximum	8.2					Median	2.1
60					SD	3.092					CV	1.067
61					k hat (MLE)	0.376			k	star (bias	corrected MLE)	0.345
62				The	ta hat (MLE)	7.709			Theta	star (bias	corrected MLE)	8.396
63					nu hat (MLE)	11.28				nu star (bias corrected)	10.35
64			Adjusted	Level of Sig	nificance (β)	0.0324						
65		Арр	proximate Ch	i Square Val	ue (10.35, α)	4.165			Adjusted Cl	ni Square \	/alue (10.35, β)	3.693
66		95% Gamma	a Approximat	e UCL (use v	when n>=50)	7.205		95% G	amma Adjus	ted UCL (ι	ise when n<50)	8.124
67												
68				E	stimates of G	amma Parar	neters using	KM Estimate	es			
69					Mean (KM)	3.042					SD (KM)	2.878
70				Va	ariance (KM)	8.28				SI	E of Mean (KM)	0.794
71					k hat (KM)	1.117					k star (KM)	0.938
72					nu hat (KM)	33.52					nu star (KM)	28.15
73				th	eta hat (KM)	2.722				-	theta star (KM)	3.242
74			80%	6 gamma pe	rcentile (KM)	4.92			90	% gamma	percentile (KM)	7.114
75	95% gamma percentile (KM) 9.32 99% gamma percentile (KM)									14.47		
76												
77		A	on the ob-	. O		na Kapian-M	eler (KM) Sta	atistics	A dimensional OI		(-h (20.1F. 0)	15.00
78	05%		proximate Ch	I Square val	$\frac{100}{100000000000000000000000000000000$	F 022		05% Comm			/alue (28.15, β)	10.99
79	95%	o Gamma Ap		W-UCL (USE)	when h>=50)	5.025		5.550				
80				1	ognormal G()F Test on D	etected Obs	ervations On	lv.			
81			S	haniro Wilk	Test Statistic	0.896			Shaniro W	ilk GOE Te	et	
82			5% S	hapiro Wilk (Critical Value	0.829	Det	ected Data a	onear Loan	ormal at 5%	6 Significance I	evel
83			0,00	Lilliefors	Test Statistic	0.020			Lilliefors	GOF Test		
84			5	% Lilliefors (Critical Value	0.170	Det	ected Data a	ippear Logn	ormal at 5%	6 Significance I	evel
85				Dete	ected Data a	opear Lognor	mal at 5% S	ianificance L	evel		g	
80								<u> </u>				
87				Lo	ognormal RC	S Statistics I	Jsing Impute	d Non-Detec	ts			
00				Mean in O	riginal Scale	3.187				Me	an in Log Scale	0.78
00				SD in O	riginal Scale	2.823				5	SD in Log Scale	0.907
90		95% t l	JCL (assume	es normality of	of ROS data)	4.471			95%	Percentile	Bootstrap UCL	4.408
91				95% BCA Bo	otstrap UCL	4.612				95% E	Bootstrap t UCL	4.777
92				95% H-UC	L (Log ROS)	6.18						+
93					,		1					<u> </u>
94			Stati	stics using K	M estimates	on Logged D	ata and Ass	uming Logno	ormal Distrib	ution		
90				KM M	ean (logged)	0.501					KM Geo Mean	1.651
90 Q7				KM	SD (logged)	1.207			95%	Critical H	/alue (KM-Log)	3.088
02			KM Standa	rd Error of M	ean (logged)	0.338				95% H-	UCL (KM -Log)	9.26
90				KM	SD (logged)	1.207			95%	Critical H	/alue (KM-Log)	3.088
100			KM Standa	rd Error of M	ean (logged)	0.338						+
101							1					1
102						DL/2 S	tatistics					
ιυZ												

	А	В	С	D	E	F	G	Н	I	J	К	L	
103			DL/2	Normal					DL/2 Log-T	ransformed			
104				Mean in O	riginal Scale	3.094				Mean	in Log Scale	0.468	
105				SD in O	riginal Scale	2.958				SD	in Log Scale	1.37	
106			95% t l	JCL (Assume	es normality)	4.439				95%	6 H-Stat UCL	14.03	
107			DL/2	is not a reco	mmended m	ethod, provid	led for compa	risons and I	nistorical reas	sons			
108													
109					Nonparam	etric Distribu	tion Free UCI	_ Statistics					
110	Detected Data appear Normal Distributed at 5% Significance Level												
111													
112						Suggested	UCL to Use						
113				95%	6 KM (t) UCL	4.44							
114													
115		Note: Sugge	estions regard	ling the selec	tion of a 95%	5 UCL are pr	ovided to help	o the user to	select the m	ost appropria	ate 95% UCL		
116	16 Recommendations are based upon data size, data distribution, and skewness.												
117		These reco	mmendations	s are based ι	pon the resu	Its of the sin	nulation studie	es summariz	ed in Singh,	Maichle, and	Lee (2006).		
118	Ho	owever, simu	ulations result	s will not cov	er all Real W	/orld data se	ts; for addition	nal insight th	ie user may v	vant to consu	ult a statisticia	an.	
119													

	A B C	D	E	F	G	H		J	ĸ	L	L
1		UC	_ Stati	stics for Unc	ensored Full	Data Sets					
2		. I									
3	User Selected Options										
4	Date/Time of Computation	ProUCL 5.111/8/2	2019 12	2:43:21 PM							
5	From File	ProUCL_Radium-	228.xl	S							
6	Full Precision	OFF									
7	Confidence Coefficient	95%									
8	Number of Bootstrap Operations	2000									
9											
10											
11	Radium-228										
12											
13				General	Statistics						
14	Total	Number of Observ	ations	15			Numb	er of Distinct	Observations	1	3
15							Numbe	er of Missing	Observations	(0
16		Mi	nimum	0.63					Mean	3	3.388
17		Ma	ximum	6.7					Median		2.5
18			SD	2.224				Std.	Error of Mean	(0.574
19		Coefficient of Va	riation	0.656					Skewness	(0.446
20											
21				Normal C	GOF Test						
22	S	Shapiro Wilk Test S	tatistic	0.882			Shapiro V	Vilk GOF Te	st		
23	5% S	hapiro Wilk Critical	Value	0.881		Data appe	ar Normal	at 5% Signif	cance Level		
24		Lilliefors Test S	tatistic	0.2			Lilliefor	s GOF Test			
25	5	% Lilliefors Critical	Value	0.22		Data appe	ar Normal	at 5% Signif	cance Level		
26		Dat	a appe	ar Normal at	5% Significa	ance Level					
27											
28			As	suming Norr	nal Distribut	ion					
29	95% No	ormal UCL				95%	UCLs (Adj	justed for Sk	ewness)		
30		95% Student's	-t UCL	4.399		ç	95% Adjus	ted-CLT UCI	_ (Chen-1995)	4	4.403
31							95% Modi	fied-t UCL (J	ohnson-1978)	4	4.41
32											
33				Gamma	GOF Test						
34		A-D Test S	tatistic	0.421		Anders	son-Darlin	g Gamma G	OF Test		
35		5% A-D Critical	Value	0.746	Detected	d data appeai	r Gamma [Distributed at	5% Significan	ice L	evel
36		K-S Test S	tatistic	0.155		Kolmogo	prov-Smirr	nov Gamma	GOF Test		
37		5% K-S Critical	Value	0.224	Detected	d data appea	Gamma [Distributed at	5% Significan	ice L	evel
38		Detected data	appea	r Gamma Dis	stributed at 5	5% Significan	ice Level				
39											
40				Gamma	Statistics						
41		k hat	(MLE)	2.231			k	k star (bias c	orrected MLE)	-	1.829
42		Theta hat	(MLE)	1.518			Theta	a star (bias c	orrected MLE)	-	1.852
43		nu hat	(MLE)	66.94				nu star (b	ias corrected)	5	54.88
44	M	LE Mean (bias corr	ected)	3.388				MLE Sd (b	ias corrected)		2.505
45						ŀ	Approximat	te Chi Squar	e Value (0.05)	3	8.86
46	Adjus	sted Level of Signif	icance	0.0324			ŀ	Adjusted Chi	Square Value	3	37.2
47					-						
48			As	suming Gam	ma Distribut	ion					
49	95% Approximate Gamma	a UCL (use when n	>=50))	4.785		95% Adj	usted Gan	nma UCL (us	e when n<50)	4	4.998
50										•	
51				Lognorma	GOF Test					-	
52	S	Shapiro Wilk Test S	tatistic	0.934		Shap	iro Wilk Lo	ognormal GC)F Test		
				1							

	А	В	С	D	E	F	G	Н		J	K	L
53			5% SI	hapiro Wilk C	Critical Value	0.881		Data appear	⁻ Lognormal	at 5% Signifi	cance Level	
54				Lilliefors 7	Fest Statistic	0.13		Lilli	iefors Logno	ormal GOF T	est	
55			5	% Lilliefors C	Critical Value	0.22		Data appear	⁻ Lognormal	at 5% Signifi	cance Level	
56					Data appear	Lognormal	at 5% Signif	icance Level				
57												
58						Lognorma	Statistics					
59				Minimum of I	_ogged Data	-0.462				Mean of	logged Data	0.98
60			Ν	Aaximum of l	_ogged Data	1.902				SD of	logged Data	0.759
61												
62					Assi	uming Logno	rmal Distrib	ution				
63					95% H-UCL	5.764			90%	Chebyshev (I	MVUE) UCL	5.636
64			95%	Chebyshev (MVUE) UCL	6.617			97.5%	Chebyshev (I	MVUE) UCL	7.978
65			99%	Chebyshev (MVUE) UCL	10.65						
66												
67					Nonparame	etric Distribu	tion Free UC	L Statistics				
68				Data appea	r to follow a	Discernible I	Distribution a	at 5% Signific	cance Level			
69												
70					Nonpa	rametric Dist	ribution Free	e UCLs				
71				95	% CLT UCL	4.332				95% Ja	ckknife UCL	4.399
72			95%	Standard Bo	otstrap UCL	4.315				95% Boo	tstrap-t UCL	4.517
73			9	5% Hall's Bo	otstrap UCL	4.263			95% I	Percentile Bo	otstrap UCL	4.329
74				95% BCA Bo	otstrap UCL	4.388						
75			90% Ch	ebyshev(Me	an, Sd) UCL	5.111			95% Ch	ebyshev(Me	an, Sd) UCL	5.891
76			97.5% Ch	ebyshev(Me	an, Sd) UCL	6.974			99% Ch	ebyshev(Me	an, Sd) UCL	9.101
77												
78						Suggested	UCL to Use					
79				95% Stu	dent's-t UCL	4.399						
80												
81	I	Note: Sugge	stions regard	ing the selec	tion of a 95%	UCL are pro	ovided to hel	p the user to	select the m	nost appropria	ate 95% UCL.	
82			F	Recommenda	tions are bas	sed upon dat	a size, data o	distribution, a	nd skewnes	SS.		
83		These recor	mmendations	s are based u	pon the resu	Its of the sim	ulation studi	es summariz	ed in Singh,	Maichle, and	l Lee (2006).	
84	Ho	wever, simu	lations result	s will not cov	er all Real W	orld data set	s; for additio	nal insight th	e user may	want to consi	ult a statisticia	n.
85												

TABLE 3 EXPOSURE POINT CONCENTRATION (EPC) SUMMARY REASONABLE MAXIMUM EXPOSURE (RME) FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Scenario Timeframe: Current/Future Medium: Groundwater Exposure Medium: Groundwater

				Arithmetic		Expo	sure Point Concentration	n (EPC) (ProUCL)
Exposure Point	Chemical of Potential	Units	Frequency of	Mean of	Maximum Detected			1
	Concern		Detection	Detected Values	Concentration	Recommended UCL ^a	Distribution	Statistic
	Semi-Volatile Organic Comp	ounds (S\	/OCs)					
	1,4-Dioxane	µg/L	7 of 15	1.01E+02	4.20E+02	2.46E+02	Non-parametric	97.5% Chebyshev
FSU-LLRW	Radionuclides							
Groundwater	Radium-226	pCi/L	8 of 15	4.69E+00	8.20E+00	4.44E+00	Normal	95% KM (t) UCL
F	Radium-228	pCi/L	11 of 15	4.06E+00	6.70E+00	4.40E+00	Normal	95% KM (t) UCL

^a UCL = Upper Confidence Limit of the arithmatic mean equals the EPC. EPCs are identified using ProUCL 5.1.00 Statistical Software.(https://www.epa.gov/land-research/proucl-software

TABLE 4.1 RME VALUES USED FOR DAILY INTAKE CALCULATIONS REASONABLE MAXIMUM EXPOSURE FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Scenario Timeframe: Current/Future Medium: Groundwater

Exposure Medium: Groundwater

Exposure Route	Receptor	Receptor		Parameter	Parameter Definition	Value	Units	Rationale/	Intake Equation/
	Population	Age	Exposure Point	Code				Reference	Model Name
Dermal Absorption	Resident	Adult	Water Table Aquifer	CW	Chemical Concentration in Water	See Table 3	mg/L	See Table 3	Dermally Absorbed Dose (DAD) (mg/kg-day) =
			Tap Water	FA	Fraction Absorbed by Water	Chemical Specific		Table 4.2	DA-event x EV x ED x EF x SA x 1/BW x 1/AT
				K _p	Permeability Constant	Chemical Specific	cm/hr	Table 4.2	where for organic compounds,
I				SA	Skin Surface Area	19,652	cm ²	EPA, 2014	DA-Event =
I				tau-event	Lag t ime per event	Chemical Specific	hours	Table 4.3	2FA x Kp x CW x CF x SQRT{(6 x tau-evemt x t-event)/pi}
I				t-event	Event Duration	0.33	hours	EPA, 2003	or, if tevent > time to reach steady state (t*), then:
I				В	Ratio of permeability coefficient of a	Chemical Specific		EPA, 2001	DA-event = FA x Kp x CW x {(t-event/(1+B)) +
I					compound through the stratum corneum relative				2 x tau-event x ((1+(3 x B) + (3 x B x B))/(1 + B)2)}
I					to its permeability coefficient across the viable				and where for inorganic compounds,
1					epidermis				DA-event = KP x CW x CF x t-event
1				EV	Event Frequency	1	Events/day	EPA, 2001	
				EF	Exposure Frequency	350	days/year	EPA, 2014	
1				ED	Exposure Duration	20	years	EPA, 2014	
1				CF	Volumetric Conversion Factor for Water	0.001	I/cm ³		
				BW	Body Weight	80	kg	EPA, 2014	
				AT-C	Averaging Time - Cancer	25,550	days	EPA, 2014	
				AT-N	Averaging Time - Non-Cancer	7,300	days	EPA, 2014	
		Child	Water Table Aquifer	CW	Chemical Concentration in Water	See Table 3	mg/L	See Table 3	Dermally Absorbed Dose (DAD) (mg/kg-day) =
			Tap Water	FA	Fraction Absorbed by Water	Chemical Specific		Table 4.2	DA-event x EV x ED x EF x SA x 1/BW x 1/AT
				K _p	Permeability Constant	Chemical Specific	cm/hr	Table 4.2	where for organic compounds,
				SA	Skin Surface Area	6,365	cm ²	EPA, 2014	DA-Event =
l				tau-event	Lag t ime per event	Chemical Specific	hours	Table 4.10	2FA x Kp x CW x CF x SQRT{(6 x tau-evemt x t-event)/pi}
l				t-event	Event Duration	0.33	hours	EPA, 2003	or, if tevent > time to reach steady state (t*), then:
				В	Ratio of permeability coefficient of a	Chemical Specific		EPA, 2001	DA-event = FA x Kp x CW x {(t-event/(1+B)) +
l					compound through the stratum corneum relative				2 x tau-event x ((1+(3 x B) + (3 x B x B))/(1 + B)2)}
l					to its permeability coefficient across the viable				and where for inorganic compounds,
1					epidermis				DA-event = KP x CW x CF x t-event
l				EV	Event Frequency	1	Events/day	EPA, 2001	
l				EF	Exposure Frequency	350	days/year	EPA, 2014	
1				ED	Exposure Duration	6	years	EPA, 2014	
l				CF	Volumetric Conversion Factor for Water	0.001	I/cm ³		
l				BW	Body Weight	15	kg	EPA, 2001	
				AT-C	Averaging Time - Cancer	25,550	days	EPA, 2014	
ľ				AT-N	Averaging Time - Non-Cancer	2,190	davs	EPA, 2014	×

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol 1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund. Vol 1: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final. OSWER Directive 9285.6-03.

EPA 2001: Risk Assessment Guidance for Superfund. Volume1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim.

EPA 2003: Region III Techniclal Guidance Manual, Risk Assessment. Updated Dermal Exposure Assessment Guidance. June.

EPA 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. OSWER Directive 9200.1-120.

TABLE 4.1 RME VALUES USED FOR DAILY INTAKE CALCULATIONS REASONABLE MAXIMUM EXPOSURE FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Exposure Medium: G	Froundwater								
Exposure Route	Receptor	Receptor		Parameter	Parameter Definition	Value	Units	Rationale/	Intake Equation/
	Population	Age	Exposure Point	Code				Reference	Model Name
Dermal Absorption	Construction	Adult	Water Table Aquifer	CW	Chemical Concentration in Water	See Table 3	mg/L	See Table 3	Dermally Absorbed Dose (DAD) (mg/kg-day) =
	Worker		Tap Water	FA	Fraction Absorbed by Water	Chemical Specific		Table 4.2	DA-event x EV x ED x EF x SA x 1/BW x 1/AT
				K _p	Permeability Constant	Chemical Specific	cm/hr	Table 4.2	where for organic compounds,
				SA	Skin Surface Area	3,300	cm ²	EPA, 2014	DA-Event =
				tau-event	Lag t ime per event	Chemical Specific	hours	Table 4.10	2FA x Kp x CW x CF x SQRT{(6 x tau-evemt x t-event)/ _{pi} }
				t-event	Event Duration	0.33	hours	EPA, 2003	or, if tevent > time to reach steady state (t*), then:
				В	Ratio of permeability coefficient of a	Chemical Specific		EPA, 2001	DA-event = FA x Kp x CW x {(t-event/(1+B)) +
					compound through the stratum corneum relative				2 x tau-event x ((1+(3 x B) + (3 x B x B))/(1 + B)2)}
					to its permeability coefficient across the viable				and where for inorganic compounds,
					epidermis				DA-event = KP x CW x CF x t-event
				EV	Event Frequency	1	Events/day	EPA, 2001	
				EF	Exposure Frequency	250	days/year	EPA, 2014	
				ED	Exposure Duration	25	years	EPA, 2014	
				CF	Volumetric Conversion Factor for Water	0.001	I/cm ³		
				BW	Body Weight	80	kg	EPA, 2001	
				AT-C	Averaging Time - Cancer	25,550	days	EPA, 2014	
				AT-N	Averaging Time - Non-Cancer	9,125	days	EPA, 2014	`
Ingestion	Resident	Adult	Water Table Aquifer	CW	Chemical Concentration in Water	See Table 3.1	mg/L	See Table 3.1	Chronic Daily Intake (CDI) (mg/kg-day)=
			Tap Water	IR-W	Ingestion Rate of Water	2.5	L/day	EPA, 2014	CW x IR-W x EF x ED x 1/BW x 1/AT
				EF	Exposure Frequency	350	days/year	EPA, 2014	
				ED	Exposure Duration	20	years	EPA, 2014	
				BW	Body Weight	80	kg	EPA, 2014	
				AT-C	Averaging Time - Cancer	25,550	days	EPA, 2014	
				AT-N	Averaging Time - Non-Cancer	7,300	days	EPA, 2014	
		Child	Water Table Aquifer	CW	Chemical Concentration in Water	See Table 3.1	mg/L	See Table 3.1	Chronic Daily Intake (CDI) mg/kg-day)=
			Tap Water	IR-W	Ingestion Rate of Water	1	L/day	EPA, 1989	CW x CF1 x IR x EF x ED x 1/BW x 1/AT
				EF	Exposure Frequency	350	days/year	EPA, 2014	
				ED	Exposure Duration	6	years	EPA, 2014	
				BW	Body Weight	15	kg	EPA, 2014	
				AT-C	Averaging Time - Cancer	25,550	days	EPA, 2014	
				AT-N	Averaging Time - Non-Cancer	2,190	days	EPA, 2014	

Sources:

Scenario Timeframe: Current/Future

Medium: Groundwater

EPA, 1989: Risk Assessment Guidance for Superfund. Vol 1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund. Vol 1: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final. OSWER Directive 9285.6-03.

EPA 2001: Risk Assessment Guidance for Superfund. Volume1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim.

EPA 2003: Region III Techniclal Guidance Manual, Risk Assessment. Updated Dermal Exposure Assessment Guidance. June.

EPA 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. OSWER Directive 9200.1-120.

TABLE 4.2.RME VALUES USED FOR DAILY INTAKE CALCULATIONS REASONABLE MAXIMUM EXPOSURE FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Scenario Timeframe: Future	
Medium: Groundwater	
Exposure Medium: Vapor	

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Inhalation (1)	Resident	Adult	Water Vapors from Showerhead	(1)	(1)	(1)	(1)	(1)	Foster & Chrostowski Shower Inhalation Model (ICF - Clement Associates, Inc., 1987)

(1) Refer to Risk Assessment text for details of the model intake methodology and paramaters used to calculate modeled intake values for the VISL model cacluator too..

Table 4.3 Chemical Specific Data

	Event Duration	Time to reach steady state	t- _{event} ≤ t*	Lag Time per Event	Fraction Absorbed by	Permeability Constant	
COPC Parameters	t-event (hours)	ours) (t*) (hours)		Tau-event (hours)	Water (FA) (unitless)	(Kp) (cm/hour)	Source
SVOCs							
1,4-Dioxane	0.33	0.8	Y	0.33	1	3.3E-04	EPA 2001
Radionuclides							
Radium-226	0.33	NA	NA	NA	NA	NA	
Radium-228	0.33	NA	NA	NA	NA	NA	

Source

EPA 2001: Risk Assessment Guidance for Superfund. Volume1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Interim, Exhibit B-3

NA. Not Applicable

TABLE 5 NON-CANCER TOXICITY DATA -- ORAL/DERMAL FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Chemical of Potential	Chronic/ Subchronic	Ora	l RfD	Oral Absorption Absorbed RfD for Dermal (2) Efficiency for Dermal (1)		Primary Target	Combined Uncertainty/Modifying	RfD:Target Organ(s)		
Concern		Value	Units		Value Units		Organ(s)	Factors	Source(s)	Date(s)
SVOCs										
1,4-Dioxane	Chronic	3E-02	mg/kg-day	1	3E-02	mg/kg-day	Liver/kidney	300	IRIS	Nov-18
Radionuclides										
Radium-226	NA	NA	NA	NA	NA	NA	Lung	NA	IRIS	Nov-18
Radium-228	NA	NA	NA	NA	NA	NA	Lung	NA	IRIS	Nov-18

Notes:

1. Source: Risk Assessment Guidance For Superfund. Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. Section 4.2 and Exhibit 4-1.

2. Absorbed RfD = Oral RfD * Oral Absorption Efficiency

Definitions:

NA = Not available

IRIS = Integrated Risk Information System, EPA

TABLE 6.1 CANCER TOXICITY DATA -- ORAL/DERMAL FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Chemical of Potential	Oral Cancer	Slope Factor	Oral Absorption Efficiency for Dermal	Absorbed Cano for D	Absorbed Cancer Slope Factor for Dermal		Absorbed Cancer Slope Factor for Dermal		Absorbed Cancer Slope Factor for Dermal		Oral	CSF
Concern	Value	Units	(1)	Value	Units	Description	Source(s)	Date(s)				
SVOCs 1,4-Dioxane	1.0E-01	1/mg/kg-day	1	1.0E-01	1/mg/kg-day	B1	IRIS	Nov-18				

1. Source: Risk Assessment Guidance for Superfund. Volume 1: Human Health

Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. Section 4.2 and Exhibit 4-1.

- 2. Absorbed Cancer Slope Factor = Oral CsF * Oral Absorption Efficiency
- IRIS = Integrated Risk Information Sysytem

Definitions: A = Human carcinogen

B1 = Probable Human Carcinogen - Agents for which there is limited human data available from epidemiologic studies and/or

is classified as a likely human carcinogen.

B2 = Probable Human Carcinogen - Indicates sufficient evidence

in animals and inadequate or no evidence in humans

- C = Possible human carcinogen
- D = Not classifiable as to human carcinogenicity/ inadequate information
- E = Evidence of noncarcinogenicity for humans

TABLE 6.2 CANCER TOXICITY DATA -- EXTERNAL (RADIATION) FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Chemical of Potential	Water Ingestio	on Slope Factor	Immersion \$	Slope Factor	Food Ingestio	n Slope Factor	Oral CSF		
Concern	Value	Units	Value	Units	Value	Units	Source(s)	Date(s)	
Radionuclides									
Radium-226	3.85E-10	Risk/pCi	1.68E-11	Risk/year/pCi/L	5.14E-10	Risk/pCi	RAIS	Nov-18	
Radium-228	1.04E-09	Risk/pCi	8.15E-12	Risk/year/pCi/L	1.42E-09	Risk/pCi	RAIS	Nov-18	

1. Source: Risk Assessment Information System

https://rais.ornl.gov

TABLE 7.1.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Scenario Timeframe:	Current/Future
Receptor Population:	Site/Construction Worker
Receptor Age: Adult	

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPO)		Cancer Risk Calculations					Non-Cancer Hazard Calculations				
				Potential Concern	Value	Units	Intake/Exposur	e Concentration	CSF/Unit Risk		Cancer Risk	Intake/Exposur	e Concentration	RfD	/RfC	Hazard	
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient	
			Dermal Absorption	1,4-Dioxane	2.46E-01	mg/L	7.5E-07	mg/kg-day	1.0E-01	1/mg/kg-day	7.47E-08	2.1E-06	mg/kg-day	3.0E-02	mg/kg-day	6.3E-08	
												<u> </u>					
			Exp. Route Total							7.47E-08					6.28E-08		
	Exposure Point Total										7.47E-08				6.28E-08		
	Exposure Medium Total										7.47E-08					6.28E-08	

TABLE 7.2.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Scenario Timeframe: Future Receptor Population: Resident

Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC)		Canc	er Risk Calculati	ions			Non-Cano	cer Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposur	e Concentration	CSF/U	Init Risk	Cancer Risk	Intake/Exposure Concentration		RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Groundwater	Groundwater	Aquifer	Dermal Absorption	1,4-Dioxane	2.46E-01	mg/L	5.0E-06	mg/kg-day	1.0E-01	1/mg/kg-day	4.98E-07	1.7E-05	mg/kg-day	3.0E-02	mg/kg-day	0.0006
		Tap Water														
			Exp. Route Total								4.98E-07					0.0006
			Ingestion	1,4-Dioxane	2.46E-01	mg/L	2.0E-03	2.0E-03 mg/kg-day 1.0E-01 1/mg/kg-day		2.02E-04	7.1E-03	mg/kg-day	3.0E-02	mg/kg-day	0.2359	
			Exp. Route Total								2.02E-04					0.2359
			Inhalation	1,4-Dioxane	2.46E-01	mg/L	VISL Model			8.60E-08		VISL N	Nodel		0.0015	
						-										
			Exp. Route Total								8.60E-08					0.0015
	Exposure Point Total						2.03E-04				2.03E-04					0.2380
	Exposure Medium Total						2.03E-				2.03E-04					0.2380

TABLE 7.3.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Scenario	Timeframe:	Future
Receptor	Population:	Resident

Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC)		Cano	er Risk Calculati	ons			Non-Can	cer Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposur	e Concentration	n CSF/Unit Risk		Cancer Risk	Intake/Exposure	e Concentration	RfD/RfC		Hazard
							Value	Value Units		Units		Value	Units	Value	Units	Quotient
Groundwater	Groundwater	Aquifer	Dermal Absorption	1,4-Dioxane	2.46E-01	mg/L	2.6E-06	mg/kg-day	1.0E-01	1/mg/kg-day	2.59E-07	2.6E-06	mg/kg-day	3.0E-02	mg/kg-day	0.0001
		Tap Water														
			Exp. Route Total							2.59E-07					0.0001	
			Ingestion	1,4-Dioxane	2.46E-01	mg/L	1.3E-03	1.3E-03 mg/kg-day 1.0E-01 1/mg/kg-day		1.35E-04	1.6E-02	mg/kg-day	3.0E-02	mg/kg-day	0.5242	
			Exp. Route Total								1.35E-04					0.5242
			Inhalation	1,4-Dioxane	2.46E-01	mg/L		VISL Model			8.60E-08		VISL	Model		0.0015
			Exp. Route Total								8.60E-08					0.0015
	Exposure Point Total						1.35E-04									0.5258
	Exposure Medium Total						1.35E-04				1.35E-04					0.5258

TABLE 7.4.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Child/Adult

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPO)		Cancer Risk Calculations					Non-Cano	cer Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposur	e Concentration	CSF/U	Init Risk	Cancer Risk	Intake/Exposur	e Concentration	RfD	/RfC	Hazard
							Value	Units	Value	Units		Value	Units	Value	Units	Quotient
Groundwater	Groundwater	Aquifer	Dermal Absorption	1,4-Dioxane	2.46E-01	mg/L	7.6E-06	mg/kg-day	1.0E-01	1/mg/kg-day	7.58E-07	2.0E-05	mg/kg-day	3.0E-02	mg/kg-day	0.0007
		Tap Water														
			Exp. Route Total								7.58E-07					0.0007
			Ingestion	1,4-Dioxane	2.46E-01	mg/L	3.4E-03	mg/kg-day	1.0E-01	1/mg/kg-day	3.37E-04	2.3E-02	mg/kg-day	3.0E-02	mg/kg-day	0.7601
			Exp. Route Total								3.37E-04					0.7601
			Inhalation	1,4-Dioxane	2.46E-01	mg/L		VISL	Model		8.60E-08	VISL Model			0.0015	
			Exp. Route Total								8.60E-08					0.0015
		Exposure Point T	otal									-04			0.7623	
	Exposure Medium To	tal									3.38E-04]]				0.7623

TABLE 8 RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: All

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	Chemical of EPC			Car	ncer Risk Calculati	ons	
				Potential Concern	Value	Units	Intake/	Activity	C	SF	Cancer Risk
							Value	Units	Value	Units	
Groundwater	Groundwater	Groundwater Plume	Dermal Absorption	Radium-226	4.44	pCi/L	3.09E+00	pCi/year/L	6.27E-14	Risk/pCi/L	1.94E-13
				Radium-228	4.40	pCi/L	3.07E+00	pCi/year/L	5.02E-16	Risk/pCi/L	1.54E-15
			Exp. Route Total								1.95E-13
			Ingestion	Radium-226	4.44	pCi/L	8.42E+04	pCi	3.85E-10	Risk/pCi	3.24E-05
				Radium-228	4.40	pCi/L	8.42E+04	pCi	1.04E-09	Risk/pCi	8.76E-05
			Exp. Route Total								1.20E-04
			Produce Ingestion	Radium-226	4.44	pCi/L	1.29E+04	pCi	5.14E-10	Risk/pCi	6.63E-06
				Radium-228	4.40	pCi/L	1.06E+04	pCi	1.42E-09	Risk/pCi	1.51E-05
			Exp. Route Total								2.17E-05
			Inhalation	Radium-226	4.44	pCi/L	NA	NA	2.820E-08	Risk/pCi	NA
				Radium-228	4.40	pCi/L	NA	NA	4.370E-08	Risk/pCi	NA
			Exp. Route Total								
		Exposure Point Total									1.42E-04
	Exposure Medium Total								1.42E-04		
Groundwater Total											1.42E-04

TABLE 9.1.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Scenario Timeframe: Current/Future Receptor Population: Site/Construction Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential		(Carcinogenic	Risk	Non-Carcinogenic Hazard Quotient			d Quotient		
			Concern	Ingestion	Inhalation	Dermal	External	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							(Radiation)	Routes Total	Target Organ(s)				Routes Total
Groundwater	Groundwater	Aquifer	1,4-Dioxane			7.47E-08		7.47E-08	Liver/Kidney			6.28E-08	6.28E-08
		Tap Water	Chemical Total			7.47E-08		7.47E-08				6.28E-08	6.28E-08
		Exposure Point Total						7.47E-08					6.28E-08
	Exposure Medium Total							7.47E-08				6.28E-08	

Total Risk Across All Media 7.47E-08

6.28E-08

6.28E-08

6.28E-08

Total Liver HI Across all media

TABLE 9.2.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential		(Carcinogenic	Risk		Non-Carcinogenic Hazard Quotient				
			Concern	Ingestion	Inhalation	Dermal	External	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							(Radiation)	Routes Total	Target Organ(s)				Routes Total
Groundwater	Groundwater	Aquifer	1,4-Dioxane	2.02E-04	8.60E-08	4.98E-07	1.42E-04	3.45E-04	Liver/Kidney	0.2359	0.0015	0.0006	0.2380
		Tap Water	Chemical Total	2.02E-04	8.60E-08	4.98E-07	1.42E-04	3.45E-04		0.2359	0.0015	0.0006	0.2380
	Exposure Point Total							3.45E-04		-			0.2380
E	Exposure Medium Total							3.45E-04					0.2380

0.2380

0.2380

Total Risk Across All Media 3.45E-04

Total Liver HI Across all media Total Kidney HI Across all media

Page 1 of 1

TABLE 9.3.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential		(Carcinogenic	Risk	Non-Carcinogenic Hazard Quotient			d Quotient		
			Concern	Ingestion	Inhalation	Dermal	External	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							(Radiation)	Routes Total	Target Organ(s)				Routes Total
Groundwater	Groundwater	Aquifer	1,4-Dioxane	1.35E-04	8.60E-08	2.59E-07	1.42E-04	2.77E-04	Liver/Kidney	0.5242	0.0015	0.0001	0.5258
		Tap Water	Chemical Total	1.35E-04	8.60E-08	2.59E-07	1.42E-04	2.77E-04		0.5242	0.0015	0.0001	0.5258
	Exposure Point Total						2.77E-04					0.5258	
E	Exposure Medium Total							2.77E-04					0.5258

0.5258

0.5258

0.5258

Total Risk Across All Media 2.77E-04

Total Liver HI Across all media Total Kidney HI Across all media

Page 1 of 1

TABLE 9.4.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE FSU-LLRW SITE, APALACHICOLA NATIONAL FOREST, FLORIDA

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Child/Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential		(Carcinogenic	Risk	Non-Carcinogenic Hazard Quotient			d Quotient		
			Concern	Ingestion	Inhalation	Dermal	External	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							(Radiation)	Routes Total	Target Organ(s)				Routes Total
Groundwater	Groundwater	Aquifer	1,4-Dioxane	3.37E-04	8.60E-08	7.58E-07	1.42E-04	4.80E-04	Liver/Kidney	0.7601	0.0015	0.0007	0.7623
		Tap Water	Chemical Total	3.37E-04	8.60E-08	7.58E-07	1.42E-04	4.80E-04		0.7601	0.0015	0.0007	0.7623
	Exposure Point Total							4.80E-04		-			0.7623
E	Exposure Medium Total							4.80E-04					0.7623

0.7623

0.7623

Total Risk Across All Media 4.80E-04

Total Liver HI Across all media Total Kidney HI Across all media

Page 1 of 1

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

Applicable or Relevant and Appropriate Requirements (ARARs)

THIS PAGE INTENTIONALLY LEFT BLANK

/		
REGULATIONS	CFR/FDEP REFERENCES	POTENTIAL ARARs
RCRA	40 CFR 268; FAC 62-730.183 (Hazardous Waste Disposal)	Land Disposal Restrictions: Applicable for RCRA designated wastes. Contaminated soils, sediments, leachates, etc. must be managed as RCRA wastes. FDEP requirements are likely to take precedence over most RCRA requirements.
	40 CFR 264; FAC 62-730.180-181 (Hazardous Waste Disposal)	Disposal and Closure Requirements RCRA requirements for disposal and site closure (removal area) may become relevant and appropriate if contaminated materials are excavated from the site during the removal action.
		RCRA requirements.
	40 CFR 264.251 (c) (d); 40 CFR 264.273 (c) (d); 40 CFR 264.301 (c) (d); 40 CFR 264.258 (b); 40 CFR 264.310; FAC 62-40.432	Surface Water Control
		Control and prevent run-on and run-off from a 24-hour, 25-year storm (waste piles, land treatment facilities, and landfills).
		FDEP requirements may also be applicable and may take precedence.
	40 CFR 262.30 through 31	Transport Requirements
		Materials removed from the burial site, which are classified as hazardous waste, will be required to follow packaging and labeling regulations, prior to transport.
		Criteria for Identifying the Characteristics of Hazardous Waste
	40 CFR 261.10 (261.24 Toxicity Characteristic; FAC 62-730.030	Hazardous wastes (including soils, debris, etc.) may potentially be excavated from the burial site. The characteristics of these wastes will determine if RCRA disposal requirements apply.
		FDEP requirements may also be applicable and may take precedence.
		National Primary Drinking Water Regulations
SDWA	40 CFR 141.11 through 12, 40 CFR 15 through 16; FAC 62-777	Maximum contaminant levels (MCLs) for radionuclides, organic chemicals, and inorganic chemicals in community drinking systems may be considered during remedial activities. MCLs and non-zero maximum contaminant level goals (MCLGs) may be relevant to groundwater at the site, although the surficial aquifer is not believed to be a current source of drinking water. Criteria may be used as threshold levels for selection of contaminants of concern (COCs) to assess potential impact to the environment.
		Florida has Groundwater Target Cleanup Levels (GTCLs) for some contaminants for which there is no established MCL or MCLG
	40 CFR 143.3;	Secondary Maximum Contaminant Levels Secondary Maximum Contaminant levels may be applicable to groundwater quality at the site. Groundwater quality must be suitable for its intended use.

REGULATIONS	CFR/FDEP REFERENCES	POTENTIAL ARARs
DOT	49 CFR 173.24; FAC 62-550	General Requirements for Hazardous Material Packaging and Packages Specifications for the packaging of materials and the packages prior to transport. DOT regulations may be applicable or relevant to hazardous materials removed from the site.
	49 CFR 177.848	Segregation of Hazardous Materials Provides instructions for using the segregation table for hazardous materials, which outlines specifications for the transport of different types or classes of hazardous materials. These requirements would be applicable or relevant to materials and/or debris excavated from the burial site.
	49 CFR 173.3	Shipping Requirements for Hazardous Materials - Specifications for the transport of hazardous materials. These requirements may be applicable for contaminated soils, debris, etc. during the remedial action.
рот	49 CFR 177.842	Carriage by Public Highway - Class 7 (radioactive) material Provides specifications for the transport of radioactive materials. Requirements may be applicable or relevant to waste materials excavated from the site.
CAA	NAAQS 40 CFR 50, 40 CFR 61; FAC 62-204	<u>Chemical Discharges from Remedial Activities or Treatment</u> Discharges to ambient air from remedial activities must not cause nuisance odors or pose excess risk to human health or the environment. Includes National Ambient Air Quality Standards (NAAQS), and New Source Performance Standards (NSPS); Florida Administers provisions of the CAA.
	CAA Section 101 and 40 CFR 52	Fugitive and Odor Emission Control Plan Action Odor regulations are intended to limit nuisance conditions from air pollution emissions. Fugitive emission controls are one feature of the state implementation plan used to achieve/maintain the ambient air quality standards for particulate matter. Florida Administers provisions of the CAA.
Endangered Species Act of 1973	50 CFR 200, 50 CFR 402; FAC 68A- 27	Endangered Species Act - The determination/protection of endanger species or threatened species at the site.
Radiation (DOE)	10 CFR 20.101, 10 CFR 20.104	Radiation Protection Programs For the protection of workers during remediation activities, DOE programs may be applicable or relevant. Programs consist of a variety of radiation exposure limits including dose limits of 1.25 rem/quarter to whole body.
	10 CFR 20.1701-20.1702. 10 CFR 20.1703	Respiratory Protection and Controls to Restrict Internal Exposure in Restricted Areas - The best available measures, to the extent practicable, should be considered to control the concentration of radioactive materials in the air. The use of individual respiratory equipment should be required to limit the intake of radioactive materials in the air. In addition, a respiratory protection program should be implemented through the entire duration of the remediation.

REGULATIONS	CFR/FDEP REFERENCES	POTENTIAL ARARs
Radiation (DOE)	10 CFR 61.41	Protection of the General Population from Releases of Radioactivity - Limits the concentration of radioactive material that may be released into the air, water, soil, plants, and animals.
	10 CFR 61.50; FAC 64E-5.907	Technical Requirements for Land Disposal Facilities
		Following the excavation, the elimination of radioactively contaminated materials or wastes will be required to comply with appropriate disposal site suitability criteria.
	10 CFR 71.43-71.47	General Standards and External Radiation Standards for Packages -
		The transport of radioactive wastes must meet specific packaging and external radiation standards. Requirements may be applicable to potential debris and soils removed from the burial site.
OSHA	29 CFR 1910.96; 29 CFR 1926.53	<u>Ionizing Radiation</u> Provides specifications and requirements for the protection of human health from exposure to radiation in restricted areas. This may be applicable to personnel during the site remediation.
	29 CFR 1910.120; 29 CFR 1926.65	Hazardous Waste Operations and Emergency Response Provides employee exposure specifications for dealing with clean-up of NPL sites, corrective actions of RCRA sites, voluntary clean-up of federal property, and emergency response operations for releases, or potential releases of hazardous substances.
	29 CFR 1910.120; 29 CFR 1926.103	Respiratory Protection Outline of respiratory protection requirements for employees that may be exposed to harmful dusts, fogs, fumes, mists, gases, smokes, etc., while working on site. The use of respirators or and respiratory protection program may be applicable during remedial activities.
	29 CFR 1926.55	Gases, Vapors, Fumes, Dusts, and Mists Provides exposure limits and compliance specifications for inhalation, ingestion, skin absorption, or contact with any substance at a concentration above those specified in the "Threshold Limit Values of Airborne Contaminates for 1970". Provisions for the protection of employees during remedial activities.

REGULATIONS	CFR/FDEP REFERENCES	POTENTIAL ARARs
OSHA	29 CFR 1926.651; 29 CFR 1926.652	Specific Excavation Requirements and Requirements for Protective Systems
		Safety requirements and protective systems for excavations will be relevant and applicable to excavation activities during the site remediation. Specifications include: underground installations (utilities), access and egress (structural ramps), oxygen monitoring, exposure to vehicular traffic, protection from cave in, etc.

APPENDIX E

Presumptive Remedy Costing Sheets

THIS PAGE INTENTIONALLY LEFT BLANK
Alternative 1 No Action FSU-LLRW Burial Site

Alternative Description: This alternative will include no further action at the FSU-LLRW in regards to the actual buried wastes and contaminated groundwater. No monitoring or land use controls will be implemented to address soils contamination.

Item	Quantity	Units	Unit Cost	Total Cost	Subtotals	Notes
Capital Costs						
No Capital Costs						
CAPITAL COSTS TOTAL				:	\$-	
Project Management	10%			:	\$-	
Operations and Maintenance - Annual						
1.0 Administration						
Task 1 Subtotal				:	\$-	
2.0 Regulatory Interaction						
Task 2 Subtotal				:	\$-	
O&M Costs Subtotal				:	\$-	
Project Management	10%			:	\$-	
O&M ANNUAL COSTS TOTAL				:	\$-	
5-Year Site Review Costs						
1.0 CERCLA Review						
Task 1 Subtotal				:	\$-	
Site Paviaw Casts Subtatal					¢	
Broject Management	10%				ም - ድ	
SITE REVIEW COSTS TOTAL	10%				φ - \$ _	
SHE REVIEW COSTS TOTAL					φ -	

Note:

Alternative 1 No Action FSU-LLRW Burial Site

Alternative Description: This alternative will include no further action at the FSU-LLRW in regards to the actual buried wastes and contaminated groundwater. No monitoring or land use controls will be implemented to address soils contamination.

Base Year	2020
Location:	Leon County, Florida
Discount Rate:	5%
Project Length:	30 years

Year	Capit	al Costs	Annu	ual O&M	Perio	dic Costs	Tota	I Annual	Discount Factor	Present Value		
		Costs		osts			Exp	enditure				
0	\$	-	\$	-	\$	-	\$	-	1.0000	\$	-	
1	\$	-	\$	-	\$	-	\$	-	0.9524	\$	-	
2	\$	-	\$	-	\$	-	\$	-	0.9070	\$	-	
3	\$	-	\$	-	\$	-	\$	-	0.8638	\$	-	
4	\$	-	\$	-	\$	-	\$	-	0.8227	\$	-	
5	\$	-	\$	-	\$	-	\$	-	0.7835	\$	-	
6	\$	-	\$	-	\$	-	\$	-	0.7462	\$	-	
7	\$	-	\$	-	\$	-	\$	-	0.7107	\$	-	
8	\$	-	\$	-	\$	-	\$	-	0.6768	\$	-	
9	\$	-	\$	-	\$	-	\$	-	0.6446	\$	-	
10	\$	-	\$	-	\$	-	\$	-	0.6139	\$	-	
11	\$	-	\$	-	\$	-	\$	-	0.5847	\$	-	
12	\$	-	\$	-	\$	-	\$	-	0.5568	\$	-	
13	\$	-	\$	-	\$	-	\$	-	0.5303	\$	-	
14	\$	-	\$	-	\$	-	\$	-	0.5051	\$	-	
15	\$	-	\$	-	\$	-	\$	-	0.4810	\$	-	
16	\$	-	\$	-	\$	-	\$	-	0.4581	\$	-	
17	\$	-	\$	-	\$	-	\$	-	0.4363	\$	-	
18	\$	-	\$	-	\$	-	\$	-	0.4155	\$	-	
19	\$	-	\$	-	\$	-	\$	-	0.3957	\$	-	
20	\$	-	\$	-	\$	-	\$	-	0.3769	\$	-	
21	\$	-	\$	-	\$	-	\$	-	0.3589	\$	-	
22	\$	-	\$	-	\$	-	\$	-	0.3418	\$	-	
23	\$	-	\$	-	\$	-	\$	-	0.3256	\$	-	
24	\$	-	\$	-	\$	-	\$	-	0.3101	\$	-	
25	\$	-	\$	-	\$	-	\$	-	0.2953	\$	-	
26	\$	-	\$	-	\$	-	\$	-	0.2812	\$	-	
27	\$	-	\$	-	\$	-	\$	-	0.2678	\$	-	
28	\$	-	\$	-	\$	-	\$	-	0.2551	\$	-	
29	\$	-	\$	-	\$	-	\$	-	0.2429	\$	-	
30	\$	-	\$	-	\$	-	\$	-	0.2314	\$	-	
Estimated Proj	ect Total C	ost							\$		-	
Estimated Proj	ect Total Co	ost Range (-30%/+5	50%)					\$ -	\$	-	

Alternative 1 - No Action No Action FSU-LLRW Burial Site

Initial, Annual, and Periodic Costs

CAPITAL COSTS (One Time)			
No Capital Costs		\$	-
CAPITAL COSTS CONTINGENCY, PROJECT MANAGE	EMENT, TECHNICAL SUPPORT		
Project Management			10%
O&M COSTS (Annual Costs)			
1.0 Administration	\$	-	
2.0 Regulatory Interaction	\$	-	
PERIODIC COSTS (Recurrent)			
1.0 CERCLA Review		\$	-
O&M COSTS CONTINGENCY, PROJECT MANAGEME	NT, TECHNICAL SUPPORT		
Project Management			10%
Total Present Va	lue Assessment		
Discount Rate 5%	COST	T (Prese	ent Worth)
Estimated Project Total Cost	\$		-
Estimated Project Total Cost Range (-30%/+50%)	\$ -	\$	-

*For the purposes of this EE/CA, the no action alternative has a cost of \$0.00. However, there are costs associated with a no-action alternative that include maintenance of access roads, permitting and regulatory interface with FSU concerning the site, and the needs for periodic surveys and site visits to assess the condition of current site land use controls that include site security fencing.

Alternative 2 Excavation and off-site disposal of Low-Level Radiological Wastes and Contaminated Soils FSU-LLRW Burial Pits

Alternative Description: Excavation and off-site disposal of Low-Level Radiological Wastes and Contaminated Soil. Post Excavation Survey and Site Restoration to Occur at Conclusion of Removal Action

Item	Quantity	Units		Unit Cost		Total Cost	S	Subtotals	Note
Capital Costs	quantity	onito						Justotulo	
1.0 Planning and Regulatory Interface									
1.1 Work Plan Development and Approval	1	LS	\$	30.000	\$	30.000			1
Task 1 Subtotal				,	-	,	\$	30,000	
2.0 Site Preparation									
2.1 Mobilization and Site Preparation	1	LS	\$	40,000	\$	40,000			1
2.2 Concrete Laydown Area	7,500	SF	\$	6	\$	45,000			2
2.3 Concrete Laydown Area Sump and Pits	4	EACH	\$	2,000	\$	8,000			1, 2
2.4 Construction of Access Roads (1/4 mile road to site)	21,120	SF	\$	3	\$	52,800			1,3,4
2.5 Construction Equipment Trailer	6	MON	\$	150	\$	900			2
2.6 Removal and Disposal of Existing Site Fencing	1	LS	\$	5,000	\$	5,000			1
Task 2 Subtotal							\$	151,700	
3.0 Erosion Controls									
3.1 Erosion Prevention Control Plan	1	LS	\$	9.200	\$	9,200			1
3.2 Super Silt Fencing	2.500	LF	\$	-,1	\$	2,900			2
3.3 Security Fencing (8 foot high)	4 000	LF	\$	20	\$	80,000			- 5
Task 3 Subtotal	4,000	LI	Ψ	20	Ψ	00,000	\$	92,100	0
4.0 Excavation	<u> </u>	DAV	¢	4 000	۴	400.000			
4.1 Front End Loader	60	DAY	\$	1,800	\$	108,000			4
4.2 Excavator - Excavation	60	DAY	\$	2,000	\$	120,000			4
4.3 RSO and Radiation Monitoring	12	WK	\$	5,000	\$	60,000			1
4.4 Site Labor	1,440	HR	\$	90	\$	129,600			6
4.5 On Site - Sorting Plant for Loose Wastes	3	MO	\$	4,000	\$	12,000			5
4.6 Frac Tanks for Dewatering	3	MO	\$	2,000	\$	6,000			5
4.7 Health and Safety and Air Monitoring	12	WK	\$	1,000	\$	12,000			1,9
4.8 Water Testing & Analysis	12	WK	\$	1,000	\$	12,000			1
4.9 Delivery and Rental of Rad Waste Containers	30	EA	\$	4,511	\$	135,330			5,7
Task 4 Subtotal							\$	594,930	
5.0 Transport and Off-site Disposal									
5.1 Public Meeting and Notification	120	HR	\$	90	\$	10,800			1,9
5.2 Planning and Development of Non-Rad Manifests	100	HR	\$	100	\$	10,000			1
5.3 Planning and Development of Rad Manifests	1	LS	\$	40,000	\$	40,000			1,5
5.4 Transport and Disposal of RCRA Non-Haz Soil	500	Ton	\$	100	\$	50,000			1
5.5 Transport and Disposal of RCRA Title C Soil	200	Ton	\$	500	\$	100,000			1
5.6 Tranport Rad Wastes	30	IM	\$	8.975	\$	269,250			5.7
5.7 Disposal of Radionuclide wastes	30	IM	\$	68.000	\$	2.040.000			5.7
5.8 Disposal of Water in Frac Tanks	12	FA	\$	19,000	\$	228 000			1511
5.9 Decontamination and Screening Out of Site Equipment	1	LS	\$	20,000	\$	20,000			19
5 10 Sampling of Excavated Wastes	100	ΕΔ	Ψ \$	500	¢ ¢	50,000			1
Task 5 Subtotal	100	ER	Ψ	000	Ψ	00,000	\$	2,818,050	
6 0 Einal Status Survey									
6.1 Diopping	120	ЦВ	¢	100	¢	12 000			5 7
	120		φ Φ	F 000	φ Φ	12,000			0, <i>1</i>
0.2 NOU	2	WK	¢	5,000	¢	10,000			1
6.5 Frac Lank for Dewatering	1		\$	1,250	Э Ф	1,250			5
0.4 Disposal of vvater in Frac Lanks	2	EA	\$	19,000	\$	38,000			1,5,11
6.4 Post excavation Confirmation Samples	50	EA	\$	500	\$	25,000			1
6.5 Post excavation Sampling Labor	320	HR	\$	90	\$	28,800			1,8
6.6 Post Excavation Radiation Survey	1	LS	\$	25,000	\$	25,000			1,9
6.7 Final Status Survey Report	200	HR	\$	100	\$	20,000			1,9
6.8 Final Closure Approval	120	HR	\$	100	\$	12,000			1
Task 6 Subtotal							\$	172,050	

Alternative 2 Excavation and off-site disposal of Low-Level Radiological Wastes and Contaminated Soils FSU-LLRW Burial Pits

Alternative Description: Excavation and off-site disposal of Low-Level Radiological Wastes and Contaminated Soil. Post Excavation Survey and Site Restoration to Occur at Conclusion of Removal Action

Item	Quantity	Units	Unit Cost	Fotal Cost	;	Subtotals	Note
Capital Costs							
7.0 Site Restoration							
7.1 Clean Fill (Delivered to Site)	3,000	CY	\$ 40	\$ 120,000			2
7.2 Front End Loader	10	DAY	\$ 1,800	\$ 18,000			4
7.3 Excavator	10	DAY	\$ 2,000	\$ 20,000			4
7.4 Site Labor	320	HR	\$ 90	\$ 28,800			1,8
7.5 Breakup concrete pad and dispose of off-site	7,599	SF	\$ 3	\$ 22,797			1,2
7.7 Remove Sed and Erosion Controls	1	LS	\$ 2,500	\$ 2,500			1
7.8 Final grading and site restoration	1	LS	\$ 25,000	\$ 25,000			1
Task 7 Subtotal					\$	237,097	
Capital Costs Subtotal					\$	4,095,927	
Project Management	10%				\$	409,593	
CAPITAL COSTS TOTAL					\$	4,505,520	

Notes:

1. Based on BMT experience with CERCLA and non-CERCLA Remediation Projects, including review cycles

2. Get-a-quote.net

3. Assume a road 16 feet across has to be constructed to allow heavy vehicles to access site.

4. Day rate for equipment and operator

5. Vendor quote

6. Assume three (3) full time equivalents (FTEs) for a three-months

7. Assume 30 IM containers for 555 tons of total rad debris and impacted soil

8. Four FTE equivalents for 80 hours each

9. Performed In accordance with MARSSIM and/or NRC Guidance

10. Assume a total of 16,000 gallons of water produced from dewatering

11. Assumed that Frac Tank will require emptying for off-site disposal every two-weeks

MARSSIM - Multi-Agency Radiation Survey and Site Investigation Manual

Excavation and off-site disposal of Low-Level Radiological Wastes and Contaminated Soils FSU-LLRW Burial Pits

Alternative Description: Excavation and off-site disposal of Low-Level Radiological Wastes and Contaminated Soil. Post Excavation Survey and Site Restoration to Occur at Conclusion of Removal Action

Base Year	2020
Location:	Leon County, Florida
Discount Rate:	5%
Project Length:	30 years

Year	Capital C	osts	Annual O&M Costs	Periodic Costs	T	otal Annual Expenditure	Discount Factor	Pre	sent Value
0	\$ 4,5	05,520	\$-		\$	4,505,520	1.0000	\$	4,505,520
1	\$	-	\$-	\$-	\$	-	0.9524	\$	-
2	\$	-	\$-	\$-	\$	-	0.9070	\$	-
3	\$	-	\$-	\$-	\$	-	0.8638	\$	-
4	\$	-	\$-	\$-	\$	-	0.8227	\$	-
5	\$	-	\$-	\$-	\$	-	0.7835	\$	-
6	\$	-	\$-	\$-	\$	-	0.7462	\$	-
7	\$	-	\$-	\$-	\$	-	0.7107	\$	-
8	\$	-	\$-	\$-	\$	-	0.6768	\$	-
9	\$	-	\$-	\$-	\$	-	0.6446	\$	-
10	\$	-	\$-	\$-	\$	-	0.6139	\$	-
11	\$	-	\$-	\$-	\$	-	0.5847	\$	-
12	\$	-	\$-	\$-	\$	-	0.5568	\$	-
13	\$	-	\$-	\$-	\$	-	0.5303	\$	-
14	\$	-	\$-	\$-	\$	-	0.5051	\$	-
15	\$	-	\$-	\$-	\$	-	0.4810	\$	-
16	\$	-	\$-	\$-	\$	-	0.4581	\$	-
17	\$	-	\$-	\$-	\$	-	0.4363	\$	-
18	\$	-	\$-	\$-	\$	-	0.4155	\$	-
19	\$	-	\$-	\$-	\$	-	0.3957	\$	-
20	\$	-	\$-	\$-	\$	-	0.3769	\$	-
21	\$	-	\$-	\$-	\$	-	0.3589	\$	-
22	\$	-	\$-	\$-	\$	-	0.3418	\$	-
23	\$	-	\$-	\$-	\$	-	0.3256	\$	-
24	\$	-	\$-	\$-	\$	-	0.3101	\$	-
25	\$	-	\$-	\$-	\$	-	0.2953	\$	-
26	\$	-	\$-	\$-	\$	-	0.2812	\$	-
27	\$	-	\$-	\$-	\$	-	0.2678	\$	-
28	\$	-	\$-	\$-	\$	-	0.2551	\$	-
29	\$	-	\$-	\$ -	\$	-	0.2429	\$	-
30	\$	-	\$-	\$ -	\$	-	0.2314	\$	-
Estimated Project Total Cost \$							\$		4,505,520
Estimated Proje	ct Total Cost	Range ((-30%/+50%)				\$ 3,153,864	\$	6,758,280

Excavation and off-site disposal of Low-Level Radiological Wastes and Contaminated Soils FSU-LLRW Burial Pits

	313			
CAPITAL COSTS (One Time)				
1.0 Planning and Regulatory Interface	\$	30,000		
2.0 Site Preparation			\$	151,700
3.0 Erosion Controls			\$	92,100
4.0 Excavation			\$	594,930
5.0 Transport and Off-site Disposal			\$	2,818,050
6.0 Final Status Survey				172,050
7.0 Site Restoration				237,097
O&M COSTS (Annual Costs)				
No O&M Costs				-
PERIODIC COSTS (Recurrent)				
No Periodic Costs			\$	-
CONTINGENCY, PROJECT MANAGEMENT, TECHNICAL SUPPORT				
Project Management				10%
Total Present Value Assessme	ent			
Discount Rate 5%		COS	T (Pr	esent Worth)
Estimated Project Total Cost	\$			4,505,520
Estimated Project Total Cost Range (-30%/+50%)	\$	3,153,864	\$	6,758,280

Alternative Description: Natural reduction of radionuclides through radioactive decay and continued degradation of 1,4-dioxane. This alternative will include the installation of additional monitoring wells and conducting annual groundwater monitoring at the FSU-LLRW.

Item	Quantity	Units		Unit Cost		Total Cost		Subtotals	Notes
Capital Costs	-								
1.0 Additional Monitoring Well Installation and Radionu	clide Speciatio	n							
1.1 Workplans	40	HR	\$	90	\$	3,600			2
1.2 Mobilization	1	LS	\$	5,000	\$	5,000			1
1.3 Monitoring Well Installation Costs	4	EA	\$	4,500	\$	18,000			2
1.4 Radionuclide Speciation Sampling and Analysis	14	EA	\$	2,000	\$	28,000			3
1.5 IDW Disposal	12	DRUM	\$	250	\$	3,000			2
1.6 Reporting	80	HR	\$	90	\$	7,200			2
Task 1 Subtotal							\$	64,800	
O&M Costs Subtotal							\$	64,800	
Project Management	10%						\$	6,480	
O&M ANNUAL COSTS TOTAL							\$	71,280	
Operations and Maintenance - Annual									
1.0 Administration									
1.1 Planning and Regulatory Interface	80	HR	\$	90	\$	7,200			1
Task 1 Subtotal							\$	7,200	
0.0 Westwiere for MNA Osmalian									
2.0 Workplans for MNA Sampling	20		¢	00	¢	0.500			4.0
2.1 Workplans (Annual sampling requirement)	32	HK	\$	80	ф	2,560		2 500	1,2
Task 2 Subtotal							Þ	2,560	
3.0 MNA Sampling									
3.1 Labor	80	HR	\$	90	\$	7,200			1,2
3.2 Mobilization	1	LS	\$	1,500	\$	1,500			1,2
3.3 Equipment	2	WK	\$	500	\$	1,000			1,2
3.4 Samples	14	EA	\$	1,000	\$	14,000			2
3.5 Expendables	3	DAY	\$	50	\$	150			1,2
Task 3 Subtotal							\$	23,850	
4.0 MNA Sample Reporting									
4.1 MNA Reporting	40	HR	\$	90	\$	3,600			1,2
4.2 Regulatory Support	32	HR	\$	90	\$	2,880			1
Task 4 Subtotal							\$	6,480	
O&M Costs Subtotal							\$	40.090	
Project Management	10%						\$	4,009	
O&M ANNUAL COSTS TOTAL							\$	44,099	

Alternative Description: Natural reduction of radionuclides through radioactive decay and continued degradation of 1,4-dioxane. This alternative will include the installation of additional monitoring wells and conducting annual groundwater monitoring at the FSU-LLRW.

Item	Quantity	Units	Unit Cost	٦	Total Cost	S	ubtotals	Notes
5-Year Costs								
1.0 CERCLA Review								
1.1 Reporting	150	HR	\$ 90	\$	13,500			1
1.2 Meetings and Regulatory Support	16	HR	\$ 95	\$	1,520			1
1.3 Announcements	2	EA	\$ 100	\$	200			1
Task 1 Subtotal						\$	15,220	
2.0 Additional Monitoring Well Installation								
2.1 Workplans and Approvals	40	HR	\$ 90	\$	3,600			2
2.2 Mobilization	1	LS	\$ 5,000	\$	5,000			1,2
2.3 Installation Costs	2	EA	\$ 4,500	\$	9,000			1,2
2.5 IDW Disposal	6	DRUM	\$ 200	\$	1,200			2
2.6 Reporting	40	HR	\$ 90	\$	3,600			1,2
Task 2 Subtotal						\$	22,400	
3.0 Additional Monitoring Well MNA Sampling								
3.1 Labor	10	HR	\$ 80	\$	800			2
3.2 Equipment	0.1	WK	\$ 500	\$	50			2
3.3 Samples	2	EA	\$ 1,000	\$	2,000			2
3.4 Expendables	1	DAY	\$ 50	\$	50			2
3.5 Reporting	10	HR	\$ 90	\$	900			
Task 3 Subtotal						\$	3,800	
Site Review Costs Subtotal						\$	41,420	
Project Management	10%					\$	4,142	
SITE REVIEW COSTS TOTAL						\$	45,562	

1. Engineering Experience on competed projects by BMT within the last 5 years.

2. Experience at previous investigations conducted at the FSU-LLRW by $\ensuremath{\mathsf{BMT}}$

3. Vendor quote

Alternative Description: Natural reduction of radionuclides through radioactive decay and continued degradation of 1,4-dioxane. This alternative will include the installation of additional monitoring wells and conducting annual groundwater monitoring at the FSU-LLRW.

Assume two new wells installed every five years with 20% increase in MNA monitoring costs.

Base Year	2020
Location:	Leon County, Florida
Discount Rate:	5%
Project Length:	30 years

Year	Capital Costs	Annual O&M	Periodic Costs	Total Annual	Discount Factor	Present Value	
		Costs		Expenditure			
0	\$ 71,280	\$-		\$ 71,280	1.0000	\$ 71,280	
1	\$	\$ 44,099	\$-	\$ 44,099	0.9524	\$ 41,999	
2	\$	\$ 44,099	\$-	\$ 44,099	0.9070	\$ 39,999	
3	\$	\$ 44,099	\$-	\$ 44,099	0.8638	\$ 38,094	
4	\$	\$ 44,099	\$-	\$ 44,099	0.8227	\$ 36,280	
5	\$	\$ 48,279	\$ 37,620	\$ 85,899	0.7835	\$ 67,304	
6	\$	\$ 48,279	\$-	\$ 48,279	0.7462	\$ 36,027	
7	\$	\$ 48,279	\$-	\$ 48,279	0.7107	\$ 34,311	
8	\$	\$ 48,279	\$-	\$ 48,279	0.6768	\$ 32,677	
9	\$	\$ 48,279	\$-	\$ 48,279	0.6446	\$ 31,121	
10	\$	\$ 52,459	\$ 37,620	\$ 90,079	0.6139	\$ 55,301	
11	\$	\$ 52,459	\$-	\$ 52,459	0.5847	\$ 30,672	
12	\$	\$ 52,459	\$-	\$ 52,459	0.5568	\$ 29,211	
13	\$	\$ 52,459	\$-	\$ 52,459	0.5303	\$ 27,820	
14	\$	\$ 52,459	\$-	\$ 52,459	0.5051	\$ 26,495	
15	\$	\$ 56,639	\$ 37,620	\$ 94,259	0.4810	\$ 45,340	
16	\$	\$ 56,639	\$-	\$ 56,639	0.4581	\$ 25,947	
17	\$	\$ 56,639	\$-	\$ 56,639	0.4363	\$ 24,711	
18	\$	\$ 56,639	\$-	\$ 56,639	0.4155	\$ 23,535	
19	\$	\$ 56,639	\$-	\$ 56,639	0.3957	\$ 22,414	
20	\$	\$ 56,686	\$ 37,620	\$ 94,306	0.3769	\$ 35,543	
21	\$	\$ 56,686	\$-	\$ 56,686	0.3589	\$ 20,347	
22	\$	\$ 56,686	\$-	\$ 56,686	0.3418	\$ 19,378	
23	\$	\$ 56,686	\$-	\$ 56,686	0.3256	\$ 18,455	
24	\$.	\$ 56,686	\$-	\$ 56,686	0.3101	\$ 17,576	
25	\$	\$ 60,866	\$ 37,620	\$ 98,486	0.2953	\$ 29,083	
26	\$	\$ 60,866	\$-	\$ 60,866	0.2812	\$ 17,118	
27	\$	\$ 60,866	\$-	\$ 60,866	0.2678	\$ 16,303	
28	\$	\$ 60,866	\$-	\$ 60,866	0.2551	\$ 15,526	
29	\$.	\$ 60,866	\$-	\$ 60,866	0.2429	\$ 14,787	
30	\$	\$ 65,046	\$ 37,620	\$ 102,666	0.2314	\$ 23,755	
	•	•	•	•	•		
Estimated Pro	ject Total Cost				\$	968,411	
Estimated Pro	ject Total Cost Range	e (-30%/+50%)			\$ 677,887	\$ 1,452,616	

CAPITAL COSTS (One Time)				
Additional MW Installation and Radionuclide Speciation	\$	71,280		
CAPITAL COSTS CONTINGENCY, PROJECT MANAGEMENT, TECHNI	CAL SUP	PORT		
Project Management			\$	0
O&M COSTS (Annual Costs)				
1.0 Administration			\$	7,200
2.0 Workplans for MNA Sampling			\$	2,560
3.0 MNA Sampling	\$	23,850		
4.0 MNA Sample Reporting	\$	6,480		
PERIODIC COSTS (Recurrent)				
1.0 CERCLA Review			\$	15,220
2.0 Additional Monitoring Well Installation			\$	22,400
3.0 Additional Monitoring Well MNA Sampling			\$	3,800
O&M COSTS CONTINGENCY, PROJECT MANAGEMENT, TECHNICAL	SUPPOR	T		
Project Management				10%
· ·				
Total Present Value Assessment				
Discount Rate 5%		COS	T (Pre	esent Worth)
Estimated Project Total Cost	\$			968,411
Estimated Project Total Cost Range (-30%/+50%) \$ 677,887				1,452,616

Alternative Description: Targeted direct injection program within plume center to treat 1,4-dioxane high concentration area. This alternative includes the installation of additional monitoring wells and conducting annual groundwater monitoring at the FSU-LLRW. Radionuclides to be treated by MNA.

Item	Quantity	Units	Unit Cost	Total Cost	S	ubtotals	Notes
Capital Costs			 	 			
1.0 Planning							
1.1 Workplan	40	HR	\$ 90	\$ 3,600			1,2
1.2 Regulatory Interface	40	HR	\$ 90	\$ 3,600			1,2
Task 1 Subtotal					\$	7,200	
2.0 Radionuclide Speciation in Groundwater							
2.1 Workplans	40	HR	\$ 90	\$ 3,600			2
2.2 Mobilization and Sampling	1	LS	\$ 5,000	\$ 5,000			2
2.4 Radionuclide Speciation	10	EA	\$ 2,000	\$ 20,000			3
2.5 IDW Disposal	2	DRUM	\$ 250	\$ 500			2
2.6 Reporting	60	HR	\$ 90	\$ 5,400			2
Task 2 Subtotal					\$	34,500	
3.0 Pre-Injection Characterization							
3.1 Groundwater characterization Planning	40	HR	\$ 90	\$ 3,600			1,2
3.2 Mobilization	1	LS	\$ 2,500	\$ 2,500			1,2
3.3 Drill rig for groundwater screenpoint characterization	1,600	Ft	\$ 25	\$ 40,000			2
3.4 Groundwater characterization sampling	40	EA	\$ 500	\$ 20,000			1,2
3.5 Reporting	60	HR	\$ 90	\$ 5,400			1,2
Task 3 Subtotal					\$	71,500	
4.0 Bench Scale Testing - Persulfox							
4.1 Bench scale testing for treatment of 1,4-dioxane	1	LS	\$ 40,000	\$ 40,000			1
4.1 Bench Scale Reporting	60	HR	\$ 90	\$ 5,400			1
Task 4 Subtotal					\$	45,400	
5.0 Direct Injection of Persulfox to treat 1,4-Dioxane							
5.1 Planning	100	HR	\$ 90	\$ 9,000			2,4
5.2 Mobilization	1	LS	\$ 20,000	\$ 20,000			1,2,4
5.3 Drill Rig Injection Point Advancement (sonic drill rig)	2,880	FT	\$ 75	\$ 216,000			1,2
5.4 Pursulfox Injection Material	90,000	LB	\$ 2	\$ 202,500			2,4
5.5 On-site water truck	8	WK	\$ 2,500	\$ 20,000			4
5.6 Potable water	1,600	100-GAL	\$ 0.35	\$ 560			5
5.7 IDW	50	DRUM	\$ 250	\$ 12,500			2
5.8 Site Labor	1,280	HR	\$ 90	\$ 115,200			1,2
5.9 Post injection groundwater sampling	15	EA	\$ 1,000	\$ 15,000			1,2
5.10 After Action Reporting	100	HR	\$ 90	\$ 9,000			1,2
Task 5 Subtotal					\$	619,760	
Capital Costs Subtotal					\$	778,360	
Project Management	10%				\$	77,836	
O&M ANNUAL COSTS TOTAL					\$	856,196	

Alternative Description: Targeted direct injection program within plume center to treat 1,4-dioxane high concentration area. This alternative includes the installation of additional monitoring wells and conducting annual groundwater monitoring at the FSU-LLRW. Radionuclides to be treated by MNA.

Item	Quantity	Units		Unit Cost	٦	Fotal Cost	S	ubtotals	Notes
Operations and Maintenance - Annual	-								
1.0 Administration									
1.1 Regulatory Interface	40	HR	\$	90	\$	3,600			1,2
Task 1 Subtotal							\$	3,600	
2.0 Workplans for MNA Sampling									
2.1 Workplans (Annual sampling requirement)	32	HR	\$	90	\$	2,880	¢	2 880	1,2
							Ψ	2,000	
3.0 MNA Sampling									
3.1 Labor	80	HR	\$	90	\$	7,200			1,2
3.2 Mobilization	1	LS	\$	1,500	\$	1,500			1,2
3.3 Equipment	1	WK	\$	500	\$	500			1,2
3.4 Samples	10	EA	\$	1,000	\$	10,000			1,2
3.5 Expendables	5	DAY	\$	50	\$	250			1,2
Task 3 Subtotal							\$	19,450	
4.0 MNA Sample Reporting									
4.1 MNA Reporting	40	HR	\$	90	\$	3,600			1,2
Task 4 Subtotal							\$	3,600	
O&M Costs Subtotal							\$	29,530	
Project Management	10%						\$	2,953	
O&M ANNUAL COSTS TOTAL							\$	32,483	
5-Year Costs									
1.0 CERCLA Review									
1.1 Reporting	150	HR	\$	90	\$	13,500			1
1.2 Meetings and Regulatory Support	16	HR	\$	95	\$	1,520			1
1.3 Announcements	2	EA	\$	100	\$	200			1
Task 1 Subtotal							\$	15,220	
1.0 Additional Monitoring Well Installation									
1.1 Workplans and Approvals	40	HR	\$	90	\$	3.600			1.2
1 2 Mobilization	1	IS	\$	2,500	\$	2,500			1.2
1.3 Installation Costs	1	FA	\$	4 500	\$	4 500			12
1.5 IDW Disposal	3	DRUM	\$	250	\$	750			12
1.6 Reporting	40	HR	\$	90	\$	3 600			1.2
Task 1 Subtotal	10		Ŷ		Ψ	0,000	\$	14,950	1,2
Site Baulaw Conte Subtatel							¢	20.470	
Sile Review Costs Subtotal	400/						ф Ф	30,170	
	10%						¢	3,017	
SITE REVIEW COSTS TOTAL							\$	33,187	

1. Engineering Experience on competed projects by BMT within the last 5 years.

2. Experience at previous investigations conducted at the FSU-LLRW by $\ensuremath{\mathsf{BMT}}$

3. Get-a-quote.net

4. Vendor quote

5. Rates from city of Tallahassee https://www.talgov.com/you/you-water.aspx

Alternative Description: Natural reduction of radionuclides through radioactive decay and continued degradation of 1,4-dioxane. This alternative will include the installation of additional monitoring wells and conducting annual groundwater monitoring at the FSU-LLRW.

Base Year	2020
Location:	Leon County, Florida
Discount Rate:	5%
Project Length:	30 years

Year	Capital Costs	Annual O&M	Periodic Costs	Total Annual	Discount Factor	Present Value	
		Costs		Expenditure			
0	\$ 856,196	\$-		\$ 856,196	1.0000	\$ 856,196	
1	\$ -	\$ 32,483	\$-	\$ 32,483	0.9524	\$ 30,936	
2	\$ -	\$ 32,483	\$-	\$ 32,483	0.9070	\$ 29,463	
3	\$ -	\$ 32,483	\$-	\$ 32,483	0.8638	\$ 28,060	
4	\$ -	\$ 32,483	\$-	\$ 32,483	0.8227	\$ 26,724	
5	\$ -	\$ 32,483	\$ 33,187	\$ 65,670	0.7835	\$ 51,454	
6	\$ -	\$ 32,483	\$-	\$ 32,483	0.7462	\$ 24,239	
7	\$ -	\$ 32,483	\$-	\$ 32,483	0.7107	\$ 23,085	
8	\$-	\$ 32,483	\$-	\$ 32,483	0.6768	\$ 21,986	
9	\$-	\$ 32,483	\$-	\$ 32,483	0.6446	\$ 20,939	
10	\$-	\$ 32,483	\$ 33,187	\$ 65,670	0.6139	\$ 40,316	
11	\$ -	\$ 32,483	\$-	\$ 32,483	0.5847	\$ 18,992	
12	\$-	\$ 32,483	\$-	\$ 32,483	0.5568	\$ 18,088	
13	\$-	\$ 32,483	\$-	\$ 32,483	0.5303	\$ 17,226	
14	\$ -	\$ 32,483	\$-	\$ 32,483	0.5051	\$ 16,406	
15	\$ -	\$ 32,483	\$ 33,187	\$ 65,670	0.4810	\$ 31,588	
16	\$ -	\$ 32,483	\$-	\$ 32,483	0.4581	\$ 14,881	
17	\$ -	\$ 32,483	\$-	\$ 32,483	0.4363	\$ 14,172	
18	\$-	\$ 32,483	\$-	\$ 32,483	0.4155	\$ 13,497	
19	\$-	\$ 32,483	\$-	\$ 32,483	0.3957	\$ 12,855	
20	\$ -	\$ 32,483	\$ 33,187	\$ 65,670	0.3769	\$ 24,750	
21	\$ -	\$ 32,483	\$-	\$ 32,483	0.3589	\$ 11,660	
22	\$ -	\$ 32,483	\$-	\$ 32,483	0.3418	\$ 11,104	
23	\$ -	\$ 32,483	\$-	\$ 32,483	0.3256	\$ 10,576	
24	\$ -	\$ 32,483	\$-	\$ 32,483	0.3101	\$ 10,072	
25	\$ -	\$ 32,483	\$ 33,187	\$ 65,670	0.2953	\$ 19,393	
26	\$ -	\$ 32,483	\$-	\$ 32,483	0.2812	\$ 9,136	
27	\$ -	\$ 32,483	\$-	\$ 32,483	0.2678	\$ 8,701	
28	\$ -	\$ 32,483	\$-	\$ 32,483	0.2551	\$ 8,286	
29	\$ -	\$ 32,483	\$-	\$ 32,483	0.2429	\$ 7,892	
30	\$-	\$ 32,483	\$ 33,187	\$ 65,670	0.2314	\$ 15,195	
Estimated Proj	ect Total Cost				\$	1,447,866	
Estimated Proj	ect Total Cost Range	(-30%/+50%)			\$ 1,013,507	\$ 2,171,800	

CAPITAL COSTS (One Time)	
1.0 Planning	\$ 7,200
2.0 Radionuclide Speciation in Groundwater	\$ 34,500
3.0 Pre-Injection Characterization	\$ 71,500
4.0 Bench Scale Testing - Persulfox	\$ 45,400
5.0 Direct Injection of Persulfox to treat 1,4-Dioxa	ne \$ 619,760
CAPITAL COSTS CONTINGENCY, PROJECT MANAGEMEN	T, TECHNICAL SUPPORT
Project Management	\$ 0
O&M COSTS (Annual Costs)	
1.0 Administration	\$ 3,600
2.0 Workplans for MNA Sampling	\$ 2,880
3.0 MNA Sampling	\$ 19,450
4.0 MNA Sample Reporting	\$ 3,600
5-Year Costs	
1.0 CERCLA Review	\$ 15,220
2.0 Additional Monitoring Well Installation	\$ 14,950
O&M COSTS CONTINGENCY, PROJECT MANAGEMENT, TE	CHNICAL SUPPORT
Project Management	10%
Total Present Value As	ssessment
Discount Rate 7%	COST (Present Worth)
Estimated Project Total Cost	\$ 1,447,866
Estimated Project Total Cost Range (-30%/+50%)	\$ 1,013,507 \$ 2,171,800
	· · · · · · · · · · · · · · · · · · ·

Alternative 5 Pump and Treat System with Chemox (1,4-dioxane) and Resin Sorption (for Alpha Emitting Radionuclides) FSU-LLRW Burial Pits

Alternative Description: Construction of a complete impermeable slurry wall cutoff wall around the extents of comingled groundwater plumes and operation of an ex-situ pump and treat system to treat groundwater using chemical oxidation, resin sorption, ion exchange and sediment precipitation

Item	Quantity	Units		Unit Cost	1	Fotal Cost	:	Subtotals	Note
Capital Costs									
1.0 Bench Scale Studies									
1.1 Workplans	120	HR	\$	90	\$	10,800			1
1.2 Bench Scale Testing of Treatment Train	1	LS	\$	80,000	\$	80,000			1,4
1.3 Reporting	80	HR	\$	90	\$	7,200			
Task 1 Subtotal							\$	98,000	
2.0 Trench Installation									
2.1 Erosion Control Plans	80	ЦD	¢	00	¢	7 200			1
2.2 Silt Economy	4 000		φ Φ	50	φ Φ	1,200			2
2.2 Sill Ferding	4,000		φ Φ	1 000	ф Ф	4,040			11
2.4 Installation	1	19	φ ¢	400,000	φ Φ	400,000			1,4
2.5 Installation Support Labor	320	HR	φ Φ	400,000	φ ¢	25 600			4 1 /
2.6 Installation Support Equipment	1	19	Ψ ¢	25.000	Ψ ¢	25,000			1,4
2.7 Sump extraction numps	6	FΔ	Ψ \$	25,000	Ψ \$	150,000			1, 4
2.8 Pump controllers	1		Ψ \$	150,000	Ψ \$	150,000			14
2.9 Site Restoration	1	15	Ψ ¢	20,000	Ψ ¢	20,000			1,4
2.10 Manage Manifests for Waste and Spent Materials	1	LS	Ψ \$	10,000	Ψ \$	10,000			1
2.11 Testing and analysis	150	FΔ	Ψ \$	500	Ψ ¢	75,000			1
2 12 Offsite Soil Disposal	1 000	TON	\$	250	\$	250,000			12
2 13 Offsite Water disposal	100	DRUM	\$	250	\$	25 000			12
Task 2 Subtotal	100	Briom	Ψ	200	Ψ	20,000	\$	1,222,440	1,2
3.0 Injection Wells									
3.3 Permitting	40	HR	\$	90	\$	3,600			9
3.3 Injection Well Installation	10	EA	\$	4,500	\$	45,000			9
3.3 Injection Well Reporting	80	HR	\$	90	\$	7,200			9
3.4 IDW Disposal (Non-haz)	30	DRUM	\$	250	\$	7,500			
Task 3 Subtotal							\$	63,300	
4.0 Pump and Treat System Capital Costs									
4.1 Workplans	200	HR	\$	90	\$	18,000			1,4
4.2 Mobilization/Setup Costs	1	LS	\$	250,000	\$	250,000			1,4
4.3 Demobilization	1	LS	\$	75,000	\$	75,000			1,4
4.4 Power Connection	1	LS	\$	90,000	\$	100,000			4
Task 4 Subtotal							\$	443,000	
Capital Costs Subtotal							\$	1.826.740	
Project Management	10%						÷ \$	182 674	
CAPITAL COSTS TOTAL							\$	2,009,414	
							•	,, -	

Alternative 5 Pump and Treat System with Chemox (1,4-dioxane) and Resin Sorption (for Alpha Emitting Radionuclides) FSU-LLRW Burial Pits

Alternative Description: Construction of a complete impermeable slurry wall cutoff wall around the extents of comingled groundwater plumes and operation of an ex-situ pump and treat system to treat groundwater using chemical oxidation, resin sorption, ion exchange and sediment precipitation

Item	Quantity	Units		Unit Cost	ost Total Cost		Subtotals		Note
Operations and Maintenance - Annual									
1.0 Treatment System Monitoring									
1.1 Analytical Laboratory Costs	50	EA	\$	1,000	\$	50,000			1,4
1.1 Expendable Equipment and Mobilization	4	LS	\$	1,000	\$	4,000			1
1.3 Data Validation	1	LS	\$	12,500	\$	12,500			1
1.4 Field Labor	320	HR	\$	70	\$	22,400			1,2
1.5 Annual Reporting	160	HR	\$	90	\$	14,400			1,2
Task 1 Subtotal							\$	103,300	
2.0 Pump and Treat Operational Costs									
2.2 Equipment Maintenance/Operation	12	MO	\$	90,000	\$	1,080,000			4
2.2 Equipment Maintenance/Consumables	12	MO	\$	100,000	\$	1,200,000			4
2.4 Operational Labor	12	MO	\$	160,000	\$	1,920,000			4
2.3 Power Requirements	876.600	KWH	\$	0	\$	88.800			5.6
Task 2 Subtotal	,		·		·	,	\$	4,288,800	7
3.0 Annual Groundwater Monitoring									
3.1 Labor	80	HR	\$	90	\$	7.200			1.2
3.2 Mobilization	1	IS	\$	1 500	\$	1,500			12
3.3 Equipment	1	WK	\$	500	\$	500			12
34 Samples	10	FA	\$	1 000	\$	10 000			12
3.5 Expendables	5	DAY	\$	50	\$	250			12
Task 3 Subtotal	Ũ	Bitt	Ψ	00	Ψ	200	\$	19,450	1,2
OPM Coots Subtatal							¢	4 444 550	
Dam Costs Subtotal	100/						ф Ф	4,411,550	
	10%						ф ф	441,155	
Odini ANNUAL COSTS TOTAL							Φ	4,052,705	
5-Year Costs									
1.0 CERCLA Review									
1.1 Reporting	150	HR	\$	90	\$	13,500			1
1.2 Meetings and Regulatory Support	16	HR	\$	95	\$	1,520			1
1.3 Announcements	2	EA	\$	100	\$	200			1
Task 1 Subtotal							\$	15,220	
O&M Costs Subtotal							\$	15,220	
Project Management	10%						\$	1,522	
O&M ANNUAL COSTS TOTAL							\$	16,742	

Notes:

1. Engineering Experience on competed projects by BMT within the last 5 years.

2. Experience at previous investigations conducted at the FSU-LLRW by BMT

3. Get-a-quote.net

4. Vendor quote

5. Utility rates for City of Tallahassee

6. 100 kw of power required during operation.

7. Assume 24/7 operation for first year, two years at 12 hour/day shift and four years at 8 hour/day shift.

Pump and Treat System with Chemox (1,4-dioxane) and Resin Sorption (for Alpha Emitting Radionuclides) FSU-LLRW Burial Pits

Alternative Description: Construction of a complete impermeable slurry wall cutoff wall around the extents of comingled groundwater plumes and operation of an ex-situ pump and treat system to treat groundwater using chemical oxidation, resin sorption, ion exchange and sediment precipitation

Base Year	2020
Location:	Leon County, Florida
Discount Rate:	5%
Project Length:	30 years

Year	Capital Costs	Annual O&M	Periodic Costs	Total Annual	Discount Factor	Present Value	
		Costs		Expenditure			
0	\$ 2,009,414			\$ 2,009,414	1.0000	\$ 2,009,414	
1	\$-	\$ 4,852,705	\$-	\$ 4,852,705	0.9524	\$ 4,621,623	
2	\$-	\$ 3,031,050	\$-	\$ 3,031,050	0.9070	\$ 2,749,251	
3	\$-	\$ 3,031,050	\$-	\$ 3,031,050	0.8638	\$ 2,618,335	
4	\$-	\$ 2,290,200	\$-	\$ 2,290,200	0.8227	\$ 1,884,153	
5	\$-	\$ 2,290,200	\$ 16,742	\$ 2,306,942	0.7835	\$ 1,807,549	
6	\$-	\$ 2,290,200	\$-	\$ 2,290,200	0.7462	\$ 1,708,982	
7	\$-	\$ 21,395	\$-	\$ 21,395	0.7107	\$ 15,205	
8	\$-	\$ 21,395	\$-	\$ 21,395	0.6768	\$ 14,481	
9	\$-	\$ 21,395	\$-	\$ 21,395	0.6446	\$ 13,791	
10	\$-	\$ 21,395	\$ 16,742	\$ 38,137	0.6139	\$ 23,413	
11	\$-		\$-	\$-	0.5847	\$-	
12	\$-		\$-	\$-	0.5568	\$-	
13	\$-		\$-	\$-	0.5303	\$-	
14	\$-		\$-	\$-	0.5051	\$-	
15	\$-		\$-	\$-	0.4810	\$-	
16	\$-		\$-	\$-	0.4581	\$-	
17	\$-		\$-	\$-	0.4363	\$-	
18	\$-		\$-	\$-	0.4155	\$-	
19	\$-		\$-	\$-	0.3957	\$-	
20	\$-		\$-	\$-	0.3769	\$-	
21	\$-		\$-	\$-	0.3589	\$-	
22	\$-		\$-	\$-	0.3418	\$-	
23	\$-		\$-	\$-	0.3256	\$-	
24	\$-		\$-	\$-	0.3101	\$-	
25	\$-		\$-	\$-	0.2953	\$-	
26	\$-		\$-	\$-	0.2812	\$-	
27	\$-		\$-	\$-	0.2678	\$-	
28	\$-		\$-	\$-	0.2551	\$	
29	\$ -		\$ -	\$ -	0.2429	\$-	
30	\$ -		\$ -	\$ -	0.2314	\$-	
Estimated Project	ct Total Cost				\$	17,466,198	
Estimated Project	ct Total Cost Range	e (-30%/+50%)			\$ 12,226,339	\$ 26,199,297	

Pump and Treat System with Chemox (1,4-dioxane) and Resin Sorption (for Alpha Emitting Radionuclides) FSU-LLRW Burial Pits

CAPITAL COSTS (One Time)		
1.0 Bench Scale Studies	\$	98,000
2.0 Trench Installation	\$	1,222,440
3.0 Injection Wells	\$	63,300
4.0 Pump and Treat System Capital Costs	\$	443,000
CAPITAL COSTS CONTINGENCY, PROJECT MANAG	EMENT, TECHNICAL SUPPORT	
Project Management		10%
O&M COSTS (Annual Costs)		
1.0 Treatment System Monitoring		103,300
2.0 Pump and Treat Operational Costs		4,288,800
3.0 Annual Groundwater Monitoring		19,450
O&M ANNUAL COSTS TOTAL		
1.0 CERCLA Review		15,220
O&M COSTS CONTINGENCY, PROJECT MANAGEME	ENT, TECHNICAL SUPPORT	
Project Management		10%
Total Present V	alue Assessment	
Discount Rate 5%	COST (Pr	esent Worth)
Estimated Project Total Cost	\$	17,466,198
Estimated Project Total Cost Range (-30%/+50%)	\$ 12,226,339 \$	26,199,297

THIS PAGE INTENTIONALLY LEFT BLANK