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1.0 Overview 

Consistent, continuous, contemporary and accurate vegetation data are essential for effective 

ecosystem assessment and land management planning. The Northern Region Existing Vegetation 

Mapping Program (VMap) (USDA 2018) addresses this information need by providing a 

database of existing vegetation and associated map products that are constructed with an 

analytical methodology based on the Existing Vegetation Classification and Mapping Technical 

Guide (Brohman and Bryant, 2005) to support the Region 1 Multi-level Classification, Mapping, 

Inventory, and Analysis System, R1-CMIA (Berglund et al. 2009).  

A VMap database has been published for every Forest in the USDA Forest Service Northern 

Region, and updated in a cyclical manner since 2003 (Brown and Barber 2012, Brown et al. 

2012). In 2018, an updated VMap database was produced for the Beaverhead-Deerlodge 

National Forest (B-D). The VMap database consists of four primary spatially explicit attributes 

that include descriptions of 1) lifeform, 2) tree canopy cover class, 3) tree size class, and 4) tree 

dominance type. These attributes can be mapped and used to support mid and base-level analysis 

and planning. VMap uses the Region 1 Existing Vegetation Classification System (R1-ExVeg) 

(Barber et al. 2009) in its map unit design. This system defines the logic for grouping entities by 

similarities in their floristic characteristics. VMap products are derived using remote sensing 

technology, and are based on a combination of airborne imagery and a nationally available 

digital topographic and climatic data.  

With a foundation of contemporary aerial imagery, a clear view of the project area is essential. 

The B-D mapping area of interest was obscured by forest fire smoke in 2015 and in 2017. For 

these reasons, continuous high resolution NAIP imagery (USDA Farm Service Agency 2015, 

2017) was not available for the full extent of the B-D update area, and NAIP imagery from 2013 

was utilized instead. Furthermore, to obtain contemporary and full coverage of the mapping area, 

Sentinel-2 satellite data (ESA 2015) was sourced between July 18, 2016 and August 8, 2017 to 

capture existing vegetation patterns during peak greenness conditions. The imagery was 

delivered with 10 meter pixel resolution, and thirteen spectral bands of radiometric resolution, 

including red, green, blue, and infrared components. However, even with a custom collection of 

image data, cloud cover was still present.  

The Sentinel-2 data was used in combination with a biophysical characterization layer in a 

segmentation procedure to create a vector-based layer of polygons that represent a delineation of 

patches of similar vegetation types across the study area (Haralick and Shapiro 1985, Zaitoun 

and Aqel 2015). The resulting set of polygons are the elements attributed by the VMap process 

and issued in the final database.  

Field-based reference information was collected and used as training data to make spatial 

predictions of the vegetation attributes contained in the database. Predicted raster surfaces of the 

attributes were then summarized to the delineated polygons. 
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As draft map products were created by the labeling algorithms, they were reviewed and 

appropriate changes were made in the database. Upon a satisfactory conclusion, the final 

products were used to populate the VMap database.  

After draft products were inspected and adjusted, an accuracy assessment was conducted to 

provide a quantitative validation of the database. Estimates of overall map accuracy and 

confidence measures of individual map classes can be inferred from the error matrix derived 

from the comparison of known reference sites to mapped data, for each attribute. The stated 

accuracy assessment results are applicable to the entire B-D database, and ranged from 63-93%, 

depending on the attribute in question. 
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2.0 Source Data 

A combination of field reference, recent image, and biophysical data are needed to produce the 

VMap database. Once collected, ground reference data is used to build relationships between the 

observed phenomena and the spectral and biophysical information derived from remotely sensed 

and ancillary data.  

2.1 Field Data Collection  

Collectively, ground and other reference data are known as “training data” because they are used 

to construct algorithms that relate observations to quantified variables and are used to interpret 

and label areas that have not been sampled within a study area. Thus, they “train” algorithms to 

distinguish between and label the un-sampled areas. For the development of the VMap database, 

training data was specifically collected in the field with plot-based measurements that are used in 

conjunction with image interpretation to identify and distinguish lifeform, tree canopy cover, tree 

size, and vegetation dominance type classes. For a more detailed explanation of the field data 

collection process and the findings of the field season please see the Story Map at 

https://arcg.is/0vSSnX.    

2.2 Image Data Collection and Pre-Processing  

Two distinct types of spectral image data were used in the production of the VMap database. 

They include NAIP imagery from 2013, and a 2016-2017 composite of Sentinel-2 data. NAIP 

data have the finest grain size, with 1 meter pixel resolution (USDA Farm Service Agency 

2016), but, due to persistent cloud and wildland fire smoke cover, contemporary coverage over 

the mapping area was not available for this project in 2017. While current NAIP image data was 

not available, image data from 2013 was used, in part, for algorithm development, and visual 

inspection. Sentinel-2 image data was specifically obtained for the B-D project, and was 

delivered with 10 meter pixel resolution, and 13 bands of radiometric resolution (ESA 2015). 

The Sentinel-2 data were extracted from Google Earth Engine using standard methods (Gorelick 

et al 2017). For algorithm development in this project, NAIP imagery was used to model the fine 

grain texture associated with tree canopy cover and tree size. It was also used in combination 

with Sentinel-2 data to model lifeform. Sentinel-2 data are both contemporary and spectrally 

consistent across the project area and have a higher number of spectral bands with which to 

better discriminate between individual tree species for species distribution and tree dominance 

type modeling. 

2.3 Creation of Image Derivatives   

Image derivatives are transformations of raw image data that provide spectral and texture-based 

information useful for land cover mapping. Regardless of the native format, all derivatives used 

in the B-D mapping process were converted to a 10 meter pixel resolution to enhance processing 

speed and reduce variability in the dataset.  

https://arcg.is/0vSSnX
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The derivatives used in the B-D process were based on NAIP and Sentinel-2 data. As a first step 

in the derivative creation process, the NAIP imagery was degraded from 1 meter spatial 

resolution to 5 meter spatial resolution. Then, a principal component analysis (PCA) (Jolliffe 

2002) of the four bands of 5 m NAIP image data was conducted. The first three components 

were retained and stacked to yield a three band principal component raster with 5 meter pixel 

resolution. From this raster, a focal mean, focal standard deviation, and contrast gray level co-

occurrence matrix were created, using a seven pixel by seven pixel moving window. The results 

of the focal and gray level co-occurrence matrix computations were then degraded to 10 meter 

pixel resolution for the final application. In a similar fashion, the 10 meter native resolution 

Sentinel-2 image data were also transformed into a three band principal component raster. Focal 

and contrast derivatives were also created for the Sentinel-2 data, using a three by three pixel 

window, to maintain a close tie to both the NAIP imagery and general size of plots used to 

acquire ground-based measurements.  Finally, the NAIP and Sentinel-2 focal and contrast 

derivatives, based on the top three principal components, at 10 meter spatial resolution, were 

used as spectral inputs for lifeform, tree canopy, tree size, and species distribution and tree 

dominance type modeling. 

2.4 Long term Site Characterization 

Vegetation indices provide another useful metric for describing and distinguishing various 

vegetation characteristics. The normalized difference vegetation index (NDVI) is commonly 

used and yields a measure of photosynthetic activity in plants, using information related to the 

wavelengths of light that are captured by image sensors (Rouse et al. 1974, Lillesand et al. 2015). 

In its original format, NDVI quantifies photosynthetic activity at the instantaneous time of image 

collection, and while this is useful, it does not provide information about long term processes or 

trajectories over time. By summing individually collected NDVI values over each time period 

the data are collected, seasonal patterns of green-up to senescence can be interpreted by the 

magnitude of accumulated values. For example, an area of deciduous shrubs that is very active 

photosynthetically will have very high individual NDVI values during the active growing season, 

and those values will accumulate to be higher than its evergreen counterparts that rely on lower 

levels of sustained photosynthesis over longer periods of time. An index that captures the 

accumulated values of NDVI is called Time-Integrated NDVI (TINDVI) (Reed et al. 1994).  A 

TINDVI for a 30-year period record for the growing season months (July to September) was 

calculated from the Landsat data record for use in modelling long term site photosynthetic 

activity as a surrogate for productivity.  

2.5 Biophysical Characterization Data  

In the arid West moisture availability is often the limiting factor in vegetative 

growth/productivity and species distribution. As such, biophysical setting can be a useful piece 

of information when characterizing vegetation. To address this information gap a raster 

derivative that integrates precipitation, solar radiation, and topography was used to quantify the 
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physical environment. This provides a physical foundation for processes that are associated with 

the availability of water. Because it integrates precipitation, heat load from the sun, and water 

routing by topographic elements, it is called PHEAT (Precipitation Heat & Elevation Adjusted 

Topography). PHEAT is used to help inform the delineation of polygons in the segmentation 

process and the derivation of vegetation characteristics in modeling processes.  

2.6 Image Segmentation  

Image segmentation is the process of combining unique picture elements, or pixels, within digital 

images into spatially cohesive regions. These individual regions are called image objects and 

represent distinct areas within the image that generally correspond to patches of similar 

vegetation type/conditions (Haralick and Shapiro 1985, Zaitoun and Aqel 2015). Ultimately, the 

raster-based image objects are converted to vector-based polygons. These image objects depict 

patterns of vegetation and other elements on the landscape, and all VMap attributes are 

associated with the polygons derived from the segmentation process. 

For this database, polygon delineation was based on Sentinel-2 imagery, and biophysical 

characterization supplied by the PHEAT derivative. Both datasets had 10 meter pixel resolution. 

Figure 1 provides an example of how imagery has been segmented to yield the delineation of 

distinct vegetation patches. In this particular display, the simplified polygons of the Beaverhead-

Deerlodge National Forest VMap dataset are shown in combination with the color infrared 

components of the 2013 NAIP imagery. 

 

Figure 1 - Delineation of distinct vegetation and terrain features using an image segmentation routine. Illustrated 

are the simplified polygons of the Beaverhead-Deerlodge National Forest VMap dataset are shown in combination 

with the color infrared components of the 2013 NAIP imagery. 
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3.0 Mapping Process 

3.1 Lifeform Classification  

At the level of individual polygons, the lifeform class is attributed through a combined process of 

image object classification and refined with manual image interpretation and editing, following 

the rules established by the R1 Existing Vegetation Classification document. Labeling of the 

lifeform groups is accomplished with the Random Forest classification algorithm (Breiman 2001, 

Liaw and Wiener 2002, Liaw 2015) using field collected reference information and summarized 

image derivative, biophysical derivative, and vegetation index derivative statistics associated 

with the polygons obtained from the segmentation process. In this process, spectral inputs from 

both NAIP and Sentinel-2 data were used. Mapped lifeform classes include Coniferous Tree, 

Deciduous Tree, Shrub, Herbaceous, Sparsely Vegetated, Urban, and Water.  A polygon-based 

accuracy assessment is given in the Accuracy Assessment section of this document. 

3.2 Tree Canopy Cover Classification  

For polygons where a Coniferous Tree lifeform is assigned, tree canopy cover values are 

estimated. Traditionally the tree canopy cover values in the VMap database were only available 

in four classes: low (10-24.9% Cover), moderate low (25-39.9% Cover), moderate high (40-

59.9% Cover) and high (60%+ Cover). In this VMap update, however, canopy cover estimates 

were produced as continuous variables that were distributed into the stated classes. Providing 

continuous canopy cover percentage values and categorical groupings of canopy cover enable 

increased precision for model and decision support.  

Canopy cover models were based on reference data obtained through analyst-based image 

interpretation, and a Random Forests regression algorithm (Breiman2001, Liaw and Wiener 

2002, Liaw 2015).  

Using a 70 meter by 70 meter grid, which resembles the dimensions of an FIA plot (Bechtold 

and Patterson 2005), an image analyst randomly selected 400 grid cells across the mapping area 

and then used high resolution imagery to assign a percent canopy cover estimate to each cell. A 

full range of canopy cover values, ranging from a minimum of 10% to 80%, were generated and 

used as training data in the modeling process. A selection of reference sites were used in 

combination with the NAIP 2013 image derivatives, and biophysical setting variables that 

include 30-year composite vegetation index and a moisture availability model in a Random 

Forest regression model to estimate the full range of canopy cover values across the mapping 

area. Another subset of the reference data were used for model evaluation. Table 1 provides a 

description of sites used for model development and model evaluation. 
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Table 1 - Canopy cover classes, and numbers of reference sites used for model development and model evaluation. 

Canopy cover 

quantity (%) 

Number of reference sites  

for model development 

Number of reference sites  

for model evaluation 

0 27 14 

10 30 14 

20 30 16 

30 30 8 

40 30 11 

50 30 47 

60 30 23 

70 30 4 

80 10 6 

sum 247 143 

 

The output from this regression was evaluated against the training data and residuals were 

computed. Those residuals were then used to generate a model of the regression errors. The 

modeled errors were then used to adjust (added to) the initial canopy cover regression model 

output. By doing so the strength of the relationship between measured and modeled canopy 

cover values was enhanced. The initial canopy cover model explained roughly 60% of the 

variation in the measured values while the residual adjusted model accounted for nearly 80% of 

that variation (R2 0.58 vs R2 0.81). The graphical expression of these models is given in Figure 2 

and Figure 3 - Residual-adjusted regression on measured versus modeled canopy cover..  

 
Figure 2 - Scatter plot of regression on measured versus 

modeled canopy cover. 

 
Figure 3 - Residual-adjusted regression on measured 

versus modeled canopy cover. 
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Although the residual adjusted model fit the measured values well, the slope of this relationship 

indicates that the lowest model values tend to be slightly higher than measured values, and 

conversely high measured values tend to have slightly lower modeled values. To further refine 

the estimated canopy cover values, a stretch was applied to the residual adjusted output. This 

procedure maintained the strength of the relationship but increased the steepness of the slope of 

the regression line between measured and modeled values more, thus low values became lower 

and high values became higher. The final relationship between measured and modeled canopy 

cover values is given in Figure 4 - Scatter plot of final regression on measured versus modeled 

canopy cover.. 

 

Figure 4 - Scatter plot of final regression on measured versus modeled canopy cover. 

This final continuous canopy cover model has a mean absolute error of 8% when compared to 

measured values. The raster containing these final values was summarized to the image 

segmentation and then grouped into canopy cover classes based on the specifications of the 

Region 1 Existing Vegetation Classification System, as described above. 

Within the designated Regional canopy cover classes, the mean class absolute error is: 
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Table 2 - Mean canopy cover class absolute error. 

Regional Canopy Cover Classes Percent 

Mean Absolute Error Overall 8 

Mean Absolute Error 10-24.9% 12 

Mean Absolute Error 25-39.9% 12 

Mean Absolute Error 40-59.9% 9 

Mean Absolute Error >= 60% 7 

 

A polygon-based accuracy assessment is given in the Accuracy Assessment section of this 

document.  

3.3 Tree Size Class  

For polygons where a Coniferous Tree lifeform is assigned, tree size values are estimated. 

Traditionally the tree size values in the VMap database were only available in five classes: 1 (0-

4.9”), 2 (5-9.9”), 3h (10-14.9”) and 4 (15-19.9”), and 5 (>= 20”). In this VMap update, however, 

tree size estimates were produced as continuous variables that were distributed into the stated 

classes. Providing the flexibility to assess continuous tree size values or categorical groupings of 

canopy cover enable increased precision for model and decision support.  

Tree size models were based on reference data obtained through field-based plot measurements, 

and a Random Forests regression algorithm (Breiman2001, Liaw and Wiener 2002, Liaw 2015). 

In the development process, the suite of image derivatives, the vegetation index derivative, and 

the biophysical derivative, described in the above sections, were incorporated with the plot data.  

Over the course of the 2017 field season, analysists collected plot-based measurements of tree 

size at 1,164 locations across the Beaverhead-Deerlodge National Forest. At each location, 

variable radius plots were installed and the diameter at breast height (DBH) of all “in” trees was 

measured. This information was then used to calculate the basal area-weighted diameter at breast 

height (BAWD) for each plot. The assemblage of tree size information at all plot locations was 

divided into 1) reference sites for model development, and 2) reference sites for model 

evaluation. Of all the data collected, 70% were used for model development and 30% were used 

for model evaluation. Figure 5 - Relative proportions of model development and model 

evaluation reference sites used in the tree size modeling process. provides a graphic display of 

the relative proportion of model development and model evaluation data used in the tree size 

modeling process.  

The full range of tree size values represented in the model development set, ranging from a 

minimum of 1 inch to a maximum of 36 inches BAWD, including a set of reference locations 

that represent zero tree size, were used in combination with the NAIP 2013 image derivatives, 

and biophysical setting variables that include 30-year composite vegetation index and a moisture 
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availability model in a Random Forest regression model to estimate tree size values, expressed as 

BAWD, across the mapping area.  

 

Figure 5 - Relative proportions of model development and model evaluation reference sites used in the tree size 

modeling process. 

The output from this regression was evaluated against the model evaluation data and residuals 

were computed. Those residuals were then used to generate a model of the regression errors. The 

modeled errors were then used to adjust (added to) the initial tree size regression model output. 

By doing so the strength of the relationship between measured and modeled tree size values was 

enhanced. The initial tree size model explained roughly 74% of the variation in the measured 

values while the residual adjusted model accounted for 75% of that variation (R2 0.74 vs R2 

0.75). The graphical expression of these models is given in Figure 6 - Scatter plots of initial tree 

size regression model. and Figure 7 – Scatter plot of residual adjusted tree size regression 

model..  
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Figure 6 - Scatter plots of initial tree size regression 

model. 

 
Figure 7 – Scatter plot of residual adjusted tree size 

regression model. 
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Figure 8 – Scatter plot of final residual adjusted and stretched tree size model. 

This final continuous tree size model has a mean absolute error of 2.2 inches when compared to 

measured values. The raster containing these final values was summarized to the image 

segmentation and then grouped into tree size classes based on the specifications of the Region 1 

Existing Vegetation Classification System, as described above. Within the designated Regional 

canopy cover classes, the mean class absolute error is: 

Table 3 – Mean tree size class absolute error. 

Regional Tree Size Classes Percent 

Mean Absolute Error Overall 2.2 

Mean Absolute Error 0-4.9” 1.6 

Mean Absolute Error 5-9.9” 1.7 

Mean Absolute Error 10-14.9% 2.4 

Mean Absolute Error 15-19.9” 2.4 

Mean Absolute Error >= 20” 4.7 

 

A polygon-based accuracy assessment is given in the Accuracy Assessment of this document. 

y = 0.84x + 1.91

R² = 0.73

0

5

10

15

20

25

30

0 5 10 15 20 25 30

M
o

d
el

ed
 T

re
e 

S
iz

e 
(i

n
)

Measured Tree Size (in)



NRGG_PR_B-D_VMAP2018_09_15_2018; 2019-02-11  Page 15 

 

 

3.4 Species Distribution Modeling 

A statistical model known as “Maximum Entropy” (Maxent) (Phillips et al., 2006) was used to 

develop an envelope of likely areas of occurrence for each individual species across the B-D 

project. The species distribution models (SDMs) were used in conjunction with other predictor 

layers to determine species’ abundance across the landscape as detailed in section 3.5.   

In our application of Maxent we used 10 meter pixel resolution raster datasets that included a 

digital elevation model, minimum and maximum temperature (Holden et al., 2015), Daymet 

precipitation (Thornton et al.,1997), time integrated NDVI, heatload, and the first 3 principle 

components of Sentinel-2 satellite imagery for the B-D. Heatload was calculated using the 2010 

10m DEM as an input into an ERDAS model that implements heatload equations from McCune 

et al., (2002). The resulting SDMs represent the affinity of each species to certain biophysical 

settings as well as relations to spectral information contained in the Sentinel-2 data.   

3.5 Tree Dominance Type Modeling 

Tree dominance type was modeled using a Random Forest regression (Breiman 2001, Liaw and 

Wiener 2002, Liaw 2015) based on individual tree species abundance information collected at 

the field plot level as the response variable and independent variables of Sentinel-2 image 

derivatives, a biophysical derivative, a vegetation index derivative, and lastly a Maxent SDM 

that was converted to a distribution mask. In the SDM masks, values of 1 indicated potential 

species presence and values of 0 indicated the probable lack of presence. Species abundance was 

described in terms of square feet of basal area per acre (BAA), for each species encountered at 

each reference site. Using all of this information, a separate raster surface was built for each 

species, where the continuous range of BAA values was estimated for any given pixel.  

In total, information from 1,405 reference sites were used to build regression models of BAA for 

each tree species being considered in this mapping project. The mapped species and number of 

associated reference sites for each species is given below in Table 4.  

Table 4 - Mapped species and number of associated reference sites for each species. 

Tree Species Vmap Code Sites with BAA  > 0 

Ponderosa pine 8010 19 

Douglas fir 8020 544 

Lodgepole pine 8050 897 

Subalpine fir 8060 359 

Engelmann spruce 8070 300 

Whitebark pine 8120 183 

Limber pine 8150 61 

Juniper 8180 24 

Total 
 

                               2,387  
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The relationship between modeled and measured BAA values for all species is given graphically 

in Figure 9 – Scatter plots representing relationships between measured and modeled basal area 

per acre plot description across the Beaverhead-Deerlodge National Forest, collected and 

processed in the 2017 field season., where models tended to explain more than 60% of the 

variation in measured BAA. 
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Figure 9 – Scatter plots representing relationships between measured and modeled basal area per acre plot 

description across the Beaverhead-Deerlodge National Forest, collected and processed in the 2017 field season. 

The suite of species BAA raster data were then summarized to the VMap polygons to determine 

percent composition, and a dominance type label was assigned based on Region 1 Existing 

Vegetation Classification System tree dominance type rules.  

As a final product, each polygon with a lifeform classification of Coniferous Tree, is assigned a 

tree species dominance type label. An ancillary table with all species associated with a given 

polygon is also produced, and can be used to infer cohort information. In the VMap database, 

fields describing the mean basal area per acre estimate for each species are given. They are 

labeled with the four letter species code followed by mean BAA. For example, the field for mean 

square feet of basal area per acre of Douglas-fir is: PSME_MEAN_BAA. A polygon-based 

accuracy assessment is given in the accuracy assessment section of this document. 

3.6 Tree Mortality Modeling 

The proportion of standing dead trees in every tree measurement plot was recorded in the field 

sampling during the 2017 season. Proportions were based on the number of dead standing trees 

versus live trees identified in variable radius plots.  

In total 1,068 sites were used for model development, and 385 sites were used for model 

validation and assessment of residual errors. Figure 10 - A comparison of tree mortality model 

development and model evaluation training data distributions. illustrates the relative distribution 

of model development and model evaluation data. 
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Figure 10 - A comparison of tree mortality model development and model evaluation training data distributions. 

For input as independent variables, the same raster stack of spectral values from Sentinel-2 

imagery, vegetation index, and biophysical index, and coordinate space used for tree dominance 

type modeling were used to model tree mortality. 

The initial model representing the percentage of standing dead trees on a site was developed by 

creating a Random Forest regression of model development plot data against the independent 

variables raster stack. Using the withheld plot data, model error was assessed and modeled. The 

modeled residuals were then added back to the original output, and referred to as the residual 

adjusted model. Simple linear regressions of the initial mortality model and the residual adjusted 

models are given in Figure 11 - Scatter plot of the initial tree mortality model. and Figure 12 – 

Scatter plot of the residual adjusted tree mortality model.. 
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Figure 11 - Scatter plot of the initial tree mortality model. 

 
Figure 12 – Scatter plot of the residual adjusted tree 

mortality model. 

 

The residual adjusted model represents a significant improvement in fit, where the proportion of 

explained variation increased from 0.29 to 0.80, and the slope of the relationship increased from 

0.23 to 0.58. While model fit was greatly improved with the residual adjustment, low values 

were still being overestimated and high value were somewhat underestimated. To address this, 

the modeled output was further stretched. The stretched model explained the same amount of 

variability as the residual adjusted model, but the slope of the relationship between measured and 

modeled values increased from 0.58 to 0.73, and the intercept was lowered from 14.68% to 

12.07%. The regression between the measured and stretched model output is shown graphically 

in Figure 13 – Scatter plot of residual adjusted and stretched tree mortality model, given as a 

percentage of a measurement site on the Beaverhead-Deerlodge National Forest.. The stretched 

raster output was then summarized to VMap polygons where the mean percent value is reported 

in an attribute named MORTALITYPERC. 

y = 0.23x + 15.46

R² = 0.29

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

M
o

d
el

ed
 T

re
e 

M
o

rt
al

it
y
 (

%
)

Measured Tree Mortality (%)

y = 0.58x + 14.68

R² = 0.80

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

M
o

d
el

ed
 T

re
e 

M
o

rt
al

it
y
 (

%
)

Measured Tree Mortality (%)



NRGG_PR_B-D_VMAP2018_09_15_2018; 2019-02-11  Page 20 

 

 

 

Figure 13 – Scatter plot of residual adjusted and stretched tree mortality model, given as a percentage of a 

measurement site on the Beaverhead-Deerlodge National Forest. 

3.7 Rangeland Productivity Modeling 

As part of this project we modeled rangeland productivity in terms of dry pounds of forage per 

acre across an area that encompasses the Beaverhead-Deerlodge National Forest. Productivity 

reference data were obtained from the Natural Resources Conservation Service, Soil Survey 

Geographic Database (SSURGO) soil dataset and used in combination with a time-integrated 

vegetation index, and the precipitation heatload and elevation adjusted topography biophysical 

index (PHEAT) to estimate forage production for low, average, and above average precipitation 

conditions.  

These spatially explicit estimates of forage production across a range of precipitation conditions 

were produced as raster datasets with 10 m pixel resolution. Each estimate for low, average, and 

above average condition was summarized to the polygons in the VMap database, where the mean 

value for each polygon is represented for each condition is represented in the following attributes 

LOW_PRODUCTIVITY, AVERAGE_PRODUCTIVITY and HIGH_PRODUCTIVITY. The 

full Rangeland Productivity Report is available online at 

https://usfs.box.com/s/3mihxv8sozhij4615ukv317igx5rzko8. 
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3.8 Rangelands Characteristics Modeling 

During the summer of 2017 the Montana Natural Heritage Program (MNHP) collected 

vegetation data on nonforested lands throughout the B-D project area.  After field sampling was 

conducted, MNHP modeled cheatgrass presence, bunchgrass vs single-stem grass, dry grass 

canopy cover, shrub canopy cover and sagebrush canopy cover using collected plot data, 

biophysical characterization data, Sentinel-2 and NAIP imagery, and a number of derivatives 

from the imagery. The models produced by MNHP were used to create raster datasets of shrub 

canopy cover, as well as cheatgrass presence, and single-stem grass and bunch grass distributions 

across the Beaverhead-Deerlodge mapping area. These raster data were then summarized as a 

percent cover to the following four attributes within the VMap database: SHRUB_CCV, 

BRTE_CCV, BUNCHGRASS_CCV, and SINGLESTEM_CCV. Contents of the Montana 

Natural Heritage Program Rangeland Mapping Report (Fortier 2018) is given as Appendix I. 

3.9 Whitebark Pine Characteristics Modeling 

Whitebark pine is an ecologically and culturally valuable asset, and to help the Beaverhead-

Deerlodge National Forest with management decisions associated with this species, potential 

range, restoration suitability, and relative percent canopy cover were estimated. Based on 

disturbance history and species preferences, estimates were made to describe sites where 

restoration of whitebark pine may be successfully focused. These estimates, were converted to a 

binary response, where the value 1 suggests suitability while 0 suggests a lower likelihood of 

successful restoration. In this version of the VMap database, the attribute is listed as 

PIAL_SUITABILITY. Further information about whitebark pine characteristics model can be 

found in Fortier 2018b, and online at 

https://usfs.box.com/s/m9kh3583e1boocldi4fhv78gp9qk7wr4 

4.0 Accuracy Assessment 

An independent accuracy assessment of the VMap products was conducted across the entire 

Beaverhead-Deerlodge National Forest (B-D) mapping area to provide a validation of the issued 

data. An estimate of overall map accuracy and confidence of individual map classes was 

computed with a standard error matrix derived from the comparison of known reference sites to 

mapped data classed through the Region 1 Exiting Vegetation System. In general, the delivered 

B-D map products were validated with accuracies ranging from 63-98% depending on the class 

attribute. While the accuracy assessment was generally good for classified attributes, a 

comparison of independently observed versus modeled continuous outputs for tree canopy cover 

percent and average tree diameter was also evaluated with favorable results. 

https://usfs.box.com/s/m9kh3583e1boocldi4fhv78gp9qk7wr4
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4.1 Error Matrices 

Following the recommendations of Stehman and Czaplewski (1998), a stratified random sample 

design was used to select comparison sites across the B-D mapping area for the lifeform and tree 

canopy cover attributes and used to construct a standard accuracy assessment error matrix 

(Congalton, 1991). Sampling strata were constructed for the lifeform and tree canopy attributes 

and a minimum of 100 and 70 (respectively) spatially distributed samples per class were drawn 

from each strata. Assessments were conducted somewhat differently for the tree dominance type 

(DOM40) and tree size class attributes because it is difficult to accurately assess both of those 

attributes using straight image interpretation. Assessment of tree dominance type and tree size 

class attributes was therefore conducted by comparing classified values to a dataset of reference 

sites that comprised 10% of each assessment class and that was not used in the classification 

process.  
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For the lifeform attribute, evaluation sites were selected from 8 sampling strata: dry grass, wet 

grass, xeric shrub, mesic shrub, sparsely-vegetated, water, deciduous tree, and coniferous tree, 

with 5,088 sample sites selected and compared to the mapped VMap lifeform class in a standard 

error matrix, shown in Table 5. 

Table 5 - Beaverhead-Deerlodge National Forest VMap 2018 lifeform error matrix. 

Reference Lifeform Class        

Mapped 
Lifeform 
Class 

Dry 
Grass 

Wet 
Grass 

Xeric 
Shrub 

Mesic 
Shrub 

Coniferous 
Tree Water 

Sparsely 
Vegetated 

Deciduous 
Tree 

Grand 
Total 

Comission 
Error 

Dry Grass 612 9 23 1 2 0 3 0 650 94% 

Wet Grass 37 591 2 12 4 0 0 0 646 91% 

Xeric Shrub 28 6 597 4 7 0 2 2 646 92% 

Mesic Shrub 4 32 7 566 11 0 1 5 626 90% 
Coniferous 
Tree 8 2 2 2 627 1 4 2 648 97% 

Water 1 3 1 0 1 629 7 2 644 98% 
Sparsely 
Vegetated 26 0 6 1 8 2 598 0 641 93% 
Deciduous 
Tree 4 9 2 19 17 1 3 532 587 91% 

Grand Total 720 652 640 605 677 633 618 543 5,088 
Overall 
Accuracy 

Omission 
Error 85% 91% 93% 94% 93% 99% 97% 98%   93% 
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Tree dominance type was evaluated on 12 classes for DOM40: PIPO-IMIX, PSME-IMIX, , 

PICO-IMIX, ABLA-TMIX, PIEN-TMIX, PIAL-IMIX, PIFL-IMIX, JUNIP-IMIX, IMIX, and 

TMIX. A total of 1,362 samples, was compared to the resulting map to yield the error matrix 

shown in Table 6, below. 

Table 6 - Beaverhead-Deerlodge National Forest VMap 2018 DOM40 error matrix. 

Reference DOM_MID_40 Class  

Mapped 
DOM_MID_40 
Class 

PIPO-
IMIX 

PSME-
IMIX 

PICO-
IMIX 

ABLA-
TMIX 

PIEN-
TMIX 

PIAL-
IMIX 

PIFL-
IMIX 

JUNIP-
IMIX IMIX TMIX 

Grand 
Total 

Comission 
Error 

PIPO-IMIX 6 0 0 0 0 0 0 0 0 0 6 100% 

PSME-IMIX 6 342 73 3 10 0 2 2 0 0 438 78% 

PICO-IMIX 0 59 493 28 21 16 9 0 4 3 633 78% 

ABLA-TMIX 0 0 2 12 4 0 1 0 0 0 19 63% 

PIEN-TMIX 0 4 13 3 65 0 0 0 0 2 87 75% 

PIAL-IMIX 0 0 0 0 0 30 1 0 0 0 31 97% 

PIFL-IMIX 0 2 0 0 0 0 6 0 0 0 8 75% 

JUNIP-IMIX 0 0 0 0 0 0 0 3 0 0 3 100% 

IMIX 0 7 26 12 11 8 1 0 2 1 68 3% 

TMIX 0 8 19 15 23 2 1 0 0 1 69 1% 

Grand Total 12 422 626 73 134 56 21 5 6 7 1,362 
Overall 

Accuracy 

Omission Error 50% 81% 79% 16% 49% 54% 29% 60% 33% 14%   70% 
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Tree canopy cover class evaluation sites were drawn from four sampling strata representing: low 

canopy cover tree (10-24.9%), moderate-low canopy cover tree (25-39.9%), moderate-high 

canopy cover tree (40-59.9%), and high canopy cover tree (60% +), with 100 initial sample sites 

selected from each strata. By selecting a minimum of 100 evaluation sites from each strata, a 

sufficient sample is still available if unsuitable sites are encountered due to excessive shadowing 

or site variability. In the case of tree canopy cover, 280 sites were evaluated. The results are 

displayed in Table 7 below. 

Table 7 - Beaverhead-Deerlodge National Forest VMap 2018 tree canopy cover error matrix. 

Reference Canopy Cover Class     

Mapped  
Canopy Cover Class 10-24.9% 25-39.9% 40-59.9% 60+% Grand Total Comission Error 

10-24.9% 55 15 0 0 70 79% 

25-39.9% 5 53 12 0 70 76% 

40-59.9% 0 9 57 4 70 81% 

60+% 0 3 13 54 70 77% 

Grand Total 60 80 82 58 280 Overall Accuracy 

Omission Error 92% 66% 70% 93%   78% 
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For the tree size class assessment, evaluation sites were selected from four sampling strata, 

consisting of: seedling tree (0-4.9” DBH), small tree (5-9.9” DBH), medium tree (10-14.9” 

DBH), and large/very large tree (15”+ DBH), by a 10% withholding of the field sampled data 

within each class, for a total of 232 samples. These sites were then evaluated for classification 

into a corresponding VMap Tree Size class and compared with the existing Map. The results are 

displayed in Table 8 below.  

Table 8 - Beaverhead-Deerlodge National Forest VMap 2018 tree size class error matrix. 

Reference Tree Size Class         

Mapped 
Tree Size Class 0-4.9" DBH 5-9.9" DBH 10-14.9" DBH 15-19.9" DBH 20" + DBH Grand Total Comission Error 

0-4.9" DBH 10 0 0 0 0 10 100% 

5-9.9" DBH 11 66 21 0 1 102 65% 

10-14.9" DBH 0 17 56 16 4 94 60% 

15-19.9" DBH 0 1 1 8 6 16 50% 

20" + DBH 0 0 1 3 6 10 60% 

Grand Total 22 84 79 30 17 232 Overall Accuracy 

Omission Error 45% 79% 71% 27% 35%   63% 

 

4.2 Discussion 

There are tradeoffs to constructing a post-classification, stratified random sample-based accuracy 

assessment. The biggest advantage will be a guarantee of a sufficiently large sample size so that 

a full assessment of each represented class is possible. A disadvantage may be that the ability to 

estimate a true quantification of omission error is lost due to the biased nature of the sample 

selection. All things considered, however, the advantage of having the ability to assess within 

class accuracy outweighs this disadvantage.  

Since not all of the map attributes lend themselves to confident visual interpretation, specifically 

tree size class and tree dominance type, it is necessary to withhold a certain amount of the field 

collected reference information in order to compute an independent estimate of the map class 

accuracy. The draw back to using withheld data is that there may not be enough data to withhold 

in some classes to provide a meaningful quantification of the error for such classes. This is the 

case in the B-D database for the classes of MX-PIPO, MX-JUNIP, IMIX, and TMIX where there 

are not enough withheld samples to provide a statistically valid estimate of the class accuracy. 

Fortunately these classes comprise a very small percentage of the overall landscape area mapped. 

In general, the accuracies exhibited in the VMap 2018 database are very good. Classes with 

higher error rates, such as IMIX (shade intolerant species mix) and TMIX (shade tolerant species 

mix) may be over represented across the landscape, and are generally difficult to detect and 

describe because of their variable species composition. Therefore, it is possible that a mislabeled 
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polygon could still be considered “OK” in most analysis situations.  

The same can be said of the tree canopy cover and tree size class attributes, where most of the 

error occurs between adjacent classes and can easily be attributed to either interpretation error or 

just the inherent fact that when a continuous world is parceled into discrete classes not 

everything will always fit as neatly as expected. For example, if a given polygon is estimated to 

have 61% tree canopy cover, but the analyst estimates that it has 59%, the true difference is only 

2%, but 59.9% is the cutoff between two classes so that the polygon would then be assessed as 

incorrect.  

The take home message is that even the accuracy assessment, which is judged as “truth”, needs 

to be taken with a grain of salt. While the accuracy assessment attempts to quantify the error 

structure in the B-D map products, this is no substitute for a qualitative map evaluation prior to 

its use in any analysis. 
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SUMMARY  

Vegetation Map (VMap) is a geospatial database of existing vegetation that relates to spatially 

unique polygons across the Northern Region of the USDA Forest Service. This landscape scale 

mapping product utilizes consistent vegetation classification that is updated every 5 to 10 years 

in order to remain current with large scale landscape disturbances.  

Vegetation management is one of the Forest Service’s primary responsibilities. The VMap 

database provides existing vegetation data that facilitates broad scale analysis and enables 

managers to accurately address resource planning and monitoring objectives.  

During the field season of 2017 the Northern Region Geospatial Group (NRGG) began the 

process of revising the VMap database for the Beaverhead-Deerlodge National Forest (B-D NF) 

and surrounding landscape with support from the Montana Natural Heritage Program (MTNHP). 

MTNHP was tasked with gathering rangeland vegetation data to inform the VMap process in 

non-forested lands and to explore what degree of rangeland vegetation types, species, or 

relationships could be accurately portrayed spatially by applying similar data and methods used 

in VMap forest mapping.  

This report describes the mapping and modeling efforts for rangeland shrub and grass in the B-D 

NF and surrounding lands. Five ecosystem components were modeled based on the 2017 field 

work, including total shrub and total grass canopy cover, as well as subcategories sage cover, 

bunchgrass and single-stem grass cover. A sixth component, Bromus tectorum (Cheatgrass) 

abundance, was modeled using a combination of VMap field data and other presence location 

information provided by the B-D NF. All ecosystem components were modeled using a Random 

Forest classification and regression algorithm and produced as continuous cover raster products 

across the rangeland in southwest Montana. 5  
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1 Study Area  

The Beaverhead-Deerlodge (B-D) National Forest and surrounding landscape considered in the 

2017 VMap update includes over 8.25 million acres in Southwest Montana. Within the study 

area approximately 60% of the land is publicly owned, including over 3 million acres of National 

Forest land, 1 million+ acres under Bureau of Land Management administration, and the 

remainder a mix of state and local ownership. This report focuses on the rangeland areas within 

the larger B-D study area, where dominant vegetation is a mix of shrubs and perennial 

grass/forbs (Figure 1). The area includes large proportion of sagebrush habitat, dominated by Big 

Sagebrush (A. tridentata) and Threetip Sagebrush (A. tripartita), as well as associated species 

like Sagewort and Rabbitbrush, and common grass species Idaho Fescue (Festuca idahoensis), 

Bluebunch Wheatgrass (Elymus spicatus), and Junegrass (Koeleria macrantha).  

 

Figure 1. Study area of the Beaverhead-Deerlodge National Forest VMap mapping effort. Location of rangeland 

field collection sites are identified in red.  

 

2 Data  
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The initial mapping process began by testing established VMap data and modeling procedures 

(Ahl and Brown 2017), specifically the use of 10-meter NAIP aerial photography, to model non-

forest ecosystem components in the B-D, producing only limited success. Subsequent efforts 

aimed to tease out the complex signatures of each component by testing a variety of additional 

data sources from spectral transformations to biophysical parameters to muti-seasonal and multi-

platform imagery. Table 1 lists all the variables tested as independent predictors over the course 

of the model testing process, though not all were subsequently used in the final products.  

 

Table 1. List of predictor variables assembled for random forest modeling of rangeland vegetation.   
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2.1 Image Data  

Three sources of remotely sensed imagery were acquired for this analysis: NAIP aerial 

photography collected at 1m spatial resolution, Sentinel-2 multi-spectral satellite imagery 

collected at 10 to 15m spatial resolution, and Landsat satellite imagery collected at 30m 

resolution. All data were resampled to 10m spatial resolution to match the minimum mapping 

unit/pixel size of this analysis and to match the sampling size of the field data, which were 

collected in 50-foot diameter plots.  

National Agriculture Imagery Program (NAIP) 4-band aerial photography is the preferred 

spectral dataset used for the VMap project because of its high spatial resolution and cloud-free 

image coverage statewide, collected on a 3-to-5 year acquisition cycle. For this study 2013 NAIP 

was selected as the primary NAIP imagery, being the most current image collection over the 

study area where the data were captured during the summer months (June & July). 2015 NAIP 

was also tested in this analysis to provide a multi-seasonal spectral view of the landscape since 

the aerial collection of that year’ data occurred from late-September through November. 

Unfortunately, due to the late season collection select flight lines crossing the project boundary 

included heavy snow cover leaving large data gaps in the 2015 product. Both years were 

processed to generate a stack of Principal Components as well as a spectral variance texture 

product and degraded from 1m to 10m resolution following the VMap methods outlined by Ahl 

and Brown (2017). Additionally, both a Normalized Difference Vegetation Index (NDVI =NIR-

Red/NIR+Red) and Green NDVI (gNDVI =NIR-Green/NIR+Green) were calculated from the 

10m spectral data. These spectral transformations and the original spectral bands (blue, green, 

red, NIR) were all provided as possible predictor variables to the mapping algorithm.  

Sentinel-2 data was provided by the USFS Northern Region Geospatial Group as a 10-band 

multispectral product (visible through short-wave infrared wavelengths) already pre-processed 

into 10m resolution. To provide seamless, cloud-free Sentinel coverage of the study area the 

USFS acquired the imagery through Google Earth Engine, extracting mean spectral values across 

multiple dates and image paths. From the Sentinel data both NDVI and a Normalized Difference 

Wetness Index (NDWI =NIR-SWIR/NIR+SWIR) were calculated and provided alongside the 

multispectral bands as model variables.  

Google Earth Engine was also used to calculate, and extract 5-year mean NDVI values by month 

from April through July. These months were selected to capture the primary growing season of 

non-irrigated grass in Southwest Montana, which typically experiences final snow melt and early 

green-up in April and nears complete senescence by late July. Monthly NDVI change (April to 

May, May to June, June to July) and seasonal range products were also generated as inputs to the 

modelling process.  

2.2 Biophysical Data  
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A 10 meter DEM was used to produce a slope surface, aspect, slope curvature and a topographic 

position index (Jeness et al. 2013) for use in the modelling process under the assumption that 

topographic location correlates highly with access to moisture and nutrients important for 

vegetation growth. Two products developed by the USFS Northern Region Geospatial Group 

were included as ancillary variables to the modeling algorithm: a Precipitation Heat & Elevation 

Adjusted Topography (PHEAT), which attempts to synthesize precipitation, heat load, and water 

holding capacity, as well as a combination of PHEAT with a 30-year mean historical NDVI 

calculated from Landsat (Ahl and Brown 2017). Finally, a contiguous map of human disturbance 

index developed by the Montana Natural Heritage Program (Newlon 2015) was included in the 

modelling of potential Cheatgrass invasion.  

All data were resampled to 10m resolution, projected into Universal Transverse Mercator zone 

12N, and clipped to the study area.  

2.3 Field Data  

A total of 1,916 field plots from the 2017 VMap/MTNHP field season were used for this 

analysis. Plot data were collected on public lands using a stratified sampling method, where 

strata were defined along unique moisture and vegetation gradients and the allocated density of 

plots in each were weighted proportional to the area of the respective strata within the overall 

study region. At each plot 25 foot transects were laid out in four cardinal directions from the plot 

center and species were recorded at 2 foot intervals along each line. Species data and cover 

estimates for shrub, grass, and forb were calculated from these 50 sample points; ocular 

estimates of cover were used to validate or modify the final data recorded for each plot. Percent 

of ground cover occupied by rock, litter, or bare ground were also recorded, as well as number 

and species of trees present. Following field collection, the data points were individually 

reviewed on computer screen for spatial inaccuracy and data anomalies in order to flag and 

remove from analysis any questionable, redundant or incomplete data. Field plot locations within 

the study area are displayed in Figure 1 and a full breakdown of the collection methodology, as 

well as data gathered is covered in a companion report by Dressing and Fortier (2018).  

An additional 581 locations of Cheatgrass presence/abundance were provided by the B-D 

National Forest. While the MTNHP plot data identifies Bromus tectorum on a continuous scale 

of 0-100% canopy cover the additional point dataset identified Cheatgrass abundance as falling 

in one of 5 categories: 0-1%, 1-5%, 5-25%, 25-50% and >50%. As a result, Bromus tectorum 

abundance was modeled as a categorical output following the aforementioned breakdown with 

exception of the >50% category, which was dropped due to lack of examples (only 5 out of 

2,651 records).  

Field data for each ecosystem component were randomly partitioned such that 70% of the point 

locations would be used to calibrate the statistical model and the remaining 30% set aside to 
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provide independent validation of the model outputs. This resulted in a 1,212/704 split of 

calibration to validation points for the five canopy cover products and a 1,856/795 split for 

Bromus tectorum.  

3 Modeling Process  

Modeling was performed using a Random Forest (RF) classification and regression algorithm 

(Breiman 2001, Liaw and Wiener 2002). Each RF was set to build forests out to 2,001 trees, with 

each tree selecting 66% of the calibration data available to it for growing the model and the 

remaining 33% used to estimate Out Of Bag (OOB) error.  

For each ecosystem component multiple RF model runs were performed to test the array of 

independent variables with increasing or decreasing complexity, ex. Model 1 – NAIP spectral 

only, Model 2 – NAIP and biophysical data, Model 3 – NAIP PCA, etc. The purpose of this 

process was not only to highlight the combination of variables which produce the highest 

statistical accuracy output but also to show how each variable affected the statistical output and 

provide insight into their efficacy as predictors of rangeland vegetation patterns. After an average 

of 10-15 model tests per component, including one that provided all possible predictors, the top 

8-12 variables were selected according to their impact on RF accuracy (i.e., their inclusion 

resulted in a noticeable reduction in Root Mean Square Error). The top predictors selected as 

important for modeling each ecosystem component were then included in a final RF model used 

to produce a spatial prediction across the entire rangeland area (Table 2).  

 

Table 2. Predictor variables used in the final classification or regression model for each ecosystem component. 

Variables are listed in descending order of importance; variables at the top of each list provided the highest 

reduction in RMSE according to the OOB error calculated by the RF, variables not selected were either superfluous 

or redundant as their inclusion provided little additional benefit to the statistical accuracy of the model.  

The ecosystem components bunchgrass, single-stem grass, and sagebrush are each subcategories 

of either the total grass canopy cover or total shrub cover components. In those three models 
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their overarching components (grass, shrub) were included in their respective RF models as 

predictor variables. Despites these predictors obvious correlations with the subcomponents being 

modeled this step was deemed necessary to act as a type of top down constraint, reducing errors 

in which the subcomponent might otherwise predict a higher canopy cover than the super-

component (i.e., modeled sage cc > total shrub cc). Doing so not only reduced statistical errors it 

also provides an ease of understanding for any end user who might interact with the full 

collection of modeled results.  

4 Results  

The five percent canopy cover components and Cheatgrass abundance were produced as 

continuous maps across the entire study region. These maps are displayed at the end of this paper 

in APPENDIX I, cropped to areas of rangeland vegetation as identified by the VMap lifeform 

classification process.  

 

4.1 Regression Analyses  

Using the field data set aside for independent validation Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), and r2 regression statistics were calculated for each of the continuous, 

canopy cover models (Table 3). Rangeland grass cover proved the most difficult to model at this 

spatial resolution, RMSE of 14.17 and r2 of 0.215, due in part to its spectral signature being 

near-indistinguishable from surrounding litter and shrub once senesced. The two key predictor 

variables selected by the RF were texture, which showed an inverse correlation with grass, and 

seasonal range in Landsat measured NDVI. The bunchgrass and single-stem grass models 

struggled to find a spectral signature for the same reasons, although their predictive accuracy 

measures were improved from total grass due, in part, to their unique spatial arrangements. 

Single-stem grasses were more prevalent in the lowland field plots with decreasing abundance as 

sample locations moved away from the private and heavily managed valley bottoms, and vice 

versa.  

 

Table 3. Statistical accuracy of the regression models calculated using independent validation plots.  



NRGG_PR_B-D_VMAP2018_09_15_2018; 2019-02-11  Page 39 

 

 

Total shrub cover fared slightly better than grass (RMSE 10.06) bolstered by the texture variable, 

which showed the highest direct correlation to shrub cover as any other variable/component pair 

tested. Sagebush was perhaps the least complicated variable for the RF to model as 90% of sage 

points were dominated by only a single species (Big Sagebrush), meaning that there were not a 

lot of intra-component variations in the spectral signature. Sage cover also followed certain 

geographical trends that would make it easier to model, specifically sage density increased as 

field plots moved away from the valley floors, and higher concentrations of sage exist in the 

southern half of the study area compared to the northern half.  

The r2 values for all five regression models indicate that no prediction was a perfect correlation 

to the field estimates. Despite the abundance of predictor variables available to the classifier their 

combination were still not enough to properly capture the unique signals both within and 

between cover types across the landscape. As a result, the RF generated what amounts to a 

statistical “best-fit” models that tends to under classify both the low (0-10%) and high ends of 

the cover predictions.  

One promising result of this analysis is that the statistical accuracies are similar to, or within 

range of other research published on rangeland vegetation mapping. Table 4 lists reported RMSE 

statistics from three other studies that modeled similar ground cover components in sagebrush 

habitats of the western United States. All three studies listed worked with Landsat data at the 

30m resolution to predict biomass, which shows that this mapping approach can provide an 

improvement on the spatial resolution of the final product without a significant sacrifice to 

accuracy.  

 

Table 4. Comparison of published Root Mean Square Error statistics from similar studies modeling studies that 

focus on rangeland cover types in western USA.  

4.2 Categorical Analysis  

The RF classification model was able predict Cheatgrass abundance with 95% overall accuracy; 

per class accuracies ranged from 78-98% for the four broad abundance categories mapped. The 

model seemed to perform the best when predicting the lowest (no Cheatgrass) and highest (25-

50% Cheatgrass) abundance categories where the presence or absence signals are likely the 

clearest (Figure 2). Initial tests modeling Bromus tectorum as a continuous (0-100%) estimate of 
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abundance proved challenging due to the relative scarcity of occurrence in the MTNHP field 

plots as well as the sparse cover exhibited where it was recorded. The inclusion of the additional 

occurrence data and partitioning of abundance into cover categories dramatically improved the 

model results, although remnants of those early predictive challenges are still evident in the class 

confusion common between the low to moderate Cheatgrass abundance categories.  

 

Figure 2. Confusion matrix and accuracy statistics for the categorical Cheatgrass (Bromus tectorum) abundance 

model.  

5 Discussion  

Iterative variable testing showed that, at the 10-meter resolution, image texture was consistently 

one of the most often selected and important variable for decreasing RMSE in all cover 

components modeled. Shrub height relative to the surrounding vegetation was shown to increase 

textural variance as the taller vegetation cast shadows visible in the 1m spectral data. Larger 

shrub types, like Big Sagebrush (A. tridentata), therefore produced the most consistent 

correlation between abundance and image texture and the ubiquity of that species across the 

study area (present in 62% of all shrub plots / 90% of sage plots) helps explain the increased 

accuracy in modeling shrub and sage, when compared to the grass cover models. Similar 

relationships of shrub presence to spectral texture were not as obvious when a texture product 

was generated on Sentinel or Landsat spectral data, making it clear that the utility of this variable 

is H-resolution dependent (Strahler et al., 1986) and almost certainly a product of shadow 

visibility. To exploit this, multiple tests were performed where texture metrics extracted from 

2015 NAIP were included to the model in addition to 2013, which due to their collection at 

different times of the year offer changing shadow lengths and positions. This provided an almost 

multi-temporal texture dimension to the RF algorithm resulting in significantly improved results 

in both shrub and grass models, however the large swaths of the snow covered ground in 2015 

NAIP imagery made it impractical to apply those results to the entire study area.  
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The inclusion of spectral data proved important to each of the model’s predictive power, but the 

type of spectral data did not seem to matter significantly; NAIP, PCA, or Sentinel data improved 

the results relatively equally. While the top variables selected for the final models seemed to 

identify some key bandwidths of importance, NIR and SWIR were common, testing showed that 

swapping out the NAIP near-infrared band for the Sentinel equivalent had little to no significant 

change on the model’s accuracy. Their properties and the information the RF was extracting 

from them were highly correlated, even despite the Sentinel data providing additional spectra. 

Similar results were found with the inclusion of biophysical variables; the inclusion of each had 

some positive effect on the RMSE but which variable(s) included to the model within each of 

those categories were, in most cases, trivial.  

The pseudo-phenology from the monthly Landsat NDVI did prove useful, particularly in 

mapping Cheatgrass abundance, which fits with the findings other published studies that have 

leveraged Landsat time-series for modeling rangeland biomass. In this case the relative 

discrepancy between the field plot size (182 m2) and the 900 m2 area of a Landsat pixel used to 

develop the NDVI data probably complicated any signal the RF was able to identify. Future 

work generating more robust phenology metrics with either Sentinel or a fusion of Sentinel and 

Landsat NDVI at a more appropriate scale would likely improve 10m resolution modeling going 

forward.  

The final observation from iterative testing was in the relationship between the training data and 

RF results: While not perfect matches, comparing the RF reported OOB RMSE against the 

independent validation RMSE showed remarkably similar values in every test. This provided 

confidence in the OOB error metrics, showing that model comparison could be done without the 

use of independent validation and allowing for multiple tests on the number of calibration points 

provided to the algorithm, including using 100% of the field data to train the RF. Accuracies 

consistently improved with the increase in training examples, demonstrating the importance of a 

robust set of training data and making an argument for attaining more whenever possible. 

Similarly, since the RF algorithm generates a “best-fit” to model the statistical trends in the data 

given, it is important that the field data accurately capture the variance of the landscape being 

modeled. By using a stratified field data collection approach the VMap methodology provided 

confidence that the training set used here adequately covered the B-D rangeland, however 

without equal access to collect examples on private land it is possible that these models lose 

predictive power in those locations.  

Overall the results of this work are promising and informative. NAIP imagery alone offers little 

clarity for rangeland components, with its limited spectral and temporal ranges, but it does 

provide the high resolution, contiguous coverage necessary to exploit some important textural 

variances in rangeland vegetation. Landsat scale analyses, on the other hand, have shown 

promise in capturing biomass signatures from the phenology of rangeland vegetation but are 

limited in their ability to identify clear spectral signatures due to the scale of the sensor and the 
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generally sparse, mixed vegetation cover in rangelands. This analysis attempted to work on both 

levels by letting the modeling algorithm choose which variables provide the clearest picture of 

each rangeland component and from that predict those rangeland features across the entire study 

area.   
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APPENDIX I.  

Figure A-1. Modeled total grass canopy cover over the rangelands in and around the 

Beaverhead-Deerlodge National Forest. 18  

 

Figure A-2. Modeled bunchgrass canopy cover over the rangelands in and around the 

Beaverhead-Deerlodge National Forest. 19  

 

Figure A-3. Modeled single-stem grass canopy cover over the rangelands in and around the 

Beaverhead-Deerlodge National Forest. 20  

 

Figure A-4. Modeled total shrub canopy cover over the rangelands in and around the 

Beaverhead-Deerlodge National Forest. 21  

 

Figure A-4. Modeled sagebrush canopy cover over the rangelands in and around the Beaverhead-

Deerlodge National Forest. 


