Conifer Stem Decays

Conifer Stem Decays

Caused by several fungi

Host(s) in Alaska: All conifers

Habitat(s): Most decay heartwood, some occupy sapwood & heartwood

Topics

Select stem decay fungi of Alaskan conifers (updated 2023)

Recent observations, key identification characteristics, and damage information is provided for each species. Click images to view albums of stem decay fungi from the Forest Health Protection, Forest Service, USDA, Alaska Region on Flickr. Detection maps show georeferenced observations of fungi, and many include the modeled range of tree hosts. Host tree distributions were developed by the Forest Health Assessment and Applied Sciences Team in 2011 (240m-resolution, presence based on dominant tree species by tree diameter). View our ground survey data dashboard to view maps and ground survey records of stem decays and other damage agents in Alaska.

Echinodontium tinctorium (Ellis & Everh.) Ellis & Everh.

In 2015, the paint fungus (Echinodontium tinctorium), thought to be absent in Southeast Alaska south of Skagway, was found to be abundant on western and mountain hemlock in one stand on Mitkof Island south of Petersburg. Continued survey work may allow us to detect this fungus in other locations.

Echinodontium tinctorium conk, showing brick red context.

Click the image to view full Echinodontium tinctorium album on Flickr.

Hosts: Western and mountain hemlock; occasionally spruce. Identification: Perennial, woody, hoof-shaped conk anywhere on bole. Forms as a parasite on living trees, usually on or under branch stubs or dead branches. Top: rough and cracked, dull black to dark grey. Bottom: grey-brown to black; thick, blunt spines or teeth. Inside: brick red to rust red or orange. The pigment extends into the adjacent wood. Damage: Laminated stringy white rot, usually mid-trunk. Trunk may become completely hollow. Remarks: Presence of conk indicates substantial heart rot. In Alaska, occurs in the northern Panhandle near Haines and Skagway and in south-central Alaska within the distribution of mountain hemlock. Identified at one location on Mitkof Island, so may be present elsewhere on the Panhandle. Traditionally used to prepare red paint pigments.

Fomitopsis pinicola sensu lato
Fomitopsis mounceae Haight & Nakasone 
Fomitopsis ochracea Ryvarden & Stokland 

Fomitopsis pinicola sensu lato (a species complex that has recently been redescribed) fruiting bodies were detected 75 times in 2023 during ground surveys. Many spruce beetle-killed trees in Southcentral are ultimately toppled by this decay fungus, evidenced by brown-crumbly-rot and mycelial expansion through wood. Three species from this complex are present in North America and two in Alaska: F. mounceae has a red-orange band that inspired the common name “red belt conk”, while the upper surface of F. ochracea is dark grey to brown (Haight et al. 2019, https://doi.org/10.1371/journal.pone.0199738). Fomitopsis ochracea was the most common species recorded statewide (40 observations in 2023), while F. mounceae was only observed 17 times. This year, there were 216 research grade observations of the complex in iNaturalist, including 91 of F. mounceae, 121 of F. ochracea, and four that did not have characteristics for identification to species. iNaturalist is improving our ability to capture georeferenced and photo-documented observations of this very common species complex. Members of the Fomitopsis pinicola complex are presumed to occur throughout their spruce and hemlock host ranges in Alaska.

Fomitopsis pinicola sensu lato conk.

Click the image to view full Fomitopsis pinicola sensu lato album on Flickr.

Hosts: Spruce, hemlock and pine; occasionally western redcedar, birch, and aspen. Identification: Perennial, leathery to woody, flat to vaguely hoof-shaped conk. Found as a firm, rounded white mass on wood surface when young. Primarily saprobic and extremely common on dead wood. Also commonly associated with wounds of live trees, especially Sitka spruce. Top: dark brown to grey to black, zoned, often with reddish brown band near rounded margin. Bottom: creamy white with minute round pores. Inside: creamy white with corky texture. Damage: Incipient (early) decay has a yellow-brown to brown stain. Wood with advanced decay is a crumbly brown cubical rot. Thick white mycelial felts may form in shrinkage cracks. The mycelial felts are similar to that of the quinine conk but do not taste bitter. Remarks: Sometimes confused with artist’s conk but bottom pore layer does not immediately bruise when touched. In Southeast Alaska, considered an important stem decay of live spruce, but its brown cubical decay may be confused with that of Phaeolus schweinitzii.

Ganoderma applanatum (Pers.) Pat.

Of 13 observations of Ganoderma applanatum made during ground detection surveys in 2023, seven were on western hemlock and two on red alder in Southeast Alaska, while the remaining observations were on balsam poplar and Alaska birch in Southcentral and Interior Alaska. Twenty-seven research grade observations were contributed through iNaturalist from the same general locations but also near Talkeetna and the Kenai Peninsula. Ganoderma applanatum is likely a species complex, found on both hardwoods and conifers in coastal Alaska. On hardwoods in Southeast Alaska, the conk tends to be thinner and has a paler upper surface without the abundant dusting of brown spores.  

Ganoderma applanatum on western hemlock.

Click the conk image to view full Ganoderma applanatum album on Flickr. 

Hosts: Mainly hardwoods; but sometimes western and mountain hemlock, and white and Sitka spruce. Identification: Perennial, woody, fan- or shelf-shaped conk. Usually occurs as a saprobe on decaying logs and stumps. Occasionally found as a heart rot on wounds of living trees. Top: dull, dusty brown to grey-brown with concentric ridges. Bottom: white pore surface that immediately browns when touched. Interior: dark brown to cinnamon. Damage: Spongy mottled white rot of sapwood and heartwood. Remarks: Known as the artist’s conk because the fresh pore surface bruises dark brown when touched or scratched. Intricate etchings can be preserved for years if properly dried.

Ganoderma tsugae Murrill  
Ganoderma oregonense Murrill 

While we have been identifying the species of lacquer/varnish conk, which occurs on hemlock in Alaska, as Ganoderma tsugae, a likely alternative is Ganoderma oregonense (Loyd et al. 2018, PLoS ONE 13(7): e0199738. https://doi.org/10.1371/journal.pone.0199738). Based on spore size, we identified three dried specimens collected in Juneau and one along Behm Canal on Revillagigedo Island as G. oregonense. Though we did not detect varnish conk during ground detection surveys this year, ten research grade observations were contributed via iNaturalist between Hoonah and Ketchikan in Southeast Alaska. This fungus tends to occur on dead wood and appears to be more common in southern parts of the Panhandle.. 

Ganoderma tsugae conk.
Click the image to view full Ganoderma tsugae album on Flickr. 

Hosts: Western hemlock; occasionally other conifers. Identification: Annual, shelf or fan-shaped conk. Usually saprobic on large, old stumps or logs. Top: surface distinctly varnish-like and shiny reddish brown, at first knobby or elongated becoming somewhat fan-shaped. Bottom: white pore surface, becoming brownish with age. Usually bruises brown. Pores minute. Stalk: lateral (from side), varnished reddish brown, sometimes absent. Damage: White rot decay appears wet, spongy, soft, straw-colored or white in the butt or stem. May have large black spots scattered throughout. Remarks: Also called lacquer conk, this fungus has long been used in traditional medicine; modern research has shown potential medicinal benefits, including wound healing and anti-tumor activity in mice.

Laetiporus conifericola Burds. & Banik

In Alaska, Laetiporus conifericola causes brown cubical rot of conifers, primarily spruce and hemlock in coastal Southeast and Southcentral Alaska. Eight observations were made on Prince of Wales and northeastern Chichagof Island during ground detection surveys in 2023, while 86 research grade observations were recorded in iNaturalist spanning coastal Alaska from Ketchikan to Kodiak Island and Katmai National Park. The iNaturalist application can be particularly helpful in cataloging the occurrence of popular, easily identified fungi, like the sulfur fungus, with ephemeral fruiting structures.

Laetiporus conifericola fruiting structure.

Click the image to view full Laetiporus conifericola album on Flickr.

Hosts: Spruce and hemlock; occasionally shore pine. Identification: Annual, shelving, in clusters, fleshy; usually on lower bole of conifers. Primarily saprobic on dead trees and stumps, but occasionally causes heart rot on living trees. Top: bright orange to yellow when fresh; crumbly white after it dies. Bottom: sulfur-yellow with small pores often in clusters. Inside: Yellow, watery, and soft when fresh; white and chalky or soggy after it dies. Damage: Brown cubical rot, may have white mycelial felts. Remarks: Edible when young, some think the conk tastes like chicken. Also called Sulfur Shelf fungus. The mycelial felts in decayed wood is somewhat similar to that of the quinine conk but do not taste bitter. Use caution when harvesting fungi for consumption.

Laricifomes officinalis (Batsch) Kotl. & Pouzar. (=Fomitopsis officinalis)

Quinine conk, Laricifomes officinalis.

Hosts: Spruce (especially Sitka spruce), hemlock, larch, and shore pine. Identification: Rare. Perennial, woody, vaguely hoof-shaped to elongated-columnar conk. Usually occurs high on bole of living old-growth trees, but also persists for many years as a saprobe on dead trees. Top: zoned, white or yellow-white turning to grey or light brown with age, chalky coating, sometimes greenish with algae. Bottom: Convex, white when fresh with tiny round uniform pores, drying to light brown. Inside: white to grey, cheesy to chalky with age, distinctly bitter taste. Damage: Early decay light yellow to red-brown. Advanced decay is a crumbly brown cubical rot. Thick, white, bitter-tasting mycelial felts may form in shrinkage cracks. Remarks: A single fruiting body indicates extensive heart rot and hazard of tree failure. Conks have long been used in traditional medicine and show promise in modern research. Many cultures, including the Tlingit, have carved conks into shaman grave guardians.

Phaeolus schweinitzii (Fr.:Fr.) Pat.

Phaeolus schweinitzii is most common in coastal forests of Southeast Alaska on Sitka spruce but has also been recorded on shore pine and white spruce. In 2023, it was observed on white spruce at one location in Southcentral near Girdwood, and on Sitka spruce at eight locations in Juneau, Gustavus, and the Organized Village of Kasaan in Southeast Alaska. Twenty-seven research grade observations were contributed through iNaturalist in Southeast from Skagway to Prince of Wales Island; in Southcentral Alaska near Girdwood; and in Interior Alaska near Fairbanks. The fruiting bodies are most noticeable when they emerge from broken tree boles or below-ground roots in late summer and fall. Root and lower bole damage can promote infection, an important management consideration at developed recreation sites. This fungus plays an important role in forest success in even-aged spruce forests, including those originating after glacial recession. Bole breakage of large spruce trees varies forest structure and diversity. The decaying wood of freshly snapped trees has a strong pleasant licorice fragrance.

Fruiting structure of Phaeolus schweinitzii.

Click the image to view full Phaeolus schweinitzii album on Flickr.

Hosts: Sitka spruce, white spruce, and hemlock; rare on shore pine in Alaska. Identification: Large, annual, layered fruiting body; shelf-like on lower bole; circular and stalked with sunken center on ground. Develops on both live and dead trees/logs. Turns dark red brown and brittle when dead (resembles cow pie). Top: velvety, yellow to orange when young, turning brown with an olive brown to yellowish margin. Bottom: large, irregularly shaped pores, bright yellow to orange when young becoming greenish yellow, olive, or brown; quickly bruises dark brown. Damage: Brown cubical butt rot, often extensive. Rapid loss of tensile strength, even at fairly early stages of decay, may lead to breakage on lower bole. Remarks: Also known as the cow pie fungus, velvet top fungus or dyer’s polypore. Can be used to create yellow, brown, and green dyes. Sometimes confused with Onnia tomentosa.

Phellinus hartigii (Allesch. & Schnabl) Pat.

We recorded Phellinus hartigii on western hemlock at three locations near Juneau and one location on eastern Mitkof Island in 2023. An additional research grade observation was made in Juneau via iNaturalist. This fungus can invade through stem wounds, including bole swellings caused by hemlock dwarf mistletoe. Although infrequently encountered in Southeast Alaska, we have repeatedly observed mortality of infected trees within a decade of initial detection due to disease activity in the sapwood girdling the stem.  

Conk of Phellinus hartigii.<

Click the conk image to view full Phellinus hartigii album on Flickr. 

Hosts: Western and mountain hemlock. Identification: Uncommon. Light brown perennial conk, often occurs on undersides of limbs or branch stubs, also on tree bole; may be velvety and flattened against tree bole. Top: dark brown to black, cracked. Bottom: tan to rusty-brown with very small, uniform pores. The pore layer of the conk may cover a much greater area than the upper surface. Appears velvety when fresh. Inside: yellow- to rusty-brown with streaks of white mycelium. Damage: White rot of the sapwood and heartwood of living trees. Incipient (early) decay appears as irregular patches of brown to purple discoloration. Advanced decay appears bleached and laminated on radial sections with brown zone lines. Decay is usually limited to the area just above and below the conk. Bark may appear sunken around conks when the sapwood is killed. Remarks: Conks are difficult to remove from trees. Hartig’s conk is named after Robert Hartig, a 19th century German forest scientist regarded by many as the father of forest pathology.

Porodaedalea pini (Brot.) Murrill (=Phellinus pini)

Porodaedalea pini was recorded by FHP staff at 16 sites in Southeast Alaska near Juneau, Sitka, Ketchikan, and Prince of Wales Island and at 12 sites near Anchorage, Girdwood, on the Kenai Peninsula near Kenai Lake, and a site on Kodiak Island. One observation was recorded near Fairbanks. Although primarily considered a heart rot, P. pini can progress into sapwood and kill trees. Observations were made on mountain hemlock, western hemlock, Sitka spruce, and white spruce, in decreasing order of incidence. Additionally, 24 research grade observations were recorded in iNaturalist near our observations but also on spruce on Kodiak Island and in Denali Park. Although more common in coastal forests, the range of P. pini extends into Interior Alaska. Multiple fruiting bodies along the length of the tree bole indicate extensive internal decay.  

Porodaedalea pini conk.

Click the image to view full Porodaedalea pini album on Flickr.

Hosts: Hemlock, spruce and shore pine; occasionally western redcedar. Identification: Perennial, woody, fan-, shelf-, to hoof-shaped conk. Occurs anywhere on bole of live or recently dead trees. Often associated with branch stubs. Top: reddish brown to dark brown with a narrow, velvety golden margin; usually zoned in concentric rings; becoming furrowed and rough. Bottom: yellowish brown to rusty brown, pores angular to nearly slot-like. Interior: bright rusty brown; corky to woody. Damage: White pocket rot. Incipient (early) decay is a red stain in the heartwood that appears as a well-defined ring in cross-section. In advanced decay, small flecks of fungal mycelium are evident and once-separate areas of decay merge. Remarks: Decay can progress from the heartwood to the sapwood and cause tree death.

Conifer Stem Decay Detection Maps

Paint-fungus-detection-map-Alaska-2023Brown-crumbly-rot-red-belt-conk-detection-map-Alaska-2023Artist-conk-detection-map-Alaska-2023Varnish-conk-detection-map-Alaska-2023Sulfur-fungus-detection-map-Alaska-2023Brown-cubical-butt-rot-detection-map-Alaska-2023Hartigs-conk-detection-map-Alaska-2023Red-ring-rot-detection-map-Alaska-2023

 

General information about conifer stem decays in Alaska

Stem decays occur on conifer hosts throughout the state, but have been studied in greatest depth in Southeast Alaska. Stem decay incidence changes little over time without active management. In mature forests of Southeast Alaska, conifer stem decays cause enormous wood volume loss. Approximately one-third of the old-growth timber volume in Southeast Alaska is defective, largely due to stem decay. There is very little decay in young-growth stands unless there is prevalent wounding. Stem decays are key disturbance agents in the coastal rainforest, because they predispose large old trees to bole breakage and windthrow. Stem decays create canopy gaps, influence stand structure and succession, perform essential nutrient-cycling functions, increase biodiversity, and enhance wildlife habitat. Trees with stem decay can be hazardous in managed recreation areas. Visit our hazard tree management webpage. Brown rots are the most significant source of cull for Sitka spruce, while white rots are most significant for western hemlock and western redcedar. Western redcedar is the most defective species, followed by western hemlock and Sitka spruce. A variety of different fungi cause stem decay in Alaskan conifers.

This table displays the most common conifer stem decays in Alaska, with information about the type of decay they cause, their tree hosts, modes of infection and known distributions in Alaska. For some conifer stem decay fungi, we have enough georeferenced ground observations to provide maps of detection locations, included with species-specific information below.

Stem decays rot or deteriorate wood, primarily in tree trunks, rather than roots and butts. They can be identified based on the presence and characteristics of conks, mushrooms, or other fungal structures on tree boles, when present. The characteristics of decayed wood and species of host tree can also be helpful for identification. Wildlife holes, cavities, and hollows indicate the presence of stem decay on live trees, even when conks and mushrooms are absent. Heart rot develops primarily in the heartwood (inner wood) of living trees, whereas sap rot develops in the sapwood (outer wood beneath bark) and is usually extensive only in dead trees. Bole wounds and cracks provide entry points for many stem decay fungi, although some decays enter through natural openings like branch stubs.

Brown rots are particularly detrimental to tree strength. They degrade cellulose fibers leaving behind brownish lignin, which dries in brittle cubes. White rots decompose all wood components (cellulose and lignin); wood remains fibrous until very late stages of decay. The color and texture of white rots is dependent upon the causal fungi.

By predisposing large old trees to bole breakage and windthrow, stem decays are key disturbance agents. Individual tree mortality, much of it caused by heart rot fungi, creates small-scale canopy gaps and appears to be the leading form of disturbance in the coastal rainforest (Hennon 1995), where fire and other large-scale disturbances are uncommon. All major tree species in Southeast Alaska have been found killed in this manner. Stem decays influence stand structure and succession, perform essential nutrient cycling functions, increase biodiversity, and enhance wildlife habitat. Heart rot has an obvious and essential role in wood decomposition and has been demonstrated to be a site of nitrogen fixation by other microorganisms. Cavities created by stem decay fungi in standing trees provide crucial habitat for many species (bears, voles, squirrels and birds). Stem decays reduce merchantable timber volume from mature harvest units (especially old-growth) and can be hazardous in managed recreation areas. Many stem decay fungi cause heart rot of living trees, others decay the wood of dead trees, and some grow on dead tissue of both live and dead trees. Most of these decays do not actually interfere with the normal growth and physiological processes of live trees since the vascular system is unaffected. However, some decay pathogens, such as Phellinus hartigii and P. pini may attack the sapwood and cambium of live trees after existing as a heart rot fungus. Many of the fungi that are normally found on dead trees (e.g., Fomitopsis pinicola) can grow on large stem wounds, broken tops and dead tissue of live trees. Root and butt rot fungi can also cause stem decay in the lower bole (e.g., Phaeolus schweinitzii).

Wounds on live trees caused by logging activities are potential sites of infection for decay fungi to cause appreciable timber losses (Wright and Isaac 1956). Generally, larger, deeper wounds and larger diameter breaks in tops result in a faster rate of decay (Hennon 1990). Without logging injury, heart rot in young forests are typically at very low levels until stand age 100 to 150 years. Eventually, heart rot consumes as much or more wood volume annually than is produced by the live trees. There are methods that could be used to promote earlier development of stem decays for wildlife habitat in young-growth stands with non-timber objectives (Filip et al. 2011, Hennon and Mulvey 2014), such as intentional bole wounding and top breakage during stand entries. In some instances, bole breakage can be encouraged to occur in a specific direction (e.g., across steams for coarse woody debris input) by causing wounds to one side of the bole (e.g., the side that faces the stream).

Cubical brown rot of Sitka spruce stump.
Cubical brown rot on an old, broken Sitka spruce.
Stringy white rot.
Stringy white rot decay.

 

Our knowledge of stem decay impacts on timber volume loss primarily come from two cull studies in Southeast Alaska (Kimmey 1956 and Far et al. 1976). A study by Hennon and McClellan (2003) evaluated modes of tree mortality (e.g., died standing, broken bole, uprooting) in old-growth forests. Permanent monitoring plots throughout Southcentral and Interior Alaska (evaluated 2013-2016) are helping to build information about the distribution and relative importance of stem decays on various tree hosts in other regions and forest types in Alaska.

An important cull study conducted by James Kimmey in Southeast Alaska in the 1950s found that brown rots were the most significant source of cull for Sitka spruce, while white rots were most significant for western redcedar (especially Obba/Ceriporiopsis rivulosa and Phellinus weirii) and western hemlock. Farr et al. (1976) found similar high rates of decay in old-growth forests as Kimmey (1956). These and other studies have shown that stem decay incidence and volume increase with tree size. The amount of defect also depends on tree species: for any given size or age class, redcedar was the most defective species, followed by western hemlock and Sitka spruce. Although redcedar wood products are known for decay resistance, it seems that a few species of decay fungi are specialized to overcome the decay resistance of live redcedar but do not affect wood in service.

Pie chart of brown and white rot fungi of live Sitka spruce Pie chart of brown and white rot fungi affecting live hemlocks.

Contribution of fungi that cause brown rot (tan wedges) and white rot (light gray wedges) in live Sitka spruce (left) and western hemlock (right). Adapted from Kimmey (1956) for Hennon and Mulvey (2014).

Decay incidence by tree age for Sitka spruce and western hemlock.Volume cull by tree age for Sitka spruce and western hemlock.

Influence of tree age on percentage of wood volume that is cull (left) and incidence of decay in trees (right). Adapted using data from Table 10 from Kimmey (1956) of mean gross volume cull values for dissected trees grouped by 50-year age intervals. Curves were fit with polynomial equations. Also used in Hennon and Mulvey (2014). 

Links to Resources & Publications

Farr, W. A.; LaBau, V. J.; Larent, T.L. 1976. Estimation of decay in old-growth western hemlock and Sitka spruce in southeast Alaska. Research Paper PNW-204. Portland, OR: U.S. Department of Agriculture, Forest Service. 24 p.

Filip, G.; Chadwick, K.; Zambino, P.; and others. 2011. Seven- to 12-year effects of artificially inoculating living conifers to promote stem decay and subsequent wildlife use in Oregon and Washington forests. Portland, OR: USDA Forest Service, Forest Health Protection.

Hennon, P. E. 1990. Wounding on residual Sitka spruce and western hemlock remaining after thinning on Prince of Wales Island, Alaska. USDA Forest Service, State and Private Forestry, Juneau, AK. Forest Pest Management Report R10 90 2. 9p.

Hennon, P. E. 1995. Are heart rot fungi major factors of disturbance in gap-dynamic forests? Northwest Science. 69: 284-293. Available here.

Hennon, P.E.; McClellan, M. H. 2003. Tree mortality and forest structure in temperate rainforests of southeast Alaska. Canadian Journal of Forest Research 33: 1621-1634.

Hennon, P. E.; Mulvey, R. L. 2014. Managing heart rot in live trees for wildlife habitat in young-growth forests of coastal Alaska. Gen. Tech. Rep. PNW-GTR-890. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 23 p. Available here.

Kimmey, J. W. 1956. Cull factors for Sitka spruce, western hemlock, and redcedar in southeast Alaska. USDA Forest Service. Alaska Forest Research Center, Juneau, Alaska. Station Paper No. 6. 31p.

Kimmey, J. W. 1964. Heart Rots of Western Hemlock. USDA Forest Pest Leaflet 90. Available here.

Wright, E.; Isaac, L. A. 1956. Decay following logging injury to western hemlock, Sitka spruce, and true firs. USDA Tech. Bull. No. 1148. 34p.

  • Disease & Insect Pocket Guide

    A placeholder image

    Pocket guide for the identification of common forest diseases and insects in Alaska.

 

Content prepared by Robin Mulvey, Forest Pathologist, Forest Health Protection, robin.mulvey@usda.gov

 

Contact us    Forest Health Protection Homepage