Biodiversity and Effects of Management Actions on Species

William J. Zielinski

USDA Forest Service Pacific Southwest Research Station and Humboldt State University, Arcata, CA

USDA FS PSW Research Station

Planning to Protect Biodiversity

- A Developing Field: Limited large-scale examples
- Two Common Components:
 - Representation of vegetation types & ecological processes = COARSE FILTER approach
 - Consideration of individual elements, usually species = FINE FILTER approach
- Mixed approach (COARSE + FINE) is accepted by scientific community.
- Examples from other organizations: TNC, ForestERA

Coarse Filter Challenges for Species Viability

Coarse Filter Challenges for Species Viability

Instead....Coarse + Fine

Respect our Ignorance

<u>System Dynamics</u>: We don't understand the complexity of nature sufficiently to develop a protocol for sustaining ecosystems

What to *protect*? What to *restore*? What to *connect*?

• <u>Biodiversity</u>: We can't wait until we understand the extent of diversity on public lands (genetic, species, community).

Needed: A spatially extensive & economical method for monitoring the status of realistic number of species

Monitoring and Predictive Modeling: Exploit Existing Programs & Platforms

- Forest Inventory Analysis plots (FIA) as source for:
 - sampling
 - modeling and
 - monitoring effects on terrestrial wildlife
- Forest Vegetation Simulator (FVS), linked to models, as a platform for predicting effects of future management on wildlife species

Use Routinely Collected FIA data to Build Predictive Habitat Models

The FIA System

Plot Design (1 ha, ~ 2.5 acres)

Subplot (24 ft radius): All trees \geq 5" dbh; measure understory veg.

> **1-hectare plot** (~180 ft radius): Very large trees

Microplot (6.8 ft radius) Seedlings & saplings; fuels data

3

Transects: Coarse & fine woody debris; ground cover data.

Annular Plot (58.9 ft radius): For sample intensification or sampling rare events.

How to apply an FIA-based approach to diverse species?

Small species w/ small home ranges ~ 0.00001 km²

Larger species w/ large home ranges ~ 40 km²

The Small, High-Density Species

- Conduct careful sampling at set of FIA plots
- Build a habitat model that can predict occurrence at all FIA plots

Building the Model: Sampling

Randomly select FIA plots within 4 National Forests

Hooded lancetooth (Ancotrema voyanum)

A Predictive Habitat Model: Hooded lancetooth

Dunk et al. (2004)

Applying the Model

- Predicted values can be generated for each FIA plot within reasonable area of inference = <u>Assessment</u>
- Predicted values can be generated every time the FIA plots are resampled ~ 10 yrs = <u>Monitoring</u>

Predict Habitat Value at Unsampled FIA Plot Locations

Use FIA-based model to Monitor Predicted Habitat Suitability over Time

The Larger, Low-Density Species

- Install FIA plot at a sample of important habitat features (e.g. fisher = resting site).
- Develop predictive model by comparing FIA data at resting sites with plots in the regular FIA grid

A Predictive Habitat Model: Fisher

Zielinski et al. (2006)

FIA plots in 4 Southern Sierra Nevada Forests

n = 283

Applications: Regional Monitoring

Applications: Regional Monitoring

Forecasting Future Habitat Value: Forest Vegetation Simulator (FVS)

Approach Can Be Expanded to Multiple **Species with Simple Detection Surveys**

Multiple Species Inventory and Monitoring **Technical Guide**

Manley et al. (2004, 2006)

Prediction: Sierra Nevada Changes in the geographic distributions of ~75% of species in would be adequately detected using grid-based "presence/absence" sampling Manley et al. (2004)

Methods for Achieving Efficiency

1. Link passive, noninvasive sampling to FIA grid

- 2. For key species, build habitat models using FIA attributes & apply to the FIA system
- 3. Link FIA-based models to FVS to predict effects of proposed management activities
- For wide-ranging species, use vegetation characteristics of their home ranges as a target landscape condition

Summary: Logical Actions in the Face of Uncertainty

1. We will know more, and learn more, with a *systematic* collection of new information

2. With limited resources, we should collect that information strategically.....Considerations:

- Mix of coarse and fine filter elements
- Legal requirements for species
- Elements that are limiting (big trees)
- Elements that are at risk (vulnerable species)
- Elements that, collectively, represent the state of an ecosystem (i.e. focal species)
- Use field-based, noninvasive monitoring methods to index populations & for habitat modeling.

Summary (cont)

- We can advance quickly using existing programs & platforms (FIA, FVS, remote sensing)
- We can learn from other organizations (i.e., TNC) but also exploit the talents within NFS and research stations.

