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Introduction	
	
Habitat	loss	due	to	changes	in	land-use	patterns	and	climate	has	caused	species	decline	and	population	
fragmentation	worldwide	(Fahrig	2003).	Maintaining	connected	habitats	by	conserving	and	restoring	
linkage	zones	or	corridors	has	become	one	of	the	most	common	strategies	for	mitigating	human-caused	
landscape	changes	(Heller	and	Zavaleta	2009).	Therefore,	conservation	efforts	are	needed	to	identify	
where	movement	pathways	may	exist	among	populations.	The	decline	in	habitable	area	has	been	
pervasive	among	North	American	ungulate	species	such	as	pronghorn	antelope	(Antilocapra	americana),	
which	has	lost	64%	of	its	historic	range	(Laliberte	and	Ripple	2004).	Unfortunately,	detailed	knowledge	
of	high	quality	habitat	and	areas	that	facilitate	movement	is	particularly	lacking	for	pronghorn	in	the	US	
Southwest,	including	in	north-central	Arizona.		
	 Ongoing	vegetation	treatments	currently	taking	place	as	part	of	the	Four-Forest	Restoration	
Initiative	(4FRI)	in	Arizona	offer	a	unique	opportunity	to	benefit	pronghorn	in	addition	to	improving	
forest	health	and	reducing	fire	risk.	In	collaboration	with	the	Arizona	Game	and	Fish	Department	
(AZGFD),	the	4FRI	Multi-party	Monitoring	Board	funded	this	modeling	and	mapping	project	that	
capitalizes	on	GPS	collar	data	to	help	identify	where	forest	treatments	would	best	benefit	pronghorn	
habitat	and	movement	corridors.	
	
Methods	
	
Study	area	
	
The	study	area	was	defined	as	the	extent	bounded	roughly	by	the	Grand	Canyon	to	the	north,	Prescott,	
AZ	to	the	south,	Ash	Fork,	AZ	to	the	west,	and	Winslow,	AZ	to	the	east	(Figure	1).		
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Figure	1.	The	study	area	is	outlined	in	blue.	Points	in	black	are	
individual	telemetry	locations.	Green	represents	National	
Forests	and	major	roadways	are	brown.	

Telemetry	data	
	
We	received	telemetry	data	for	87	pronghorn	recorded	by	GPS	collars	deployed	by	the	AZGFD,	as	well	as	
information	on	the	sex	of	each	individual	and	deployment	and	retrieval	data	for	each	collar.		Locations	
were	recorded	every	2	hours	during	daylight	between	October	2014	and	December	2017.	We	cleaned	
the	telemetry	data	by	removing	locations	recorded	prior	to	and	two	days	following	actual	deployment,	
and	after	collar	retrieval.	We	also	removed	records	for	the	same	individual	at	the	same	point	in	time	and	
containing	duplicate	location	and	other	collar	data.	The	data	generally	spanned	west	to	east	across	the	
study	area,	north	of	Interstate	40,	and	south	of	the	Grand	Canyon	(Figure	1).	
	
State-space	model	
	
We	used	a	state-space	modeling	procedure	to	predict	if	each	individual	pronghorn	was	foraging	or	
traveling	at	the	time	of	each	telemetry	record.	This	type	of	model,	also	called	a	hidden	markov	model,	is	
based	on	the	assumption	that	there	is	an	underlying,	unobservable	behavioral	state	which	gives	rise	to	
the	patterns	evident	in	location	data	(Langrock	et	al.	2012).	It	employs	a	statistical	technique	to	predict	
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probability	distributions	for	step	length	and	turning	angle	between	consecutive	telemetry	locations	for	
each	of	a	set	number	of	behavioral	states.	These	distributions	can	be	used	to	determine	the	most	likely	
behavioral	state	at	the	time	of	each	telemetry	record.	As	this	type	of	model	requires	telemetry	locations	
to	be	equally	spaced	in	time,	we	added	records	for	each	individual	for	all	overnight	hours	(during	which	
the	telemetry	collars	were	not	recording	location	data).	These	records	were	added	at	two-hour	intervals	
to	match	the	spacing	of	the	rest	of	the	data,	and	with	unknown	location.	We	specified	that	the	state-
space	model	estimated	parameters	for	a	gamma	probability	distribution	for	step	lengths	and	a	von	
Mises	distribution	for	the	turning	angles.	We	set	initial	parameters	of	these	distributions	for	each	of	the	
two	behavioral	states	by	using	the	telemetry	locations	of	two	individuals	that	we	judged,	upon	
examination	in	a	GIS,	to	exhibit	periods	of	extensive	and	seasonally-driven	traveling	behavior	(IDs	8500	
and	8502).	For	these	two	individuals,	we	defined	point	locations	in	the	months	of	May	through	
December	to	be	periods	of	greater	travel,	and	those	in	the	other	months	to	exhibit	greater	foraging	
behavior.	These	values	were	simply	used	to	“seed”	the	models	with	reasonable	initial	values	for	model	
parameters.	All	models	in	this	project	were	estimated	on	all	individuals	of	both	sexes.	We	used	the	
fitdistrplus	R	package	(version	1.0-9)	to	calculate	summary	statistics	based	on	the	corresponding	
probability	distribution	for	points	in	each	of	these	two	time	periods.	We	used	the	moveHMM	R	package	
(version	1.6)	to	estimate	the	state-space	model.	
	
Step-selection	models	
	
We	used	a	step-selection	model	based	on	mixed	conditional	logistic	regression	to	determine	the	relative	
preference	by	pronghorn	for	different	environmental	conditions	in	each	predicted	behavioral	state.	This	
type	of	model	is	based	on	a	comparison	of	the	actual	(“used”)	telemetry	locations	to	other	locations	
(“available”)	on	the	landscape	(Thurfjell	et	al.	2014).	We	used	the	probability	distributions	estimated	by	
the	state-space	model	to	randomly	select	specific	locations	available	for	each	individual	“step”	(travel	
between	consecutive	telemetry	records)	for	all	telemetry	data.	We	created	ten	random	locations	for	
each	actual	location.	We	calculated	separate	sets	of	models	for	each	behavioral	state,	in	order	to	
determine	which	environmental	factors	most	influenced	pronghorn	movement,	and	whether	that	
influence	differed	between	states.		

To	parameterize	the	step-selection	model,	we	first	collected	GIS	data	representing	landscape	
properties	and	conditions	that	we	hypothesized	would	most	strongly	influence	movement	by	
pronghorn.	We	based	the	selection	of	these	factors	on	a	literature	review,	discussion	with	project	
partners,	and	our	own	knowledge	of	the	species	and	study	area	based	on	prior	work	(Fleishman	et	al.	
2017).	In	order	to	meet	project	goals,	we	focused	particularly	on	factors	which	would	be	most	affected	
by	forest	treatment,	such	as	amount	of	tree	cover.	All	factors	were	considered	to	be	possibly	important	
to	both	traveling	and	foraging	behavior.	To	represent	land	cover	type	and	vegetation	density,	we	
collected	Landfire	existing	vegetation	type	(EVT),	height	(EVH),	and	percent	cover	(EVC;	v1.4.0;	30-m	
resolution;	landfire.gov),	and	MODIS	MOD44B	vegetation	continuous	fields	(VCF;	250-m	resolution;	
lpdaac.usgs.gov/products/mod44bv006).	EVT	was	re-classified	into	classes	representing	barren,	
developed,	grassland,	high	elevation	grassland,	ponderosa	pine	/	pine-oak,	shrubland	and	pinyon-
juniper.	The	landfire	data	was	the	most	recent	version	available,	and	represented	2014	conditions.	
MODIS	VCF	included	data	through	2015.	We	collected	topographic	variables	including	elevation	and	
slope	from	the	Shuttle	Radar	Topography	Mission	(30-m	resolution),	and	multiscale	topographic	position	
index	(mTPI,	used	as	a	continuous	data	layer	and	not	reclassified	into	multiple	categories)	and	
topographic	diversity,	both	at	30-m	resolution	(Theobald	et	al.	2015).	All	raster	data	layers	were	
obtained	using	Google	Earth	Engine.	We	also	collected	vector-based	information	on	fire	history,	forest	
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and	range	treatments,	and	barriers	on	the	landscape,	including	USFS	fire	history,	activity,	and	fence	data	
for	the	Coconino	and	Kaibab	National	Forests	and	treatment	locations	on	the	Babbitt	Ranches.	In	order	
to	increase	interpretability	of	regression	coefficients	and	optimize	model	fit,	we	rescaled	each	
continuous	variable	to	a	mean	of	zero	and	a	standard	deviation	of	one	and	recorded	each	categorical	
variable	or	class	as	a	1/0	“dummy”	variable	(Gelman	and	Hill	2006).	We	recorded	the	value	of	each	of	
these	variables	at	each	telemetry	location.	Where	values	of	a	particular	variable	were	constant	within	a	
specific	point	set	(of	one	used	and	ten	available	locations)	we	added	a	small	amount	of	random	error	to	
one	random	point.	This	ensured	the	step-selection	models	could	be	fit,	and	did	not	appear	to	
appreciably	alter	results.	

In	cases	where	multiple	GIS	data	layers	were	highly	correlated	or	represented	the	same	type	of	
information,	such	as	mTPI	and	slope,	we	estimated	model	parameters	with	each	of	the	similar	variables	
as	a	single	predictor.	We	selected	the	variable	contained	in	the	model	with	the	lowest	value	for	Akaike’s	
Information	Criterion	(AIC)	for	exclusive	use	in	further	models	(Anderson	2008).	In	other	cases,	we	
excluded	certain	predictors	because	they	did	not	cover	the	full	extent	of	the	study	area,	or	did	not	
contain	enough	relevant	information	to	be	useful	in	modeling.	These	excluded	predictors	included	fire	
history,	forest	and	range	treatments,	and	barriers	on	the	landscape.	We	created	a	suite	of	candidate	
models	based	on	different	hypotheses	on	the	primary	drivers	of	pronghorn	habitat	use	and	foraging.	We	
used	AIC	to	compete	these	models	and	selected	the	model	with	the	lowest	AIC	value	and	for	each	
behavioral	state	as	the	“best”.	This	type	of	model	does	not	contain	an	interpretable	intercept	
coefficient,	so	we	estimated	a	model	with	a	random	predictor	to	represent	a	“null”,	or	uninformative,	
model.	We	used	the	clogit	function	in	the	survival	R	package	(version	2.41-3)	to	create	models	with	the	
corresponding	predictors	for	each	individual	and	determined	the	overall	AIC	value	across	all	individuals	
as	the	average	of	the	model	(Burnham	and	Anderson	2002,	Karelus	et	al.	2019).	After	using	AIC	values	to	
determine	the	best	models	for	each	of	the	behavioral	states,	we	estimated	the	final	models	using	the	
Ts.estim	function	in	the	TwoStepClogit	R	package	(version	1.2.5).	To	account	for	individual-level	
variation	in	preference,	we	parameterized	these	models	with	a	fixed	effect	and	a	random	coefficient	for	
each	predictor,	grouped	by	each	individual.		

We	used	the	step-selection	model	results	for	foraging	and	traveling	states	to	create	30-m	
resolution	maps	that	represented	habitat	quality	and	landscape	resistance	to	movement,	respectively.	
To	do	so,	we	used	the	inverse	logit	equation	(Gelman	and	Hill	2006):	

!!!
1 +  !!!	

	
Here,	β	is	the	vector	of	regression	coefficients	from	the	corresponding	model	and	Χ is	the	matrix	of	data	
values,	in	our	case,	the	images	representing	the	predictor	variables.	The	result	of	this	procedure	is	a	
map	of	habitat	quality	or	landscape	resistance	across	the	study	area,	ranging	from	zero	to	one.	We	
multiplied	the	landscape	resistance	map	by	999	and	added	one	to	scale	it	to	a	theoretic	range	of	1-1000,	
in	order	to	optimize	it	for	use	in	Circuitscape.	
	

	
Connectivity	models	

	
We	used	Circuitscape	software	(v4.0.5;	circuitscape.org)	to	estimate	pronghorn	habitat	

connectivity	using	the	resistance	model	and	habitat	quality	models	described	above.	Circuitscape	uses	
aspects	of	circuit	theory	to	represent	a	landscape	as	an	electronic	circuit	board,	with	population	areas	
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serving	as	nodes	connected	across	a	landscape	represented	as	a	grid	of	resistors	(McRae	et	al.	2008),	
thus	estimating	the	relative	likelihood	of	movement	(or	current	flow)	across	an	entire	landscape	and	
often	revealing	many	possible	pathways	of	movement.	We	used	an	omnidirectional	connectivity	model	
to	predict	potential	connectivity	across	the	landscape	without	regard	to	the	location	of	specific	core	
population	areas	(Pelletier	et	al.	2014).	To	derive	this	model,	we	created	two	pairs	of	parallel	nodes	(one	
image	pixel	wide)	that	extended	across	the	east	and	west	and	north	and	south	borders	of	the	study	
area,	respectively.	We	then	used	Circuitscape	to	calculate	current	flow	by	simulating	the	injection	of	one	
ampere	of	current	into	the	node	on	one	side	and	grounding	the	node	on	the	other	side.	We	used	the	
landscape	resistance	map	described	above	to	represent	resistance	to	movement	by	pronghorn.	Once	
completed	for	each	pair	of	nodes,	the	two	models	were	added	together	to	produce	a	wall-to-wall	map	
of	potential	current	flow	across	the	study	area.	

To	define	corridors,	we	first	used	the	habitat	quality	map	to	create	a	set	of	1000	random	points	
throughout	the	study	area,	weighted	by	habitat	quality	values.	The	weighting	ensured	that	points		
were	more	likely	to	be	placed	in	higher	quality	habitat.	We	created	500	pairs	of	random	points	and	used	
a	least-cost	path	analysis	to	draw	the	shortest	path	(in	terms	of	resistance	cost)	between	each	pair.		

	
Results	
	
Telemetry	data	
	
The	processed	telemetry	data	contained	approximately	397,000	telemetry	locations	for	87	individuals,	
ranging	in	time	from	October,	2014	to	December,	2017.	
	
State-space	models	

	
The	results	of	the	state	space	model	are	summarized	in	Table	1,	and	the	probability	distribution	
represented	by	these	results	is	shown	in	Figure	2.	The	model	estimated	approximately	128,000	(33%)	of	
all	telemetry	records	were	in	time	periods	when	pronghorn	were	in	the	“traveling”	state	and	
approximately	260,000	(67%)	were	when	they	were	in	the	“foraging”	state.	
	
Table	1.	Results	for	the	state-space	model.	

Behavioral	
State	

Step	length	(gamma	distribution)	 Turning	angle	(Von	mises	distribution)	
Mean	distance	(m)	 Standard	deviation	 Mean	 Concentration	

Traveling	 984.40	 820.16	 -0.0214	 -0.594	
Foraging	 375.86	 390.75	 0.645	 0.0141	
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Figure	2.	The	probability	distributions	estimated	by	the	state-space	model	for	each	of	the	behavioral	
states.	

	
Step-selection	models	
	
We	fit	single	variable	step-selection	models	to	determine	which	variables	containing	different	
representations	of	the	same	landscape	attributes	best	represented	the	data.	In	particular,	we	competed	
models	with	slope,	mTPI,	and	topographic	diversity	and	EVC	and	MODIS-derived	percent	cover.	
Topographic	diversity	and	EVC	performed	best	in	both	traveling	and	foraging	states	and	were	used	in	
further	modeling	(Table	2).	
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Table	2.	Step-selection	model	results	for	traveling	and	foraging	behavioral	states.	

Predictors	
AIC	
(traveling)	

ΔAIC	
(traveling)	

AIC	
(foraging)	

ΔAIC	
(foraging)	

%	Herb	cover	+	%	Shrub	cover	+	%	Tree	cover	+	
Developed	+	Grassland	+	PineOak	+	PJ	+	Shrubland	
+	Topo	diversity	 7192.40	 0.00	 14194.10	 0.00	

%	Herb	cover	+	%	Shrub	cover	+	%	Tree	cover	+	
Developed	+	Grassland	+	Other	+	PineOak	+	PJ	+	
Shrubland	+	Topo	diversity	 7194.22	 1.82	 14197.08	 2.98	

%	Herb	cover	+	%	Shrub	cover	+	%	Tree	cover	+	
Topo	diversity	 7194.54	 2.15	 14208.78	 14.68	

%	Herb	cover	+	%	Shrub	cover	+	%	Tree	cover	+	
Barren	+	Developed	+	Grassland	+	HighGrassland	+	
PineOak	+	PJ	+	Shrubland	+	Topo	diversity	 7194.98	 2.58	 14197.05	 2.96	

%	Herb	cover	+	%	Shrub	cover	+	%	Tree	cover	 7195.66	 3.27	 14220.96	 26.86	

%	Tree	cover	 7197.91	 5.51	 14236.71	 42.61	

Barren	+	Developed	+	Grassland	+	PineOak	+	PJ	+	
Shrubland	 7203.15	 10.76	 14241.43	 47.33	

MODIS	%	tree	cover	 7208.16	 15.76	 14236.20	 42.10	

Topographic	diversity	 7223.58	 31.19	 14277.57	 83.48	

mTPI	 7227.48	 35.09	 14289.44	 95.34	

Slope	 7228.75	 36.35	 14291.28	 97.19	

Null	model	(random	predictor)	 7231.76	 39.36	 14303.75	 109.65	

	
	 We	estimated	a	suite	of	models	for	each	behavioral	state	using	the	remaining	predictors	and	
based	on	several	hypotheses	about	their	likely	effects	on	pronghorn	movement.	In	particular,	we	
parameterized	a	model	based	solely	on	land	cover	type,	on	the	hypothesis	that	pronghorn	are	only	
affected	by	the	dominant	type;	a	model	based	solely	on	vegetation	cover,	based	on	the	hypothesis	that	
they	only	respond	to	the	quantity	of	vegetation;	a	model	with	cover	variables	plus	topographic	position,	
suggesting	they	respond	to	the	quantity	of	vegetation	as	well	as	topography;	and	three	models	which	
considered	cover	variables	as	well	as	various	land	cover	classifications	(Table	2).	In	both	the	moving	and	
foraging	states,	the	model	which	performed	best	included	percent	tree	cover,	percent	shrub	cover,	
percent	herbaceous	cover,	topographic	diversity,	and	developed,	grassland,	pine-oak,	pinyon-juniper,	
and	shrubland	land	cover	classes.	The	parameter	estimates	for	these	model	results	for	both	moving	and	
foraging	states	are	shown	in	Table	3.	We	used	these	results	to	create	the	habitat	quality	and	landscape	
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resistance	maps	(Figure	3).	The	omnidirectional	connectivity	map,	also	containing	500	least-cost	
pathways	estimated	between	using	pairs	of	random	points	is	shown	in	Figure	4.	
	
Table	3.	Model	results	for	the	best	model	(judged	by	lowest	AIC	value)	for	both	the	foraging	and	traveling	
states,	with	the	corresponding	beta	values,	stand	errors,	and	95%	confidence	intervals	for	each	predictor	
and	in	each	state.	A	positive	beta	value	indicates	pronghorn	are	more	likely	to	move	into	areas	with	
higher	values	of	the	corresponding	predictor	(or	presence	of	that	land	cover	type),	and	a	negative	value	
indicates	they	are	less	likely.	

Predictor	 Foraging	state	 Moving	state	
Beta	 SE	 95%	CI	 Beta	 SE	 95%	CI	

%	Herb	cover	 0.012	 0.007	 (-0.0017,0.026)	 0.0072	 0.0059	 (-0.0043,0.019)	
%	Shrub	cover	 0.084	 0.014	 (0.057,0.11)	 0.026	 0.013	 (0.00019,0.051)	
%	Tree	cover	 -0.16	 0.023	 (-0.2,-0.11)	 -0.18	 0.017	 (-0.21,-0.14)	
Developed	 -0.038	 0.0083	 (-0.054,-0.022)	 -0.0084	 0.011	 (-0.029,0.012)	
Grassland	 0.068	 0.015	 (0.04,0.096)	 0.084	 0.016	 (0.053,0.11)	
PineOak	 0.034	 0.011	 (0.012,0.056)	 0.03	 0.012	 (0.0075,0.053)	
PJ	 -0.05	 0.012	 (-0.073,-0.027)	 -0.08	 0.014	 (-0.11,-0.053)	
Shrubland	 0.096	 0.016	 (0.064,0.13)	 0.092	 0.018	 (0.057,0.13)	
Topo	diversity	 -0.13	 0.093	 (-0.31,0.049)	 -0.33	 0.051	 (-0.43,-0.23)	
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Figure	3.	Map	of	habitat	quality	for	pronghorn.	Brown	indicates	low	relative	quality,	green	indicates	
high.	
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Figure	4.	Omnidirectional	connectivity	(black	to	yellow)	and	least	cost	pathways	(white)	between	random	
points	for	pronghorn	in	northern	Arizona.	Greater	numbers	of	overlapping	pathways	(represented	by	
thicker	white	lines)	indicate	important	corridors,	which,	in	places	of	low	current	flow	may	indicate	where	
movement	is	most	impeded.	
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Discussion	
	
State-space	modeling	results	showed	differences	in	distribution	of	step	length	and	turning	angle	in	each	
of	the	two	predicted	behavioral	states.	Average	step	lengths	were	much	greater	in	the	traveling	state,	
and	directional	persistence	much	stronger.	These	patterns	indicate	the	state-space	model	captured	
periods	of	greater	movement	as	well	as	more	settled	periods.	
	 Step-selection	results	for	both	traveling	and	foraging	states	indicate	that	pronghorn	respond	to	
a	variety	of	cues	on	the	landscape,	as	better-performing	models	tended	to	be	those	which	accounted	for	
a	greater	number	of	predictors	and	predictor	types.	In	each	state,	percent	tree	cover	and	topographic	
diversity	tended	to	be	the	strongest	predictors	of	movement,	indicating	that	individuals	tended	to	move	
through	flatter	areas	with	lower	tree	cover.	Results	also	suggest	that	pronghorn	respond	similarly	to	
different	land	cover	classes	in	each	state,	preferring	shrubland	and	grassland	areas	most	strongly,	and	
avoiding	pinyon-juniper	and	developed	areas.	While	results	suggest	individuals	prefer	areas	with	slightly	
higher	shrub	and	herbaceous	cover	in	both	states,	this	affinity	is	stronger	in	the	foraging	state,	which	
may	be	related	to	forage	quantity.	
	 The	map	of	habitat	quality	depicts	highest	quality	pronghorn	habitat	in	the	east,	southwest,	and	
central	portions	of	the	study	area.	This	reflects	the	results	of	the	step-selection	model	for	the	foraging	
state,	which	predicts	greater	quality	habitat	in	land	cover	classes	and	areas	with	fewer	trees	and	flatter	
topography.	To	a	certain	extent,	the	map	of	omnidirectional	connectivity	shows	patterns	of	movement	
that	mimic	the	underlying	habitat	quality.	This	is	somewhat	logical	given	the	similarity	in	models	results	
between	the	two	behavioral	states.	However,	it	also	shows	amplified	current	flow	(“pinch-points”)	
among	several	islands	of	high	quality	habitat	such	as	near	Government	prairie,	on	Anderson	mesa,	and	
among	mixed	grassland/shrubland	and	pinyon-juniper	woodlands	north	of	the	San	Francisco	Peaks.	
These	patterns	are	also	evident	in	the	map	of	least-cost	pathways.	These	results	suggest	that	areas	that	
are	most	constrictive	of	pronghorn	movement	are	those	showing	low	current	flow	along	overlapping	
least-cost	pathways	(Figure	4).	Our	recommendation	is	that	forest	treatments	that	reduce	percent	tree	
cover	would	be	best	placed	in	areas	such	as	these.		

For	this	project,	we	did	not	expressly	simulate	or	evaluate	the	size	of	treatment	areas	or	the	
width	of	corridors	that	would	most	benefit	pronghorn.	One	rule-of-thumb	which	has	been	suggested	is	
that	corridors	should	be	2-km	wide	(Beier	2019).	It	is	our	opinion	that	such	a	size	would	indeed	confer	
benefits	to	pronghorn	movement.	Based	on	examination	of	the	telemetry	data,	corridors	already	being	
used	could	possibly	be	an	order	of	magnitude	smaller.	Indeed,	ultimately	there	appear	to	be	few	
environments	on	the	landscape	to	which	pronghorn	do	not	travel,	except	perhaps	areas	of	extreme	
elevation	and	topography	(such	as	the	Grand	Canyon	and	the	top	of	the	San	Francisco	Peaks)	or	across	
strong	barriers	such	as	highways	and	certain	fences.	This	suggests	that	while	vegetation	type	may	
restrict	movement,	the	likely	benefits	of	treatments	may	be	stronger	for	forage	quality	and	quantity.	
Additionally,	we	did	not	evaluate	the	likely	impacts	on	pronghorn	movement	of	different	treatment	
intensities,	such	as	reducing	tree	cover	by	or	to	a	certain	percent.	However,	modeling	results	showed	
greater	avoidance	of	pinyon-juniper	than	pine-oak	land	cover	types,	which	indicates	near-ground	
visibility	may	also	be	a	factor	in	movement	preference.	Finally,	as	topographic	diversity	was	the	
strongest	predictor	of	landscape	use	in	the	model	for	the	traveling	state,	and	the	strongest	predictor	
overall,	treatments	in	areas	of	high	topographic	diversity	may	have	less	benefit	to	pronghorn	than	
similar	treatments	on	flat	areas.		

Treatment	effects	on	habitat	quality	and	connectivity	could	be	evaluated	in	the	future	by	
obtaining	or	creating	up-to-date	maps	that	accurately	depicts	the	effects	of	treatments	on	vegetation	
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cover	and	type.	These	layers	would	likely	be	limited	to	those	representing	land	cover	type	and	
vegetation	percent	cover.	The	habitat	quality,	permeability,	and	connectivity	models	could	be	re-created	
with	these	modified	layers	using	the	same	parameters	from	the	step-selection	models	and	the	same	
connectivity	modeling	procedure.	The	new	output	layers	could	be	compared	to	the	results	of	this	
analysis	to	show	the	impacts	of	treatments	both	within	and	around	their	perimeter.	In	a	future	situation	
where	the	GIS	data	layers	used	in	this	analysis	have	not	been	updated,	or	do	not	accurately	capture	
treatment	effects,	knowledge	on	the	extent	and	intensity	of	forest	treatments	could	be	used	to	“burn-
in”	treatments	on	existing	maps.	Conversely,	if	other	information	sources	are	found	which	do	capture	
such	information,	this	analysis	could	be	repeated	with	those	layers	at	both	past	and	present	conditions.	

Due	to	analytical	limitations,	some	data	which	was	collected	for	this	project	was	not	leveraged	
when	estimating	step-selection	models.	In	some	cases	this	was	due	to	the	footprint	of	such	data,	which	
may	have	been	limited	solely	to	the	extent	of	national	forests,	or	just	portions	of	them.	Models	and	
analyses	could	be	re-run	for	a	limited	area	if	interest	in	including	these	layers	exists.	In	some	cases,	this	
information	was	incomplete	in	extent	but	also	lacking	in	quality.	For	instance,	while	fence	data	were	
collected	for	portions	of	the	study	area,	examination	of	the	data	in	a	GIS	indicated	that	fences	were	
often	mis-aligned	with	those	that	could	be	perceived	on	aerial	photos.	Additionally,	there	was	no	way	to	
evaluate	the	size	and	status	of	a	given	fence,	and	whether	it	would	prove	to	be	a	barrier	to	pronghorn	
movement.	Nevertheless,	high	quality	information	on	barriers	would	likely	prove	to	be	an	important	
predictor	in	studies	such	as	this.	
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