Skip to main content
U.S. flag

An official website of the United States government

Carbon and Land Management, an introduction

Preparers

Maria Janowiak, Northern Institute of Applied Climate Science, US Forest Service, Houghton, MI. 
Chris Swanston, Northern Institute of Applied Climate Science, US Forest Service, Houghton, MI.
Todd Ontl, Northern Institute of Applied Climate Science, US Forest Service, Houghton, MI.

This topic page was developed using information from the report Considering Forest and Grassland Carbon in Land Management (WO-GTR-95).

Terrestrial ecosystems, including forests and grasslands, play an important role in sequestering carbon dioxide (CO2), thereby helping to remove it from the atmosphere and lessening the effects of anthropogenic climate change (1-3). There are a number of greenhouse gas mitigation actions that can help to reduce the effects of climate change by reducing greenhouse gas sources and enhancing carbon sinks in forests and grasslands (4, 5, 3). Ecosystem carbon is of particular interest because of the importance of CO2 and methane (CH4) as important greenhouse gases, as well as the ability of ecosystem vegetation to absorb and sequester CO2 (1, 6). Land management actions can also affect the emissions of nitrous oxide (N2O)—another very potent greenhouse gas—although the role of forest and land management is small regarding this compound.

Forests and grasslands are managed for many different objectives and a variety of goods and services, including timber, range, water, recreation, and wildlife. The amount of carbon absorbed and stored within a particular ecosystem is affected by land use change, management activities, disturbance, the use of harvested wood, and climate.  Carbon may be of interest in developing management plans and options, but rarely is it the primary management objective. These topic pages provide information to support the integration of carbon considerations into land management, particularly in the context of carbon as just one of multiple management objectives. 

Associated Topic Pages

Global Carbon

Forest Soil Carbon

Forest Management for Carbon Benefits

Grassland Carbon and Management

An archived topic page on Forests and Carbon (2013) is available.

Janowiak, M.; Swanston, C. (May, 2017). Carbon and Land Management Introduction. U.S. Department of Agriculture, Forest Service, Climate Change Resource Center. www.fs.usda.gov/ccrc/topics/carbon-land-mgmt/introduction

1. United States Department of Agriculture, U. 2011. US Agriculture and Forestry Greenhouse Gas Inventory: 1990-2008. Washington, DC: Climate Change Program Office, Office of the Chief Economist, U.S. Department of Agriculture. 159.

2. Stocker, T.; Qin, D.; Plattner, G.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, B.; Midgley, B. 2013. IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.

3. King, A.W.; Dilling, L.; Zimmerman, G.; Fairman, D.; Houghton, R.; Marland, G.; Rose, A.; Wilbanks, T. 2007. The first state of the carbon cycle report (SOCCR): The North American carbon budget and implications for the global carbon cycle. The first state of the carbon cycle report (SOCCR): The North American carbon budget and implications for the global carbon cycle.

4. Birdsey, R.; Alig, R.; Adams, D. 2000. Chapter 8: Mitigation Activities in the Forest Sector to Reduce Emissions and Enhance Sinks of Greenhouse Gases. In: L. A. Joyce, R. Birdsey and (eds.), eds. The impact of climate change on America's forests: a technical document supporting the 2000 USDA Forest Service RPA Assessment. Fort Collins, CO: Rocky Mountain Research Station, USDA Forest Service.

5. Millar, C.I.; Skog, K.E.; McKinley, D.C.C.; Birdsey, R.A.; Swanston, C.W.; Hines, S.J.; Woodall, C.W.; Reinhardt, E.D.; Peterson, D.L.; Vose, J.M. 2012. Adaptation and mitigation. In: J. M. Vose, D. L. Peterson and T. Patel-Weynand, eds. Effects of climatic variability and change on forest ecosystems: a comprehensive science synthesis for the U.S. forest sector. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 125-192.

6. Murray, B.; Sohngen, B.; Sommer, A.; Depro, B.; Jones, K.; McCarl, B.; Gillig, D.; DeAngelo, B.; Andrasko, K. 2005. Greenhouse gas mitigation potential in US forestry and agriculture. Washington, DC: Environmental Protection Agency. EPA.

 

 

https://www.fs.usda.gov/ccrc/index.php/node/14633